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Abstract—This paper concerns principles of unsupervised
learning of self-organizing maps (SOMs) to address optimization
routing problems called the Orienteering Problem (OP) and
its multi-vehicle variant called the Team Orienteering Problem
(TOP). The problems are similar to the traveling salesman
problem in finding an optimal tour to visit all the given locations,
but here, each location has specified reward that can be collected
by the tour and the problem is to select the most valuable subset
of the locations that can be visited within the travel budget. In
existing SOM for the OP, the locations to be visited are duplicated
to adapt the network to locations with higher rewards more
frequently. The proposed novel SOM-based solution overcomes
this necessity and based on the presented results it significantly
reduces the computational burden of the adaptation procedure.
Besides, the proposed approach improves the quality of solutions
and makes SOM competitive to existing heuristics for the OP,
but still behind computationally expensive metaheuristics for
the TOP. On the other hand, the main benefit of the SOM-
based approaches over the existing heuristics is in solving the
generalized variant of the OP and TOP with neighborhoods.
These variants of the problem formulation allow to better utilize
the travel budget for instances where the reward associated with
the location can be collected by visiting a particular neighborhood
of the location and not exactly the location itself. This generalized
problem formulation better models situations of the robotic data
collection, e.g., using wireless communication or range sensors.

I. INTRODUCTION

The Orienteering Problem (OP) was introduced in [1] for an
inventory routing problem and for orienteering in [2]. The OP
can be considered as a variant of the popular combinatorial
the Traveling Salesman Problem (TSP) in which we aim to
determine a tour that maximizes the total collected profit [3].
Contrary to the variant of the TSP called the Prize-Collecting
TSP [4], where the objective function is to determine the
shortest tour maximizing the profit, the OP stands to determine
a tour that maximizes the collected rewards associated with the
given set of locations while the total tour length is shorter than
the given travel budget Tmax. Hence, the OP can be considered
as a combination of the Knapsack problem in selecting the
most valuable locations to be visited and the TSP in finding
the shortest tour visiting such a subset. Therefore, the OP is
at least NP-hard [1] as for visiting all the given locations the
problem of determining the shortest tour is the TSP.

Motivations for solving the OP are related to routing and
logistic tasks in which the travel budget is limited and where
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there is a demand to serve many potential locations (cus-
tomers). Several practical applications can be found in [5],
[6]. The main motivation of the approach studied in this
paper is arising from the robotic information gathering, where
a single or team of autonomous vehicles is requested to
collect data from a pre-deployed sensor network or collect
measurements at particular locations. Not all sensor locations
provide data of the same importance, and thus a reward
characterizing the importance of the data can be associated
with each sensor location. The operational time of robotic
vehicles is often limited, and thus the goal is to maximize
the collected information from the sensors while the required
travel cost is under the given limit.

Having a fleet of vehicles, the total collected rewards can
be increased by simultaneous data collection by individual
vehicles [7]. Then, the problem is to determine a set of data
collection tours, one for each individual vehicle, such that the
reward associated with a particular sensor location is counted
only for a single vehicle, i.e., multiple visits to the same
location do not increase the total reward. Such a formulation of
the OP has been introduced as the Team Orienteering Problem
(TOP) in [8] and it can also be used in situations where a tour
for one vehicle has to be determined for a single day and other
important customers are served on the next days [9].

Moreover, it is often not necessary to visit the particular
sensor locations exactly in motivational scenarios of data
collection for environment monitoring. It may be rather more
suitable to save the travel cost by remotely read data from the
sensors within a wireless communication range [10] or using
range measurements such as a camera in surveillance and
inspection missions [11], [12]. This can be addressed by the
variant of the TSP called the Traveling Salesman Problem with
Neighborhoods (TSPN) [13], [14] and a similar generalization
of the OP has been introduced as the Orienteering Problem
with Neighborhoods (OPN) in [15], [16]. The main difference
between the ordinary OP and its generalization the OPN
is that in addition to the determined subset of the sensors
providing the most valuable measurements, it is also required
to determine the most suitable waypoints from which the
measurements (rewards) from the sensors can be collected.

The both formulations (the OP and OPN) share the main
challenge of orienteering problems that is the determination
of the subsets of the locations according to the tour visiting
them with respect to the given travel budget. Regarding the
existing approaches for the orienteering problems [5], [6], the



only approaches capable of a direct solution of the OPN are
those based on self-organizing maps proposed in [16], [15].

In this paper, SOM for the OP is investigated and a novel
adaptation method of the SOM-based unsupervised learning
is proposed. The proposed growing self-organizing structure
is independent on the rewards, and thus it scales better than
the previous methods. Moreover, the learning procedure keeps
the number of neurons lower or equal to the number of
locations to be visited, which further decreases the required
computational time. The proposed SOM method also provides
a solution of the OPN. In addition, the proposed method is
employed to solve the Team Orienteering Problem (TOP) and
its variant with neighborhoods. The developed algorithm has
been evaluated using standard benchmarks for the OP and
TOP [6], [17] and found solutions are compared with existing
results available in the literature [18], [9]. Regarding the results
for the OP, the proposed SOM-based approach provides better
solutions than the previous approach [16] and it is competitive
to existing heuristics. Moreover, the proposed approach is
about one order of magnitude faster than [16] and solutions
are found in tens of milliseconds using a conventional desktop
computer. The main contributions of the paper are:
• Novel growing self-organizing map for the OP, TOP, and

their variants with neighborhoods.
• Improved performance of SOM for orienteering problems

with computational complexity independent on the re-
wards, contrary to the previous work [15], [16].

• Evaluation of SOM solvers in standard benchmarks for
the OP and TOP with comparison to existing heuristics.

The rest of the paper is organized as follows. An overview
of existing approaches is presented in the next section. The
OP and OPN are formally introduced in Section III together
with the generalized the TOP. The proposed novel SOM-based
unsupervised learning for orienteering problems is presented
in Section V. Results and comparison of the proposed method
with the previous SOM approach and existing heuristics are
presented in Section VI. Concluding remarks and future re-
search work are in Section VII.

