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Abstract—Motivated by observations of animal behavior, lo-
comotion of multi-legged walking robots can be controlled by
the central pattern generators (CPGs) that produce a repetitive
motion pattern. A rhythmic pattern, a gait, is defined by phase
relations between all leg joints. In a case of an external influence
such as terrain irregularity, some actuator phase can shift and
thus disrupt the phase relations between the actuators. The
actuator phase relations can be maintained only by synchro-
nizing to the sensors, which output can indicate the motion
disruption. However, establishing correct sensory-motor phase
relations requires not only the motor phase model but also
a model of the sensory phase, which is generally unknown.
Although both sensory and motor phases can be modeled by
single CPG, the capabilities of such CPG-based controllers are
limited because they are not flexible and robust. In this paper, we
propose to model the phases of each sensor and motor by separate
CPGs. The phase relations between the sensor and motor phases
are established by radial basis function (RBF) neurons learned
with proposed periodic Grossberg rule for which we present
the convergence proof. Based on the reported evaluation results
using high-fidelity simulation, the proposed locomotion controller
demonstrates the desired plasticity, and it is capable of learning
multiple gaits with robust synchronization to terrain changes
using sensor inputs.

Index Terms—gait control, central pattern generator, phase
control, neurodynamics, neural oscillator, multi-legged robots

I. INTRODUCTION

An important step towards walking robots deployed in a
dynamic environment is to capture the animals’ adaptability
and robustness of their locomotion gait. A gait is a motion
pattern that has repetitive motion phases during walking, such
as stance and swing phases. The physiological evidence shows
that the motion phase is controlled by the Central Pattern
Generator (CPG), a group of recurrently connected spinal
neurons generating oscillatory signals [1]. The CPG oscilla-
tions are both self-actuated and entrained by proprioception,
providing both feedforward and feedback phase control [2].
The phase control determines the motion frequency and phase
offsets between the sensors and motion phases, allowing the
motor control to synchronize with the sensed environment.
Animals can learn the sensory-motor synchronization as they
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can learn new motion patterns or tune them in a case of
the body changes. Thus, we consider a plastic motion phase
controller as an essential part of animal survival as for the
longevity of walking multi-legged robot deployment in a long-
term mission.

The core of biomimetic phase controllers is a CPG, a
dynamic system with a limit-cycle attractor: cyclic trajectory to
which all close states converge in the limit [2]. The limit-cycle
dynamics provide oscillatory behavior, essential for the gait
motion control, but it can also synchronize to entraining signal
(an external periodic signal). The CPG that is synchronized to
an entraining signal has the same frequency as the signal, and
the phase offset between the signal and CPG is stable. Thus,
if the phase of the entraining signal shifts, the phase of the
CPG also shifts. The synchronized CPG provides a continuous
model of the phase of the entraining signal, such as the sensory
signal [3]. Hence, in a phase controller, the CPG can be used
as (i) a phase controller of the motor, or (ii) a phase model of
the sensor.

CPG-based controllers might use a single CPG as a motor
phase controller and a sensory phase model. Using such shared
sensory-motor CPG, we can model the motor phase as a
function of the single sensory phase. However, such a solution
limits the CPG-based control as it is impossible to synchronize
the motor phase to multiple sensors while ensuring that the
motor phase has the limit-cycle dynamics.

In this paper, we propose to decouple the shared sensory-
motor CPG architecture, and model the sensory and motor
phases with separate CPGs. The decoupled architecture al-
lows each motor controller to synchronize all sensory in-
puts; therefore, it is possible to establish a stable phase
offset between each sensory-motor pair. The phase offsets
between the sensory and motor CPGs must be plastic to allow
learning new gaits or adapting changes to body morphology.
We propose to learn the sensory-motor phase offsets with
Radial Basis Function (RBF) neurons [4] trained by Grossberg
rule [5], which we modify for periodic learning. The proposed
controller can produce the target phase control pattern and
also robustly synchronize to the environment through sensory
inputs.

