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Abstract

In this paper, two state-of-the-art algorithms for the Traveling Salesman Problem (TSP) are examined in the multi-goal
path planning problem motivated by inspection planning in the polygonal domainW. Both algorithms are based on
the self-organizing map (SOM) for which an application inW is not typical. The first is Somhom’s algorithm, and
the second is the Co-adaptive net. These algorithms are augmented by a simple approximation of the shortest path
among obstacles inW. Moreover, the competitive and cooperative rules are modified by recent adaptation rules for
the Euclidean TSP, and by proposed enhancements to improve the algorithms’ performance in the non-Euclidean TSP.
Based on the modifications, two new variants of the algorithms are proposed that reduce the required computational
time of their predecessors by an order of magnitude, therefore making SOM more competitive with combinatorial
heuristics. The results show how SOM approaches can be used in the polygonal domain so they can provide additional
features over the classical combinatorial approaches based on the complete visibility graph.
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1. Introduction

The self-organizing map (SOM) also known as Kohonen’s unsupervised neural network, was first applied to the
Traveling Salesman Problem (TSP) by Angéniol [1] and Fort [19] in 1988. The TSP is probably the most famous
combinatorial problem studied by the operational research community for more than five decades [10]. The problem
is to find a route for visiting a given set of n cities (goals) so that the length of the route is minimized. In SOM, the
output neurons are organized into a unidimensional structure (cycle), and a solution is represented by synaptic weights
that are adapted to the cities during the self-adaptation process. After the adaptation, the neurons are associated to the
cities, and because of the unidimensional structure, the final city tour can be retrieved by traversing the cycle.

The SOM adaptation schema for the TSP consists of two phases. A city is presented to the network, and a winner
neuron is selected in the competitive phase. For a planar TSP where cities represent points in R2, the neurons’ weights
can be considered as points in the plane that are called nodes in this paper. So, the winner neuron is the node with the
smallest distance to the city. Then, the adaptation can be described as a movement of the winner node together with
its neighboring nodes toward the city. The adaptation is called a cooperative phase, as neighboring nodes also move,
although by a shorter distance. After the complete presentation of all cities (one adaptation step), the procedure is
repeated until the termination condition is not met, e.g., when the winner nodes are sufficiently close to the cities.

Several SOM approaches have been proposed [3, 4, 6–9, 11, 34–36] in the history of the SOM application to the
TSP. In these approaches, the adaptation rules have been modified [37, 39], heuristics have been considered [30], and
combinations with genetic algorithms [26], memetic [12] or immune system [27] approaches have been proposed.
Even though these new approaches improve the performance of SOM for the TSP, SOM is still not competitive with
the combinatorial approaches to the TSP in both aspects: the solution quality and required computational time [12]. It
should also be noted that all of the above mentioned SOM approaches consider only the Euclidean variant of the TSP,
i.e., distances between cities are Euclidean, while combinatorial approaches generally work with graphs.

Herein, the TSP is considered in the context of inspection planning, where cities represent sensing locations in the
polygonal domainW [17, 21]. The problem is to find a path for a mobile robot so that the robot will “see” the whole
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working space. The practical motivation of the problem is a search and rescue mission in which possible victims need
to be found quickly [25]. The problem can be formulated as the TSP, i.e., a problem to find a path that visits the
given set of sensing locations, where measurements of the robot’s vicinity are taken. The robot’s working space is
represented by a polygonal map that may contain obstacles, therefore collision-free paths among obstacles (geodesic
paths) have to be considered [32]. It is also the case of the SOM adaptation procedure where the geodesic paths
(distances) between nodes and cities have to be considered rather than Euclidean distances, otherwise a poor solution
would be found. The node–city distances are used in the competitive phase, in which a winner node is selected.
Shortest paths are then used in the cooperative phase where nodes are adapted toward a city along a particular path,
i.e., the node is placed at a new position on the path closer to the city.