II. RELATED WORK

Several approaches to the OP and TOP and their further
variants have been proposed in the literature [5], [6]. The
existing methods include exact solutions based on branch-and-
bound techniques [19], [20] but due to a high computational
complexity of the exact solvers, heuristic methods have been
developed, e.g., [21], [18], [22]. The solvers are further
improved by metaheuristics [23], [9] based on a combination
of several techniques such as evolutionary methods, tabu
search [24], Variable Neighborhood Search (VNS), Particle
Swarm Optimization [25], [26], and even improvement heuris-
tics for the TSP, i.e., LKH [27].

Regarding approaches to the orienteering problems based on
neural networks, to the best of our knowledge, there is only
a single approach [28] based on continuous Hopfield neural
network in the literature, except the recent works [16], [15].
The approach [28] relies on traditional heuristics for the TSP

that are employed in an iterative minimization of the proposed
relatively complex energy function. The authors report that the
proposed combination of heuristics is crucial to find solutions
that are competitive to existing combinatorial solution of the
OP. On the other hand, the approaches [16], [15] are solely
based on the unsupervised learning and they originate from the
work [13] that introduces growing SOM to address the Prize-
Collecting Traveling Salesman Problem with Neighborhoods
(PC-TSPN) and which provides better results than existing
combinatorial heuristics in data collection planning in terms
of the solution quality and the required computational time.

Based on the findings reported in [13], the main source of
the data collection plan improvement is in the determination
of suitable waypoints at which the requested data from the
sensors are collected, i.e., the neighborhoods part of the
problem formulation. Therefore, it is desirable to consider
the neighborhoods also in the formulation of the Orienteering
Problem for the data collection planning that better fits the
practical limitations of the operational time of robotic vehicles
than the PC-TSPN, in which the tour length is minimized but
not guaranteed to be within the budget limit.

The SOM for the TSP follows the main idea of the
Kohonen’s unsupervised learning, where the neuron weights
share the space with the input space. The network forms a
uni-dimensional structure (not a usual 2D grid of cells in an
ordinary SOM based approaches) that forms a ring of neurons
that represents a tour in the input space. The unsupervised
learning for the TSP is an iterative procedure in which the
given locations (cities) to be visited are presented to the net-
work and the best matching neuron is adapted to the presented
location together with its neighboring neurons. The power
of the adaptation is according to the neighboring function
that decreases the power of the adaptation with increasing
cardinal distance (i.e., measured as the number of neurons)
of the neighboring neuron to the winner neuron. During the
learning, the ring of neurons evolves in the input space to fit
the presented locations (cities) and the final tour to visit the
locations is retrieved by traversing the ring as a sequence of
the locations associated with the particular neurons.

The main difficulty to address the OP by the SOM for the
TSP is related to the constrained travel budget and rewards to
prefer locations with high rewards. In [15], the authors propose
to duplicate each individual input location (which in fact is an
observation region to collect data about a particular object of
interest) by a factor determined from the greatest common
divisor of the set of rewards. This is motivated to adapt the
network towards the areas providing higher rewards more often
in each learning epoch. The main drawback of the duplication
is that the computational complexity is dependent on the size
of the input, and thus it depends on the particular setup of
the rewards and the duplication can result in a significantly
larger input than the original problem. In addition, a feasible
solution of the OP has to satisfy the budget limit. In the SOM
learning, this is achieved by a conditional winner selection and
its actual adaptation according to the expected length of the
ring (route) after the adaptation. Therefore, if the adaptation



results in budget constraint violation, the winner neuron is not
selected, and the learning proceeds with the next input.

The first application of SOM to the OP has been introduced
in [15] to solve active perception problem with a group
of mobile robots, and the performance of the SOM-based
solver is not compared with existing solutions and standard
benchmarks. Besides, the solution for the multi-robot case has
been found as individual patrolling routes that support spatial
partitioning of the input space into independent regions that
are determined by the SOM during the learning. The SOM
learning has been further applied in the single-competitor
OP and compared with existing heuristics for the OP on
the available benchmarks in [16]. The SOM for the OP is
competitive to the existing heuristics proposed in [21], [22],
[18], [5] on the instances of the Tsiligirides problem sets [2],
[17]. For problem instances from the Set 64 and Set 66 [18],
[17] benchmarks, the solutions provided by SOM are slightly
worse than solution found by the heuristics algorithms. On the
other hand, the main benefit of the SOM solver is its ability to
solve the OPN, in which even a short communication radius
significantly improves the total collect rewards in the problems
of the Set 64 and Set 66. However, the main drawback of the
previous SOM approaches proposed in [15], [16] is that their
computational complexity depends on particular values of the
rewards that directly influence the number of duplicated loca-
tions used for learning. The herein proposed novel adaptation
procedure addresses this drawback and significantly decreases
the computational burden while it also improves the solution
quality in the existing benchmarks for the OP.

III. PROBLEM STATEMENT

The studied Orienteering Problem (OP) and its variant
with Neighborhoods (OPN) together with their extension for
multi-vehicle missions is motivated by robotic data collection
planning for autonomous vehicles to collect sensor measure-
ments from a given set of sensor locations S. Each sensor
location may provide measurements of various importance,
and thus each sensor location si ∈ S has associated reward
ςi that is collected by retrieving data from the sensor. It
is assumed a robotic vehicle has limited travel budget, and
therefore, the problem to determine the most valuable sensor
measurements can be formulated as the OP or TOP. In the case,
the requested measurements at the sensor locations can be
collected remotely, e.g., using a wireless communication, the
range for a reliable data transfer is denoted δ and the problem
can be formulated as the OPN, where the neighborhood of
si ∈ S is defined as a disk centered at si with the radius δ. The
problems are formally introduced in the following sections.