The paper is organized as follows. A brief review of the



most related existing CPG-based controllers is presented in
Section II. The problem of gait phase control is formally
described in Section III. The proposed locomotion architec-
ture and its building blocks are detailed in Section IV. The
evaluation results on the proposed controller training of three
different gaits are reported in Section V together with a
comparison of the trained controller with other sensory-motor
connectivity architectures to demonstrate advantages of the
proposed decoupled architecture. A discussion of the results
and proposed approach are presented in Section VI. Finally,
the paper is concluded in Section VII.

II. RELATED WORK

CPG-based controllers are used in various locomotion
related domains such is wearable robotics [3], or physiological
models of invertebrate [6] [7] and vertebrate [8] locomotion,
or legged robot motion control.

In robotic motion control, the phase controller is a part of
the CPG-based gait controller that generates the phase of con-
trolled variable whereas the amplitude controller modulates
the phase control. There are various implementations of ampli-
tude controllers using for example inverse kinematics [9] [10],
direct mapping [11], [12] or reflexive systems [13]. For a
detailed analysis of CPG-based controller architectures and
their various use cases, a reader is kindly referred to the
existing comprehensive review [14]. However, for the scope
of this paper, we briefly highlight the main properties of the
existing learnable CPG-based controllers.

Both amplitude and phase control require parametrization
for each particular gait but also each particular robot body.
Thus, there is a scientific effort to learn parameters using
machine learning methods, as it is reviewed in [15]. A
learnable coupled CPG network is designed in [16], which
is synchronized to post-processed sensory inputs, where the
sensory post-processing is learned by particle swarm optimiza-
tion. This optimization method, however, cannot be used in
real-time. In [4], the authors train the amplitude controller to
modulate the output of the CPG-RBF network, where the RBF
neuron weights are statically set on the CPG limit cycle. The
RBF neuron activation is further modulated by the amplitude
controller trained by self-supervised reinforcement learning.
A real-time training of the CPG frequency is presented in
the theoretical work [17], where the authors present a Hebb-
like update rule for learning the frequency from the target
periodic signal. The frequency training rule can be integrated
directly into differential equations describing the CPG. Such
an approach is fast and compact because the learning itself is
solved by solving the differential equations describing the CPG
controller. However, there is little work done on the methods
learning phase offset between the modeled sensory phase and
the control phase.

The close approach to the herein addressed sensory-motor
phase binding is sensory-motor phase offset learning addressed
in [3], where the authors model the human gait phase with
the adaptive oscillator [17] in a framework that learns both

the phase and sensory-motor phase offset. However, the ar-
chitecture of the phase controller uses CPG as both the
motor and sensor mode, which is not suitable for robust
and adaptable locomotion control. In this paper, we propose
novel architecture with separate CPGs to model the phase of
each sensor and motor to achieve the desired plasticity of the
locomotion controller.

III. PROBLEM STATEMENT

The adaptive gait of a multi-legged robot is a repetitive
motion pattern where all N joints move synchronously with
the environment sensed by M sensors. The phase controller
learning task is twofold: (i) learn to generate the phase
control a(t) ∈ [0, 1]N that corresponds to T -periodic target
pattern d(t) ∈ [0, 1]N ; (ii) learn and utilize the phase offsets
between the motor phase control a(t) and sensory inputs
x(t) ∈ [0, 1]M . Assuming that variables xi(t) and aj(t) are
T -periodic, in convergent state, we can define their phases
as a variable that grows linearly with time: Φ(aj(t)) =
2πT−1t+φaj , where φaj is initial phase; similarly we define
Φ(xi(t)). Then we formally define the phase offset between
xi(t) and aj(t) as φij = Φ(xi(t))− Φ(aj(t)). Generally, the
explicit expression of Φ(aj(t)) and Φ(xi(t)) is not known.
Moreover, in practice, the perception xi(t) can indicate motion
deviation due to external influences, such as uneven terrain
or external force. The deviation propagates into the phase
Φ(xi(t)) = 2πT−1t+φxi

+εφ and results into the phase offset
deviation φij + εφ. This offset deviation should be corrected
by the phase controller in order to maintain the gait pattern.

In this work, we use the CPGs to model the phases of each
xi and aj variables, and the RBF neurons learn the phase
offset as it is described in the following section.