A. Orienteering Problem (OP)

Let S = {s1, . . . , sn} be a set of n sensor locations in
R2 with a particular position denoted by si ∈ R2. Each
si ∈ S has its associated reward ςi ≥ 0. The data collection
vehicle operates in R2 and its travel cost between any two
points p1, p2 ∈ R2 is the Euclidean distance |(p1, p2)|. The
initial location of the vehicle is s1 and the requested final

location is sn, the locations can be different s1 6= sn, and
their associated rewards are zero ς1 = 0 and ςn = 0 [21].
The problem is to determine at most Tmax long path from
s1 to sn that maximizes the sum of collected rewards by
visiting some subset of locations Sk ⊆ S. Therefore we need
to determine the most valuable subset Sk such that a path
connecting si ∈ Sk starts at s1, terminates at sn, and its
length is not longer than Tmax. The requested tour T can
be represented as a permutation of the k sensor locations
T = (sσ1

, . . . , sσk
) where σi is the sensor label from the

permutation Σ = (σ1, . . . , σk) where 1 ≤ σi ≤ n, σi 6= σj
for i 6= j and with the defined start and end locations of the
tour σ1 = 1 and σk = n. The OP can be then defined as the
problem to determine the number of sensors k, the subset of
sensors Sk, and their sequence Σ such that

maximizek,Sk,Σ R =

k∑
i=1

ςσi

subject to
k∑
i=2

|(sσi−1
, sσi

)| ≤ Tmax,

sσ1
= s1, sσk

= sn,

(1)

where R is the sum of the collected rewards.

B. Orienteering Problem with Neighborhoods (OPN)

The Orienteering Problem with Neighborhoods (OPN) is an
extension of the above introduced OP to address situations
when rewards at the locations S can be collected within
δ distance from the individual sensor locations. Here, the
problem is not only to determine the number of locations k,
the subset Sk ⊆ S, and the permutation Σ, but also particular
waypoints pσi

∈ R2 at which data can be reliably collected
from sσi

∈ Sk, i.e., |(pσi
, sσi

)| ≤ δ. In this case, the solution
is not a tour T visiting the locations of S, but a sequence
of waypoints P = (pσ1 , . . . , pσk

) with the length |P | shorter
than or equal to the travel budget Tmax. Similarly to the OP,
the initial and end locations of the path are the locations s1

and sn, respectively. The problem can be defined as

maximizek,Sk,Pk,Σ R =

k∑
i=1

ςσi

subject to
k∑
i=2

|(pσi−1
, pσi

)| ≤ Tmax,

|(pσi , sσi)| ≤ δ, pσi ∈ R2,

pσ1
= s1, pσk

= sn.

(2)

C. Team Orienteering Problem (with Neighborhoods)

In the case, a fleet of m vehicles is available, the problem
is to determine m tours T = {T 1, . . . , Tm}, one for each
vehicle, such that each individual tour T r ∈ T , 1 ≤ r ≤ m
is not longer than the budget Tmax. The vehicles can be
requested to start and terminate at the same locations (as
in the existing benchmarks [9], [6]), e.g., s1 and sn, but
otherwise it is supposed the tours visit different locations,
i.e., the collection of the reward from a single location is



not cumulative. The formulation of the TOP is basically an
extension of the previously introduced OP for an individual
vehicle that is denoted by the superscript r. Thus, the problem
is to determine for each vehicle r, the subset Srkr ⊆ S with
kr locations, and the permutation Σr = (σr1, . . . σ

r
kr ) such that

the locations (except s1 and sn) are not visited by more than a
single tour and all tours satisfy the budget Tmax. The problem
can be formally defined as:

maximize(kr,Sr
kr ,Σr) for r∈{1,...,m} R =

m∑
r=1

kr∑
i=1

ςσr
i

(3)

subject to
kr∑
i=2

|(sσr
i−1
, sσr

i
)| ≤ Tmax,

sσr
1

= s1, sσr
kr

= sn, for r ∈ {1, . . . ,m},

Siki
⋂
Sjkj = {s1, sn} for i 6= j,

i, j ∈ {1, . . . ,m}.
(4)

The formulation of the Team Orienteering Problem with
Neighborhoods (TOPN) is pretty much similar to the OPN
and TOP. The problem is to determine individual paths P =
{P 1, . . . , Pm}, where each P r ∈ P is not longer than Tmax.

The formulations of the OP and TOP follow the existing
problem definitions [6], albeit they are usually formulated
as Integer Linear Programming (ILP) problem. However, the
variants with the neighborhoods are not well suitable for the
ILP, as the particular waypoints can be arbitrarily selected
from the neighborhood represented by a disk. Moreover, it
is possible that a single waypoint allows to collect rewards
from several locations. The proposed SOM-based approach
is capable of solving all the introduced problems: OP, OPN,
TOP, and TOPN in a single unifying way. Its performance is
compared with existing heuristic in standard benchmarks for
the OP and TOP. Besides, selected instances of the benchmarks
are considered with the non-zero communication radius δ to
demonstrate a solution of the OPN and TOPN.