IV. TRAINING THE GAIT AND SYNCHRONIZATION

In this section, we describe the CPG-based phase controller,
which learns the prescribed gait pattern and sensory-motor
phase offsets. For N actuators, we train phase controller
output ae(t),af(t) ∈ [0, 1]N to imitate target phase control
de(t),df(t) ∈ [0, 1]N and synchronize to M sensory signals
x(t) ∈ [0, 1]M . Superscripts e and f denote antagonistic
movements extension and flexion; in practice on one joint, they
represent opposing movements (positive and negative angular
velocity). By coupling to sensory signals, the CPGs indirectly
couple between themselves and produce a synchronous phase
control. Assuming the sensory and motor variables are coupled
in the environment, they have the same period T during
undisturbed gait motion.

There are two building blocks of the proposed controller:
the CPG and trainable RBF neuron. Let the CPG be modelled
by ẏ = f(y, c(t)), where differential function f describes
dynamics of the CPG state y(t) ∈ RD perturbed by CPG input
c(t) ∈ R. Assuming the CPG has the limit-cycle property, in
the limit, the state y converges to the cyclic trajectory that is
denoted as y0 ⊂ RD, where the CPG oscillates with intrinsic
period T0: y(t) = y(t + T0) [2]. If the input signal c(t) has



period very close to T0 and has small amplitude1 the CPG
synchronizes to c(t) and estimates its phase [3], while keeping
the shape of the limit-cycle y0 unchanged. Therefore, each
point of y0 represents a certain phase of the input c(t).

The closeness to certain phase is defined by a Radial Basis
Function (RBF) a = exp(−ε||y −m||2) = ϕ(y,m), where
m is the weight that we train to approach certain segment of
the limit-cycle y0, and thus a ∈ (0, 1) measures closeness to
that segment [4]. We propose following periodic Grossberg
rule modification to update the weight m

ṁ = η(t)d(t)(y −m) = g(m,y, d(t), η(t)), (1)

where the added term d(t) ∈ [0, 1] is a target signal with the
period T = T0 that selects the limit-cycle segment to which the
weight m converge (visualised in Fig. 5). For the discrete-time,
we provide proof of convergence in the Appendix. Henceforth,
we refer to trained weight convergence to limit-cycle as RBF
neuron binding to CPG.

A. The Trainable Phase Controller

The building blocks presented in the previous section are
utilized in the proposed architecture containing the following
four layers: sensory CPG, sensory RBF, motor CPG, and motor
RBF layers, depicted in Fig. 1a. In this work, we assume that
the intrinsic CPG period T0 is already very close to the target
gait period T , and rely on the inherent property of CPG to
synchronize to the external period that is close to its intrinsic
period.

In the sensory CPG layer, we let each i-th sensory signal
xi entrain the i-th sensory CPG: ẏsens

i = f(ysens
i , xi(t));

thus, after the convergence, the CPG state ysens
i continuously

represents the phase of xi. The sensory RBF layer binds to
sensory CPGs. Each i, j-th sensory RBF neuron weight msens

i,j

is trained by (1) to bind the i-th limit-cycle segment selected
by the target dej . The activation of i, j-th sensory RBF neuron
is then asensi,j = ϕ(ysens

i ,msens
i,j ). Since weights msens

•,j are
trained by the same target dej(t) the activation asens•,j peaks
are close to each other. The average of sensory RBF neuron
activations is then fed into the motor CPG layer, where the
activations entrain the motor CPGs

asensj = M−1
M∑
i

asensi,j , (2)

ẏmotor
j = f(ymotor

j , asensj ). (3)

The limit-cycle ymotor
0,j represents the phases of the j-th

actuator (muscle or servo), therefore it contains two phase
segments during which the actuator flexes and extends (body-
coxa joint retracts and protracts the limb while coxa-femur
joint ascends and descends the limb; see Fig. 2b). The extensor
and flexor phase segments of the j-th actuator are estimated by
two RBF neurons in the motor RBF layer. The j-th extensor
RBF neuron activation is then aej = ϕ(ymotor

j ,me
j), where

weight me
j approaches the extension phase segment selected

1The region of phase closeness and required amplitude is defined by Arnold
tongue that is characteristic for each particular CPG model.