IV. WINNER SELECTION IN SELF-ORGANIZING MAPS FOR
ROUTING PROBLEMS WITH NEIGHBORHOODS

The key idea of the SOM for routing problems with
neighborhoods is that during the selection of the winner
node, it is also determined the particular waypoint from the
neighborhood of the sensor location. The winner selection used
for solving orienteering problems is based on the growing
self-organizing map for the PC-TSPN introduced in [13].
Therefore, the main idea of the winner selection is briefly
described in this section to provide an overview of the
fundamental concepts to the readers, not familiar with [13].
The idea follows the standard SOM for the TSP which is
a two-layered neural network. The input layer serves for
presenting the sensor locations (cities) and the output layer
is organized into an array of neurons. The neuron weights
share the space with the input, and thus the connected neurons
form a ring in the input space, see Fig. 1. Having M neurons
N = {ν1, . . . , νM}, the winner neuron is determined as the
best matching neuron ν∗ for the currently presented location

M−1

(s   , s    )
i,1 i,2i

s

s

1

2

M

j
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output unitsinput layer
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(a) Two-layered SOM
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s

j

(b) Ring of neurons

Fig. 1. Structure of the SOM for the TSP

si to the input of the network. In a regular SOM for the TSP,
e.g., [29], the winner neuron ν∗ is determined as the closest
neuron to si:

ν∗ = argminν∈{ν1,...,νM} |(ν, si)|. (5)

Even though this seems to be a suitable choice for the ordinary
TSP with a fixed number of locations (cities) visited by the
final route, it is not suitable for the routing variants in which a
subset of the given locations are selected, like in the PC-TSPN
or the addressed orienteering problems.

In [13], the authors consider the ring of the connected
neurons as a sequence of straight line segments and expected
location of the winner neuron is determined as the closest point
ps of the ring to the presented location s, see Fig. 2a. The point
ps is determined prior the selection of the winner neuron and
the actual winner neuron is determined only if the adaptation
of the network is performed, e.g., the conditional adaptation in
the PC-TSPN [13] or considering the limited travel budget in
the OP [16]. Once ps is determined, the winner neuron for s
is selected as an existing neuron with the weights identical to
ps or a new neuron is created between the particular neurons
corresponding to the segment endpoints and the weights of the
new neuron are set to be identical to ps.

s

connected neurons

sp

(a) Determined point ps for the
weights of the winner neuron

s
p

p’

connected neurons

s
δ

communication range δ

− alternate location

(b) Alternate location p′ to collect
data from s

Fig. 2. The winner selection in the PC-TSPN and OP(N) and the alternate
location p′ to collect data from s within the communication radius δ



If data from s can be remotely collected using a wireless
communication, it is not necessary to visit a particular location
s, and therefore, the point ps is used to determine an alternate
location p′ at which data can be reliably read from s. The
point p′ is an intersection point of the straight line segment
(ps, s) and the disk with the radius δ centered at s. Then, such
a point p′ is used as an alternate location towards which the
network is adapted instead of s. If ps is already inside the
disk, the data from s can be retrieved from ps, and thus only
new neuron is added to the network and the network is not
adapted towards s [16].

Notice the described winner selection may create a new
neuron with the weights set to ps. To avoid only increasing the
number of neurons in the network, the neurons not selected as
winners in the current learning epoch (defined as a presentation
of all sensor locations S to the network) are deleted at the end
of each learning epoch. Thus, the number of neurons is adapted
to the currently selected subset of S during the learning.

The ideas of the conditional adaptation and determination
of the weights of the expected winner neuron are used in the
proposed novel SOM for the OP. The idea of the alternate
location (shown in Fig. 2b) is used in the OPN. The both
ideas are further developed in the proposed new adaptation
procedure presented in the next section.

V. PROPOSED SELF-ORGANIZING MAP FOR
ORIENTEERING PROBLEMS

The proposed unsupervised learning to address challenges
arising in solving orienteering problems builds on the previous
work on SOM for the PC-TSPN [13], OP [16], and its
application in active perception [15]. The crucial property of
the network for orienteering problems is to satisfy the travel
budget constraint, and thus the network is not adapted if the
tour represented by the network would violate the constraint.
Besides, the learning should prefer adaptation to locations with
higher rewards. In this paper, we propose to weight the power
of the adaptation according to the reward associated with the
location, which addresses the main drawback of the previous
approaches [15], [16] that duplicate the sensor locations, and
thus increase computational complexity of the learning.

The conditional adaptation is achieved by the determination
of the neuron weights for the possible winner neuron as the
point ps (visualized in Fig. 2). The determination of the neuron
weights is further developed to support an escape from local
optima. The original idea of the SOM for the OP [16] uses
only the conditional adaptation solely based on the length of
the tour represented by the ring after such an adaptation that
is supposed to be shorter than the travel budget Tmax. Once
the network represents a tour that is close to the travel budget,
such a network is unlikely adapted to other locations and the
learning is stuck in local optima.

The herein proposed procedure considers ideas of insertion
heuristics in which a location with the lowest reward or a
location that mainly contributes to the length of the route are
deleted in benefit of newly added location to the route. In
the network adaptation, the corresponding neuron to such a

location is removed from the network instead of the sensor
location itself as in insertion heuristics. However, such a mod-
ification of the network still may not be enough to allow the
adaptation due to the travel budget constraint. Therefore the
configuration of the network is saved prior the determination
of neuron weights of the expected winner (i.e., the point ps). If
the network is not adapted because of Tmax, all modifications
of the network performed during the determination of ps
are reverted back to the state before ps selection and the
learning proceeds with the next sensor location. The proposed
unsupervised learning based on these ideas is summarized in
the rest of this section.

In the proposed SOM learning, all sensor locations S ∈
{s1, . . . , sn} are presented to the network in a single learning
epoch. Then, the learning gain G is updated according to the
gain decreasing rate α. The adaptation uses the determination
of the point ps as the neuron weights of the expected winner.
The determination may modify the network, and thus the state
of the network as a sequence of the neuron weights N =
{ν1, . . . , νM} is saved and it is eventually reverted to that
state if the adaptation is not performed because of the travel
budget Tmax. 1 The winner neuron ν∗ is adapted towards the
presented location s together with its neighboring neurons in
the d neighborhood (counted as the number of neurons in the
ring) according to the neighboring function f(G, d):

f(G, d) =

{
e

−d2

G2 for d < 0.2M
0 otherwise

, (6)

where G is the learning gain and M is the current number of
the neurons in the ring. The learning procedure is as follows:

B Initialization:
1) Initialize the network as N = (ν1, νend) with two

neurons ν1 and νend that are located at s1 and sn. The
neurons represent the requested start and end locations
of the tour. These neurons are never removed nor
adapted during learning. They define the ring end points.