(a)

(b)

Fig. 1. The architecture of the proposed controller composed of four layers.
(a) Example of connectivity between the layers for M = 3 sensory inputs and
N = 2 motor outputs. The dashed lines represent a scalar connection, while
the full lines represent a D-dimensional vector connection. The highlighted
part (blue) is shown in detail at the bottom subfigure (b).

by dej : ṁ
e
j = g(me

j ,y
motor
j , dej(t), η(t)); in the same manner,

we train the flexor RBF neuron.
After converging, the activations ae,af not only approxi-

mate the target phase control de(t),df(t) but are also syn-
chronized to sensory signals x. The synchronization ensures
that the sensory-motor phase offsets are stable: if the sensory
phase shifts, the controller continuously shifts the motor phase
to the learned phase offset. The gait training and sensory-motor
synchronization are demonstrated in the following section.

V. RESULTS

This section reports on the proposed controller deployed on
the hexapod robot modeled in high-fidelity simulation frame-
work V-REP [18], visualized in Fig 2c. The report has two
parts: Section V-B where we show that the proposed controller
can learn different gaits such as ripple, caterpillar, and tripod
gait; Section V-C where we use the trained tripod gait in
two scenarios requiring the phase adaptation and compare
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Fig. 2. (a) The modeled robot and its leg numbering. (b) k-th leg detail
with controlled joints. (c) The experimental setup in high-fidelity simulation
software V-REP, the hexapod model [18] is walking tripod gait on a flat
terrain.

the multi-sensory (proposed) and single-sensory entrainment
architectures. In the following subsection, we describe the
setup of the gait controller, which is used in the presented
experiments.

A. Setup

The hexapod robot, depicted in Fig. 2a, has six legs; on each
leg, there are three joints connecting body-coxa, coxa-femur,
and femur-tibia. In this work, we train the phase controller
to control body-coxa and coxa-femur joints of the k-th leg,
denoted as coxa(k) and femur(k), respectively, see Fig. 2b.
Therefore, the phase controller learns to control twelve joint
phases; N = 12. Each j-th joint has its angle pj controlled
by integrated velocity controll νj . The velocity control is
generated by the phase control modulation that inhibits and
combines the phase control output

acoxa(k) =

[
aecoxa(k)
afcoxa(k)

]T [
σe
coxa(k)

σf
coxa(k)

]
, (4)

afemur(k) =

[
h(aefemur(k) − xtouch(k))

affemur(k)

]T [
σe
femur(k)

σf
femur(k)

]
, (5)

where h(q) = max(q, 0) and xtouch(k) = 1 if the k-th leg
touches the ground, and thus the further descend of the leg is
stopped. The hyperparameters are set to σe

coxa(k) = 1.5 and
σe
femur(k) = 3. The combined phase control of the j-th joint
aj forces oscillations to angular velocity νj while keeping the
position pj close to resting position prestj = 0.

νj = aj [1−min(ϑ1|prestj − pj(t)|, 1)] + ϑ2(prestj − pj(t)).
(6)

The stabilization parameters were set to ϑ1 = 150−1 and
ϑ2 = 0.008. The hyperparameters of phase modulation were
manually tuned to the hexapod robot model walking the tripod
gait.

For each of six legs, we observed the following three events
on k-th leg:

1) xtouch(k) = 1 if the leg touches the ground;
2) xdesc(k) = 1 if the coxa-femur joint has positive angular

speed;
3) xback(k) = 1 if the body-coxa joint angle is behind its

resting position.
Therefore, there are M = 18 sensory inputs.

Matsuoka neural oscillator [19] is used as CPG y =
(u1, u2, v1, v2) with the following dynamics

τ v̇1 = h(u1)− v1, (7)
τ v̇2 = h(u2)− v2, (8)
γu̇1 = −u1 − h(u2)α− v1β + 1, (9)
γu̇2 = −u2 − h(u1)α− v2β + 1 + h(c(t)− λ1)λ2, (10)

where c(t) is the periodic input signal which entrains the CPG.
The CPG hyperparameters are set to τ = 0.5, γ = 0.25, α =
β = 2.5, λ1 = 0.5, λ2 = 0.05. The ε hyperparameter in
the RBF neuron is set to 12 and 4 for sensory and motor
layers, respectively. All network hyperparameters were found
empirically. The numerical integration is done by the Euler
method with a step value of 0.01.

B. Training the Gait Phase Control
The controller has been trained to control different gaits:

ripple, caterpillar, and tripod gaits depicted in Fig. 3. For
each gait the control signals de(t) and df (t) are generated
as repeating patterns depicted in Fig. 1b, where the period of
the gait cycle T = 2.23 is close to the estimated CPG period
T0 ≈ 2.23. Each gait phase control is trained to t = 400

1 2

coxa(0)
coxa(1)

femur(0)
femur(1)

coxa(2)
coxa(3)

femur(2)
femur(3)

coxa(4)
coxa(5)

femur(4)
femur(5)

Tripod gait

(a)

0 1 2

Wave gait

(b)

0 1 2

Ripple gait

(c)

Fig. 3. The target gait patterns. The blue and green rectangles mark extensor
de = 1 and flexor df = 1 events, respectively. (a) During the tripod gait, the
two groups of legs {1, 6, 3} and {2, 5, 4} are alternating between the stance
and swing. (b) During the caterpillar gait, one pair of contralateral legs swing
at time, where the pairs swing in the order {3, 4}, {1, 2}, and {5, 6}. (c)
During the ripple gait, one leg swings at time in the order 3, 2, 6, 4, 1, and 5.

(40, 000 Euler method steps) with the learning rate η(t) set to
one to show that the RBF weights converge anyways.
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Fig. 4. Sensory RBF neurons binding to sensory CPG modelling phase
of xback(1) perception for multiple trained gaits. (a) Front legs weights
msens

back(1)
during training the tripod gait. The weights evolution and the

limit-cycle trajectories are projected into UV space; U = u2 − u1 and
V = v2−v1. The weights are attracted to their respective limit-cycle segments
(black points). The weight trajectories are twisted as the CPG shifts towards
its synchronous position. The final state of each weight (red mark) is close to
each segment. In (b), we compare the cosine similarity of the final weights
for each leg. For a comparison we show more complex gaits such as the
caterpillar gait (c),(d), and the ripple gait (e),(f).

At the beginning of the tripod gait training, the robot starts
randomly but periodically moving with its limbs, which in
turn causes a periodic sensory signal. The sensory signals
entrain their respective sensory CPGs. In Fig. 4a, we can see
how the sensory RBF neurons bind a limit-cycle segment that
corresponds to their target phase dej . By comparing the learned
weights msens

i,j of each j-th joint with cosine similarity, we can
see which legs move concurrently and which move in anti-
phase; see Fig. 4b. For example, the front left coxa-body joint
has very similar weights to hind left joint while it is dissimilar
with the front right joint; which is the expected behavior of
the tripod gait. The sensory RBF neurons entrain motor CPGs.

Similiarly to sensory RBF binding, it can be seen in Fig. 5,
how the motor RBF neurons bind their respective limit-cycle

−0.2

0.0

0.2

V

Limit-cycle

de, df

y0

me

me

−1.0

−0.5

0.0

0.5

1.0

Phase control - initial

de,−df

ae

−af

co
x
a(

0)

Phase control - learned

−0.5 0.0 0.5

U

−0.2

0.0

0.2

V

0 5 10

t

−1.0

−0.5

0.0

0.5

1.0

390 395 400

t

fe
m

u
r(

0)

Fig. 5. On the left, the motor RBF neurons (green and blue trajectories)
binding to their respective target limit-cycle segments (black). The red cross
marks their final weights. On the right, the activations (green and blue
evolutions) of RBF neurons as they learn the binding, where at the start the
activations are weak and not uniform, but after the training, they peak during
the target activations d(t) = 1 (black pulse).

segments selected by the target dej or dfj . As the weight of
the RBF neuron gets closer to the limit-cycle segment, its
activation amplitude gets closer to one, and the activation
peaks during d(t) = 1, see Fig 5. The activity of each
trained RBF neuron during positive value of its respective
target d(t) = 1 is tracked in Fig. 6, where we can see that
the tracked activity converges to the maximal activity. At the
end the peak-target, overlap amplitude is bounded by intervals
[0.917, 0.999], [0.995, 0.999], and [0.995, 0.999] for sensory,
extensor, and flexor RBF neurons, respectively. At the end of
the training, the robot is able to walk the tripod gait.