2) The learning parameters are initialized to the following
values: the learning gain G = 10, the default learning
rate µ = 0.6, and the gain decreasing rate α = 0.1.

3) Determine the maximal reward Rmax =
argmaxs∈S ς(s).

4) Set the current best found solution T = (s1, sn) and its
sum of rewards R = 0 because ς1 = ςn = 0.

5) Set the learning epoch counter i to i = 1.
B Learning epoch:

6) Randomize the sensor locations S = {s1, . . . , sn} ex-
cept s1 and sn; Π← permute(S \ {s1, sn}).

7) For each s ∈ Π:

a) Save the current network N ′ ← N .
b) (N , ps)← winner weights(s,N , Tmax, i).

1In fact, it is implemented as saving changes to the network and reversion to
the previous state by applying inverse changes, which is more computationally
efficient than saving the whole network.



c) If ps has identical coordinates with ν1 or νend mark
the respective neuron as the winner neuron in the
current epoch i.

d) For ps lying on the ring, determine the first pre-
vious winner νp (in the direction towards ν1) and
the first next winner νn (in the direction towards
νend) from ps.

e) Let a tour represented by the current winner neu-
rons of N be Twin and its length be LTwin . The
expected length of the tour represented by the ring
after a possible adaptation can be expressed as

LTwin
− |(sνp , sνn)|+ |(sνp , s)|+ |(s, sνn)| ≤ Tmax, (7)

where sνp and sνn are the associated sensor loca-
tions to the winners νp and νn, respectively.

B Conditional Adapt:
f) If (7) holds Then
• Create a new neuron ν∗ with the weights iden-

tical to ps and insert it to N at the position
corresponding to the particular edge connecting
the neurons, see Fig. 2b.

• Adapt ν∗ and its neighboring neurons to s
using the neighboring function (6), i.e., for each
neuron ν in the d neighborhood of ν∗ adjust the
weights of ν according to new weights ν′

ν′ = ν +Rsµf(G, d)(s− ν), (8)

where Rs is the ratio of the reward of s and
Rmax, i.e., Rs = ς(s)/Rmax. Avoid adaptation
of ν1 and νend.

• Associate s with ν∗ and mark ν∗ to be one of
the winner neurons in the current epoch i.

g) Else

• Revert the network to the state before the deter-
mination of the point ps, i.e., N ← N ′.

h) End – conditional adaptation.
B Update: (at the end of each learning epoch):

8) Remove all non-winner neurons from the ring N .
9) Update learning parameters: G← G(1− iα), i← i+1.

10) If the tour Twin represented by the current winners
in N provides higher sum of the rewards than the best
solution found so far, update the solution T ← Twin and
its collected rewards R←

∑
si∈T ς(si).

11) If the number of learning epochs i reaches the limit
imax Stop the learning; Otherwise go to Step 6.

The adaptation procedure iteratively determines the point
ps and creates a new neuron with the weights set to ps
that is then adapted towards the currently presented sensor
location s. After each learning epoch, the non-winner neurons
are removed and additional neurons can be removed from the
network in the winner weights() procedure to further support
the adaptation of the network to s while still preserve the travel
budget constraint. Thus, the number of neurons M in the ring
never exceeds the number of sensor locations n.

Procedure winner weights(s,N , Tmax, i):
1) Get all neurons marked as winners in the epoch i
Nwin ← winners(N \ {ν1, νend}, i).

2) Let each winner ν ∈ Nwin has associated sensor
location sν = s(ν) with the reward ςν = ς(sν).

3) Determine the winner νf which has the longest
distance to its associated location sνf , i.e.,

νf = argmaxν∈Nwin
|(ν, sν)|. (9)

4) Determine the winner νl which associated sensor
location sνl has the lowest reward, i.e.,

νl = argminν∈Nwin
ς(sν). (10)

5) Determine the closest point ps of the ring N to the
location s as in Fig. 2a.

6) If the expected route length after adapting a winner
node created at the location ps would be longer than
Tmax

• If ς(sνf ) < ς(s) AND |(νf , s(νf )| > |(ps, s)|
Then remove νf from the ring N ← N \ {νf}.

• If ς(sνl) < ς(s) AND |(νl, s(νl)| > |(ps, s)|
Then remove νl from the ring N ← N \ {νl}.

7) return(N , ps).

Fig. 3. The procedure to determine the point ps as the expected weights
of the winner neuron for the sensor location s in the current ring N . The
procedure may change N to respect the travel budget Tmax.

The procedure winner weights() is depicted in Fig. 3. It
searches for a neuron νf from the winner neurons of the
current epoch Nwin such that νf is the farthest neuron from
its associated sensor location and a neuron νl ∈ Nwin that
is associated with the sensor location with the lowest reward.
Then, if the adaptation to s using a new winner at ps would
exceed the budget Tmax the neurons νf and νl are removed
from the network to shorten the tour represented by the ring,
but only if the current location s would add a higher reward
to the tour than the locations associated to νf or νl.

Even though the proposed adaptation originates from [16],
its main advantages are that it does not need the duplication of
the locations from S and it also keeps the number of neurons
lower than the original procedure [16]. The performance of
the proposed adaptation procedure is empirically evaluated in
Section VI where it is compared with the previous SOM for
the OP and also with other existing heuristic approaches.

A. SOM for the Orienteering Problem with Neighborhoods

In the case the data from a sensor location s ∈ S can
be retrieved within the communication radius δ, an alternate
location p′ at which data can be read from s is determined
from the point ps and the disk with radius δ centered at s, see
Fig. 2b. Such a point p′ is then used as the alternate location
instead of the sensor location s in the adaptation procedure
described in the previous section, i.e., s becomes p′ (s p′).
The ring is adapted towards p′ and the ring itself is the data
collection path. Therefore, p′ is used in the conditional deletion



of νf and νl in the procedure winner weights() in Fig. 3.
The point p′ is also used (instead of s) in the adaptation
condition (7) and the adaptation itself (8). Because all non-
winner neurons are removed from the network at the end
of each learning epoch, the requested data collection path is
retrieved from the sequence of the winners as a sequence of
the associated alternate locations p′.

The main benefit of non-zero communication radius δ is in
saving the travel cost, and thus a higher sum of the collected
rewards can be expected for a solution of the OPN with δ > 0
with the same Tmax as for the ordinary OP.

B. SOM-based Solution of the Team Orienteering Problems

The TOP can be addressed by creating an individual ring
for each vehicle. Then, the rings can compete to be selected
for the adaptation towards the particular s according to the
ratio of the current length of the tour represented by the ring
and the travel budget as in [15]. However, for dense problems
with a high number of locations, the individual rings become
quickly saturated and the tour lengths would be quickly close
to the travel budget Tmax. Another alternative can be a greedy
selection of the ring for the adaptation based on the highest
ratio of the gained reward to the expected tour length.

In an early evaluation of the both aforementioned ap-
proaches, such a competitive SOM provides relatively poor
performance and the total collected reward is only slightly
increasing with increasing the number of vehicles. Therefore,
an incremental approach is rather evaluated in this paper and
the TOP with m vehicles is solved as a sequence of the m OP
instances. For each individual vehicle r ∈ {1, . . . ,m}, sensor
locations visited by the solution of the OP for one vehicle are
not considered in the consecutive solution for the next vehicle.

The same approach is also used for the Orienteering Prob-
lem with Neighborhoods (TOPN), where individual solutions
are based on the above proposed SOM-based solution to the
OPN. Empirical results of this naive SOM-based approach to
the TOP and TOPN are reported in Section VI.

C. Computational Complexity

The computational complexity of the proposed learning
procedure depends on the number of locations n and the
number of neurons in the ring. The number of neurons is
proportional to the number of locations and it is M ≤ n.
In each learning epoch, one winner neuron is eventually
determined for each sensing location from up to n existing
neurons in the ring, and thus the time complexity of a single
epoch can be bounded by O(n2). In the case of the TOP, we
consider up to m individual rings, but the total number of
neurons among the rings cannot exceed n (except the path
endpoints), and therefore, the time complexity of a single
learning epoch can be bounded by O(n(n+m)). The variants
with neighborhoods only slightly increase the computational
time as it contains only the additional determination of the
point p′; hence, the time complexity of a single learning epoch
can also be bounded by O(n2) and O(n(n+m)), respectively.

VI. RESULTS

The proposed SOM adaptation for orienteering problems
has been evaluated using the existing benchmarks for the OP
and TOP [6]. The evaluation methodology follows the results
in [16] where the first systematic evaluation of the SOM-based
approach to the OP has been presented. Here, the novel SOM
based approach denoted Proposed SOM is compared with the
previous approach denoted SOM-OP [16].

Both SOM approaches are relatively computationally inex-
pensive, and therefore, the maximal number of learning epochs
is set to imax = 500. Besides, they are also stochastic search
procedures, and thus each particular problem instance is solved
50 times. The results for the other algorithms are solutions
reported in the literature, and thus they represent a single trial.

The algorithm performance is evaluated using the relative
percentage error (RPE) defined as relative error between the
reference value Rref and the best found solution R over the
performed trials [25], [26], where Rref is the highest reward
of the best known solution of the particular instance reported
in the literature [26], [9], [6]. The RPE is computed as RPE =
(Rref −R)/Rref · 100. The robustness of the algorithm over
the performed trials is shown as the average relative percentage
error (ARPE) [26], i.e., ARPE = (Rref −Ravg)/Rref · 100.

Due to limited space, aggregated results are presented as the
respective average values of the RPE and ARPE of the solved
problem instances for a particular problem set. Aggregated
indicators are denoted RPE and ARPE, respectively. The
required computational time is reported as the average time
needed to solve a single trial. The standard deviations of the
time are below 5%, and therefore, they are omitted from the
presentation. The SOM algorithms have been implemented in
C++ and executed within the computational environment using
a single core of the iCore7 CPU running at 4 GHz.

A. Results for the Orienteering Problem

The evaluation of the Orienteering Problem (OP) has been
performed using the problem instances proposed by Tsiligiri-
des in [2] (the problems Set 1, Set 2, and Set 3) and problems
proposed by Chao et al. in [18] that are available at [17] as the
Set 64 and Set 66. In total, 89 different instances of the OP
with various budgets have been solved. Regarding the previous
evaluation presented in [16], we consider only the heuristic
approach [18] denoted by the CGW, as the representative
state-of-the-art heuristic for the OP. All aggregated results per
particular problem set are depicted in Table VI-A, where the
last column Speedup denotes how many times is the newly
proposed SOM algorithm faster than the SOM-OP [16].

The results indicate that overall the proposed algorithm
provides improved or similar results to the SOM-OP [16] but it
is always significantly faster. More detailed results for problem
instances of the Set 64 and Set 66 are presented in Table II
and Table III, respectively. It can be observed that the proposed
approach provides even better results than heuristics CGW in
few cases but almost always better results than the previous
SOM approach [16]. Solutions of the selected problems and
their further improvement for δ > 0 are visualized in Fig. 5.