Fig. 6. Visualisation of the target-activation overlap convergence. The
visualized points are activations of all RBF neurons that are concurrent with
their respective targets de(t) = 1 or df(t) = 1. The target and RBF
activations have the same period; thus, high values indicate that the target
is concurrent with the activation peak, which is the desired behavior.

Also, for the tripod gait training, we trained the ripple and
caterpillar gaits. As can be seen in Fig. 4, each gait has
different sensory RBF binding due to different gait patterns.
The results are further discussed in Section VI.

The output of the phase control, such as in Fig. 5, can be
generated as an open-loop control; however, the CPG-based
phase control also provides the ability to synchronize to the
environment. The synchronization has been further examined,
and the results are reported in the following section.

C. Synchronization Evaluation

The advantages of the proposed architecture are demon-
strated in two scenarios that require synchronization. We also
compare the proposed architecture, where one motor phase
synchronizes all sensory inputs, to two single entraintment



architectures, where each motor phase synchronizes to just a
single selected sensory input.

The sensory input selection requires prior knowledge. Here,
we assume two strong motor-sensory couplings (sensory sig-
nals that are caused by particular joint): (i) xtouch(k) and
νfemur(k), and (ii) xback(k) and νcoxa(k). In the self-sense
architecture, each motor CPG is entrained by a strongly
coupled sensory signal. In the circ-sense architecture, each
motor CPG is entrained by a sensory signal strongly coupled to
the clockwise neighboring joint. The connectivity of all three
used architectures is depicted in Fig. 7. Both architectures are

Fig. 7. The connectivity of the sensor RBF layer that binds the motor and
sensory phase. Each node represents a coxa-femur joint (body-coxa joints are
omitted in this depiction). The self-sense architecture connects sensory inputs
to its strongly coupled joint. The circ-sense architecture connects sensory
inputs neighboring to their strongly coupled joint. The proposed architecture
connects each joint to all sensory inputs. The red cross marks the leg, which
is not providing sensory output during the sensory-cut scenario.

implemented by modifying the combination of sensory activity
in (2) to relaying just one selected sensory activation. Despite
the similarity of wave-shapes of RBF neuron activations, the
little differences can slightly change the timing in motor CPGs.
Therefore, each architecture was trained separately, so each
has weights tuned to its connectivity. Then we let each trained
phase controller walk with the robot and recorded its position
control pforce, which we use in the following two scenarios.

In the phase-shift scenario, the robot is controlled by the
trained controller until t = 44.6 when both front legs are
externally forced to walk with shifted phase relative to the
other four legs, visualized in Fig. 8. The controller should
adapt the phase shift by continuously aligning the phase of
the hind and middle legs with the front legs. Every compared
controller architecture has its own forcing position control
pforce. The experiment shows that the sensory-motor binding
connectivity (visualized in Fig. 7) plays a crucial role in the
phase adaptation and can fail if designed poorly, as we can
see in the case of self-sense in Fig. 8a.

In the sensory-cut scenario, we evaluate robustness against
the sensory cut, where at t = 44.6, the sensory inputs
strongly coupled with the sixth leg are turned off (xtouch(6) =
xback(6) = xdesc(6) = 0), depicted by the red cross in
Fig. 7. We also apply the same phase shift from the previous
experiment, so the phase controllers have to utilize the sensory
input and adapt the shift. The joints of the sixth leg in self-
sense and joints of the fourth leg in circ-sense are left without
sensory entrainment. These unbound joints cannot synchronize
and also have a slightly different frequency, and thus they are
constantly phase-shifting in relation to the force control, which

is visible in Fig. 8e. Both experiments demonstrate that relying
on just one sensory input is not a robust solution for phase
control.

−0.25

0.00

0.25

Shifted

co
x
a

Synchronized

42.5 45.0

t

−0.25

0.00

297.5 300.0

t

fe
m

u
r

(a)

−0.25

0.00

0.25

Shifted

co
x
a

Synchronized

42.5 45.0

t

−0.25

0.00

297.5 300.0

t

fe
m

u
r

(b)

−0.25

0.00

0.25

Shifted

co
x
a

Synchronized

42.5 45.0

t

−0.25

0.00

297.5 300.0

t

fe
m

u
r

(c)

50 100 150 200 250

t

0

2

4

6

8

||p
fo

rc
e
d
−
p
||

Convolved error - Phase shift

proposed

single-sens

circular-sens

(d)

50 100 150 200 250

t

0

2

4

6

8

10

||p
fo

rc
e
d
−
p
||

Convolved error - Sensory cut

proposed

single-sens

circular-sens

(e)

Fig. 8. On top, a pose evolution of (a) self-sense, (b) circ-sense, and (c) the
proposed architecture. The pose evolution show forced left front leg (black)
and left hind leg controlled by the phase controller (green). At t = 44.6
(red), the forced control shifts the phase of the front legs. (d) and (e) shows
the pose error for the phase shift and sensory cut scenarios, respectively. The
error is calculated as the distance of the observed phase p to the forced control
pforced. The proposed controller starts with the highest error, but at the end
of the experiment, it has the lowest error.

VI. DISCUSSION

The proposed phase controller can learn multiple gaits
by binding the sensor and motor phases with the periodic
Grossberg rule (1). The learned phase offset of the tripod,
caterpillar and ripple gait, can be checked in Fig. 4, where
the body-coxa weights msens

back(2),coxa(k) converge on two, three
and six limit-cycle segments, respectively. The number of
segments corresponds to the number of the concurrent coxa
return strokes during one gait cycle; see blue body-coxa joint
events in Fig. 3.

The more detailed view on learned phase dependencies is
provided by the cosine similarity between msens

back(2),j weights
visualised in Fig. 4. For example, in the ripple gait, the
extension of femur(6) and coxa(6) joints is almost concurrent,
see Fig 3c, which is encoded in the similarity matrix in Fig. 4f,
where both joints have similar weights.

As the weights converge to their respective segments, the
RBF neurons activations gain amplitude, and their maxima
are concurrent with the target d(t) = 1; see Fig. 5. The
activation-target overlap is tracked for the tripod gait in Fig. 6,
where we can see that the periodic activations converge to
the upper bound two times before and after t ≈ 200. The
first convergence of motoric RBF neurons at t ≈ 120 caused
the change in the period of sensory signals generated by the
environment, and thus “rotating” the sensory CPGs. Such a
behavior can be observed in Fig. 4, where the weights are
twisted due to tracking the rotating limit-cycle segments. The
change in the sensory CPG layer is propagated into the motor



CPG layer and caused the divergence of the motor RBF
activations at t ≈ 200. After the RBF motor neurons adapted
to the change, the RBF activation peaks and target overlap
converged to the upper bound again. Based on the observation,
we can conclude that the training converged to weights that
correspond to the required gait.

The trained tripod gait controller is used in synchronization
experiments, where we demonstrate that the proposed architec-
ture, where the motor CPG synchronizes to multiple sensory
signals, is more robust than the single sensory entrainment
architectures (depicted in Fig. 7). The self-sense architecture
fails to synchronize to shifted sensory input, as can be seen
in Fig. 8. Indirect connections maintain the synchronization
between joints through the environment. In single sensory
entrainment architectures, such an indirect connection requires
prior knowledge about the robot’s morphology and its sensory-
motor dynamics. The circ-sense controller is such a designed
controller, and it performs well in the phase shift scenario.
However, the circ-sense controller is not robust against sensory
failures since each joint relies on just one sensor; see Fig. 8. In
the sensory cut scenario, the proposed controller overperforms
both single sensory entrainment architectures. The proposed
controller does not require prior knowledge about sensory-
motor dynamics, and we demonstrate that it can robustly adapt
to phase changes in the environment.