TABLE I
AGGREGATED RESULTS FOR THE OP

Set CGW [18] SOM-OP [16] Proposed SOM
RPE RPE ARPE RPE ARPE Speedup ×

Set 1 0.10 0.25 2.45 0.10 1.05 2.1

Set 2 0.92 0.92 1.94 0.92 1.10 7.4

Set 3 0.00 0.00 1.73 0.00 0.89 13.5

Set 64 0.33 2.76 6.25 1.55 4.29 11.4

Set 66 0.41 2.08 6.11 1.51 5.25 20.4

TABLE II
SOLUTIONS OF THE OP FOR INSTANCES FROM SET 64

Tmax
CGW SOM-OP Proposed SOM
RPE RPE ARPE CPU* RPE ARPE CPU*

15 0.00 0.00 0.00 96.7 0.00 0.00 13.0
20 0.00 0.00 0.00 475.2 0.00 1.31 26.4
25 0.00 0.00 6.15 578.2 1.54 7.51 31.5
30 0.00 3.80 8.91 640.1 2.53 8.03 38.5
35 0.00 1.05 6.21 655.3 0.00 3.77 45.1
40 0.00 3.36 8.45 677.1 2.52 5.36 51.6
45 0.00 6.62 10.69 691.1 1.47 5.97 58.2
50 0.00 6.67 10.25 693.8 3.33 6.04 63.8
55 0.00 4.88 10.67 689.4 2.44 4.95 68.5
60 1.69 4.52 9.36 673.3 2.82 5.15 72.5
65 0.00 3.23 6.01 645.9 1.61 3.54 76.0
70 1.01 3.54 5.44 613.5 2.02 3.83 79.8
75 0.97 0.97 3.61 578.4 0.49 2.85 82.9
80 0.93 0.00 1.74 537.3 0.93 1.82 84.6

*The reported computational times are in milliseconds.

TABLE III
SOLUTIONS OF THE OP FOR INSTANCES FROM SET 66

Tmax
CGW SOM-OP Proposed SOM
RPE RPE ARPE CPU* RPE ARPE CPU*

15 0.00 0.00 0.00 281.2 0.00 0.00 15.2
20 4.88 0.00 1.76 558.3 0.00 3.51 22.8
25 0.00 0.00 1.76 866.4 0.00 3.83 26.2
30 0.00 0.00 9.20 999.3 0.00 8.62 29.9
35 1.08 1.08 7.96 1128.3 1.08 7.38 32.1
40 0.00 5.22 11.70 1254.3 4.35 11.22 37.0
45 0.00 0.77 11.65 1326.4 0.77 11.22 39.9
50 0.00 4.11 10.71 1390.3 4.79 10.47 45.0
55 0.00 0.61 11.07 1396.8 1.21 10.61 49.2
60 0.00 6.56 11.65 1411.5 3.28 10.50 54.2
65 0.00 1.02 9.18 1423.3 4.59 8.08 59.0
70 0.00 2.80 9.23 1413.9 2.80 7.54 63.6
75 0.00 5.26 9.34 1405.6 2.63 6.91 67.3
80 0.00 4.94 9.09 1383.8 2.47 6.30 70.2
85 0.00 3.54 7.79 1346.9 1.97 4.64 73.1
90 0.00 5.22 8.00 1305.7 2.24 4.63 76.0
95 1.08 4.66 6.86 1252.1 1.79 4.11 79.5

100 2.05 3.41 6.66 1193.4 2.05 4.64 80.5
105 0.66 3.29 6.12 1126.6 2.30 4.41 82.6
110 0.00 1.29 3.74 1061.4 0.65 2.87 85.0
115 0.00 0.31 2.75 989.7 0.31 2.26 85.8
120 0.00 0.00 1.38 909.9 0.00 1.49 87.3
125 0.90 0.00 1.04 739.4 0.00 1.05 89.0
130 0.00 0.00 0.32 505.7 0.00 0.08 62.9

*The reported computational times are in milliseconds.

B. Results for the Orienteering Problem with Neighborhoods

The performance of the SOM-based solvers to the OPN is
evaluated using standard benchmarks for the OP but with non-
zero communication radius δ. The average collected rewards
from 50 trials of the selected problems are depicted in Fig. 4.
As expected, allowing to collect rewards within the δ distance
saves the travel cost, and thus more rewards are collected. The
proposed SOM provides outstanding results in the problem Set
66 with the travel budget Tmax = 60, but it can be noticed
that for Set 3 and Tmax = 50, the new proposed approach
provides a bit worse results for the communication radius δ =
1.0, albeit it provides better results for zero communication
radius. This is probably caused by a far location that may add

Set 3, Tmax=50 Set 64, Tmax=45 Set 66, Tmax=60

C
o
ll

ec
te

d
 r

ew
ar

d
s 

−
 R

0
5

0
0

1
0

0
0

1
5

0
0

SOM−OP, ρ=0.0

SOM−OP, ρ=1.0

SOM−OP, ρ=1.5

SOM−OP, ρ=2.0

Proposed SOM, ρ=0.0

Proposed SOM, ρ=1.0

Proposed SOM, ρ=1.5

Proposed SOM, ρ=2.0

Fig. 4. Average sum of the collected rewards with increasing communication
range δ. The standard deviations are showed as error bars and in some cases.

a significant reward to the solution. In the proposed approach,
such a location can be preferred at the early epochs and then,
it is never removed because of its high reward.

C. Results for the Team Orienteering Problem

The proposed SOM-based solver for the TOP has been eval-
uated in available datasets [17] and compared with the results
published in [9] with various numbers of locations, budgets,
and numbers of vehicles. The number of the evaluated problem
instances is 148, and thus to report on evaluation within the
limited space, the results are aggregated using the RPE and
ARPE indicators for which the reference value is the best
known solution reported in [9], [26]. The selected approaches
for comparison is one of the first heuristic CGW [8], the tabu
search and VNS-based approaches proposed in [9], and one
of the latest approach PSO inspired algorithm [26] denoted
the PSOiA. The results are reported in Table IV, where the
first column denotes a set of problems with various budgets
with the following notation. The first number denotes the
problem set, i.e., Set 4, Set 5, etc., see [17], and the second
number denotes the number of vehicles. The particular TOP
instances for the individual budgets are selected according
to the available results for CGW, TABU, VNS, and PSOiA
approaches reported in [9], [26]. For example the problem
set p4.4 represents problem instances of the Chao’s Set 4
with 4 vehicles and with 16 different budget values from
the range 20 ≤ Tmax ≤ 60, see [9], [26], [17] for further