The periodic Grossberg rule (1) works under the assumption
that the period of the target signal and CPG are very close.
The assumption of equal periods poses a limitation to the
proposed controller as the frequency of the gait must be either
tuned to the CPG or vice versa. There are methods of CPG
frequency learning, such as [17], which we propose to integrate
in the future. Another limitation of the proposed controller is
that it works well with gaits where power and return stroke
periods are similar, e.g., tripod gait; however, it performs
poorly during gaits with different power/return stroke periods,
e.g., caterpillar and ripple gaits. We trained the phase control
of both caterpillar and ripple gaits, but the result motion was
unbalanced and inefficient. The phase control modulation (6)
is designed and tuned to tripod gait as the phase control
modulation is not in the scope of this paper. Integration with
learnable phase modulation (amplitude control) is a natural
future step to obtain a fully learnable gait controller.

VII. CONCLUSION

A plastic CPG-based controller that robustly synchronizes
the motor control to the sensed environment has been pre-
sented. The controller contains four layers, the sensory CPG
layer which models the phase of multiple sensory signals;
the sensory RBF layer which binds the phase of sensory
CPGs and entrains the next layer; the motor CPG layer
which models the phase of multiple actuators; the motor
phases are then bound by the last layer, the motor RBF layer
which generates the phase control. We propose to use the
periodic Grossberg training rule to learn the binding between
RBF neurons and CPG. The proposed controller learned to
control multiple different gaits. The learned tripod gait was

evaluated against two single sensory entrainment architectures
in scenarios requiring phase adaptation. Unlike the single
sensory entrainment architectures, the proposed multi-sensory
entrainment architecture can utilize multiple sensory signals
and is robust against sensory failures, without the need for
prior knowledge about the sensory-motor dynamics. In future
work, we aim to integrate frequency and phase modulation
learning to develop a fully learnable model-free gait controller.

APPENDIX
PERIODIC GROSSBERG RULE CONVERGENCE ON

LIMIT-CYCLE

Let y(t) ∈ RD is a CPG state that converged into a limit-
cycle y(t) ∈ y0 ⊂ RD with intristic period T0, thus y(t +
nT0) = y(t), n ∈ N. Let d(t) = [[∃n ∈ N : t ∈ [a, b] +nT ]] be
a T -periodic target signal that is 1 during [a+nT, b+nT ], n ∈
N intervals; and 0 otherwise. Assume that the intrinsic CPG
period T0, and the target signal period T are the same; T0 =
T . For the time interval [q, r], we denote limit-cycle segment
{y(t)|t ∈ [q, r]} ⊂ y0 as y([q, r]). We apply convergence
theorem presented in [5] to show that the periodic Grossberg
rule (1) also converges. However, to use the theorem [5], we
must relax to discrete time steps τi = εi; i ∈ N, where 0 <
ε � (b − a), and define the discrete time periodic Grossberg
rule

∆m(τi) = η(τi)d(τi)(y(τi)−m). (11)

By relaxing to discrete time steps, we are not losing much,
since we already use the Euler method (see Section V-A),
which solves the differential equations in discrete time steps.
If both ε� T0 are rational numbers (in practice they usually
are), then the ε and T0 are commensurable; thus, the set of
limit-cycle samples Y0 = {y(τi)|i ∈ N} is finite and so is the
sampled limit-cycle segment y([a, b]) ∩ Y0.

Theorem 1. Let the learning rate η(τi) converge to 0 and its
series

∑
η(τi) diverge. The weight m(τi) updated by (11),

converges to the centroid of the sampled limit-cycle segment
y([a, b]) ∩ Y0.

Proof: If d(τi) = 0, then there is no update ∆m(τi) = 0.
Thus, let consider only such time steps τ ′i when d(τ ′i) = 1.
Then we can rewrite (11) to ∆m(τ ′i) = η(τ ′i)(y(τ ′i) − m),
where τ ′i ∈ [a + nT, b + nT ] for some n. The CPG state
y(τ ′i) is then in a segment y([a + nT, b + nT ]) for some
n. By the assumption T0 = T , and recalling that y(t) is T0-
periodic, there is, in fact, just a signle segment y([a+nT0, b+
nT0]) = y([a, b] + nT0) = y([a, b]) from which y(τ ′i) can be
drawn. The set of all y(τ ′i) points is then the sampled limit-
cycle segment y([a, b]) ∩ Y0 that is finite. By transforming
the periodic Grossberg rule to standard Grossberg rule, and
showing y([a, b]) ∩ Y0 is finite, we meet the requirements
of [5].
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