(a) Set 66, Tmax=60, δ=0.0, R=885 (b) Set 66, Tmax=95, δ=0.0, R=1370 (c) Set 66, Tmax=60, δ=1.0, R=1495 (d) Set 64, Tmax=45, δ=1.5, R=1344

Fig. 5. Selected solutions of the Orienteering Problem (OP) and Orienteering Problem with Neighborhoods (OPN) found by the proposed SOM-based approach

TABLE IV
AGGREGATED RESULTS FOR THE TOP

Set CGW TABU VNS PSOiA Proposed SOM
RPE RPE RPE RPE RPE ARPE CPU [ms]

p4.2 4.53 0.89 0.12 0.00 4.92 9.14 76.7

p4.3 4.45 0.36 0.06 0.00 5.03 8.90 52.8

p4.4 4.38 0.19 0.20 0.01 4.88 8.39 40.7

p5.2 0.92 0.04 0.09 0.00 3.63 7.96 41.0

p5.3 1.11 0.00 0.00 0.00 2.67 6.04 30.8

p5.4 2.32 0.00 0.00 0.00 1.22 4.18 25.8

p6.2 1.17 0.18 0.00 0.00 4.56 7.88 48.4

p6.3 0.80 0.00 0.00 0.00 1.90 5.80 29.5

p6.4 0.43 1.65 1.65 1.65 2.63 6.64 20.8

p7.2 1.38 0.19 0.03 0.00 4.21 9.32 60.3

p7.3 2.48 0.40 0.13 0.00 3.53 6.90 44.1

p7.4 4.42 0.37 0.03 0.00 3.23 5.89 31.8

details. The columns TABU and VNS denote results for
the GEN TABU FEASIBLE and SLOW VNS FEASIBLE
approaches reported in [9], respectively.

The presented results indicate that the proposed SOM-based
incremental solution of the TOP as a series of consecutive
solutions of the OP does not compete with the computationally
expensive metaheuristic such as the TABU and VNS based
algorithms and currently the best performing PSOiA [26]. On
the other hand, in few cases, the SOM-based approach pro-
vides competitive (or slightly better) results than the heuristic
approach CGW proposed by Chao et al. in [8]. Regarding
the required computational time, a solution of a single trial
is found in tens of milliseconds, which is far faster than
the required computational times reported in [9], which are
hundreds of seconds. The reporting times for the PSOiA are
in tens of seconds using dual-core processor with frequency
around 2.5 GHz. Even though the reported times of the
previous approaches [9], [26] are for slower computers, the
SOM is about four orders of magnitude faster and it can be
expected it would be still faster even on that computers.

Due to lack of the standard benchmarks for the TOP with
Neighborhoods (TOPN), the ability of the proposed SOM-

based approach to solve TOPN instances is demonstrated in
Fig. 6, where increased rewards gained for δ>0 are reported.

D. Discussion
The presented results indicate that the novel unsupervised

learning procedure improves the performance of the SOM-
based solution to the OP and OPN in comparison to the
previous approach [16] while it is also significantly less com-
putationally demanding. Regarding the motivational scenario
of robotic data collection missions, the formulation of the
problem as the OPN provides additional benefit in increased
collected rewards for the same travel budget. However, the re-
sults indicate that in some cases, the previous SOM solver [16]
provides better results, e.g., for Set 3 in Fig. 4. By a detailed
analysis of the found paths, it is caused by the preference
of the far locations with a relatively high reward in the new
SOM procedure, while the previous SOM-based stochastic
search [16] is able to escape from such a local optimum. This
observation motivates us to further consider the SOM-based
solution as a construction heuristic and improve solutions by
evolutionary techniques, e.g., as in the memetic approach for
the TSP presented in [30].

The proposed incremental approach to the TOP as a solution
of a sequence of OP instances provides a feasible solution;
however, the solution quality does not compete to the existing
heuristic algorithms. On the other hand, the proposed SOM
approach provides a solution of the TOPN, which is more
suitable problem formulation for data collection using wireless
communication than the ordinary TOP.

VII. CONCLUSION

In this paper, a novel unsupervised learning is proposed to
solve orienteering problems by principles of self-organizing
maps. The proposed approach builds on the previous work on
SOM for the TSPN, OP, and OPN. Regarding the presented
results based on standard benchmarks for the OP, the proposed
approach provides competitive solutions to the previous SOM-
based solutions while it is significantly faster and solutions are
provided in tens of milliseconds using conventional computa-
tional resources. Moreover, the approach has been generalized
to the Team Orienteering Problem and its variant with neigh-
borhoods. Even though the proposed SOM-based approach



(a) p5.2, Tmax=17.5, δ=0.0, R=320 (b) p6.4, Tmax=16.2, δ=0.0, R=522 (c) p5.2, Tmax=17.5, δ=1.0, R=440 (d) p6.4, Tmax=16.2, δ=0.5, R=618

Fig. 6. Selected solutions found by the proposed SOM-based approach for the Team Orienteering Problem (TOP) (on the left) and the Team Orienteering
Problem with Neighborhoods (TOPN) (on the right)

does not compete with the existing heuristics for the TOP,
it provides solutions very quickly. In addition, the proposed
approach is able to directly utilize a non-zero communication
radius, and thus it may find solutions with higher rewards
than demanding metaheuristics for the OP and TOP without
considering the neighborhoods. Therefore the proposed SOM-
based approach can be considered as a construction heuristic
and combined with evolutionary techniques and existing meta-
heuristics to improve solution not only in the OP and TOP but
mainly in orienteering problems with neighborhoods which
are suitable formulations for robotic information gathering
scenarios with single or fleet of robotic vehicles.
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