It is clear that a determination of the shortest path among obstacles is more computationally intensive than a direct
usage of the Euclidean distance. From this perspective, the complexity of SOM algorithms increase in W because
the adaptation rule has to be augmented by an algorithm to find geodesic paths. However, combinatorial approaches
based on a graph problem representation can be directly used in W without any modifications. The costs of edges
between cities are lengths of the shortest paths between cities, and the graph can be constructed from the visibility
graph by Dijkstra’s algorithm. Therefore, the gap between SOM and combinatorial heuristics seems to be wider for
the TSP in the polygonal domain.

In [18], a simple, yet sufficient approximation of the shortest path inW has been used in SOM adaptation rules to
decrease the computational burden. Although this approximation enables the application of SOM principles inW, the
required computational time of self-organization is still significantly higher (hundreds of times) than for the Euclidean-
TSP. The main issue of the conventional SOM is the high number of node–city distance queries in the competitive
phase, and also the relatively high number of node–city path queries in the cooperative phase. In this performance
study, the computational requirements of these adaptation phases are examined in two different ways. First, technical
aspects of the queries are considered, i.e., the required computational time is reduced by informing the competitive
selection procedure and assuming practical approximations in the cooperative phase. The second way aims to decrease
the number of queries considering recent adaptation rules; these reduce the required number of adaptation steps, and
effectively decrease the size of the winner node neighborhood. The rules are closely related to the initialization of
adaptation parameters; therefore, various initializations are considered as well.

The rest of the paper is organized as follows. Section 2 describes the notation and terminology used related to the
geometrical structures supporting the shortest path queries and adaptation procedure. Related work is acknowledged in
Section 3. In Section 4, a brief description of the SOM adaptation procedures used herein and an approximation of the
shortest path in the polygonal domainW is presented. Section 5 presents proposed modifications and combinations
of published competitive and cooperative rules to decrease the required computational time possibly without affecting
the solution’s quality. Experimental results are presented in Section 6. Finally, the concluding remarks are presented
in Section 7.

2. Terms Used and Notation

The SOM adaptation is considered in the polygonal domain, i.e., a polygonal map; therefore, a few terminology
notes are presented in this section to clarify the terms used and symbols for supporting geometrical structures.

A world is represented by a polygonal mapW consisting of NV vertices; thus,W is a closed, multiply connected
region, whose boundary is a union of NV line segments, forming h + 1 closed polygonal cycles, where h is the number
of holes (obstacles). A distance between two points inside W is a length of a path among obstacles that can be a
straight line segment or consisting of vertices. Thus, a path between two points s and t consists of a finite number of
line segments joining the points and vertices.
W can be divided into a set of non-overlapping convex polygons that are formed from vertices. Such convex

polygons are called cells and represent a convex polygon partition ofW, i.e., each cell C forms a closed polygonal
cycle of line segments joining vertices. A line segment is called diagonal if it connects two nonadjacent vertices and
if it is contained inW. A point insideW is always inside a cell, and a collision-free path between two points s ∈ Cs

and t ∈ Ct can be constructed from the shortest path between vertices of Cs and Ct. Weights of the ith neuron represent
a point νi (called node) that lies inW; therefore, νi is always inside a cell. Such a cell of the node ν is denoted as Cν.
An example of a polygonal map, its convex partition, and a path from a node to a city is shown in Fig. 1.
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The symbols used are as follows.
W the polygonal domain representing the working space to be inspected,W ⊂ R2

NV the number of vertices ofW
n the number of cities
m the number of nodes (neurons)
|s, t| the Euclidean distance between points s and t
|S (vi, v j)| the length of the shortest path (among obstacles) between two vertices vi and v j inW
P a set of convex polygons
vi a vertex of the polygonal domainW
νi a node representing the weights of the ith neuron
Cν the cell of P in which node ν lies
G the learning gain (also called the neighborhood function variance)
µ the learning rate
α the gain-decreasing rate
d the number of neighboring nodes of the winner node

3. Related Works

The first application of SOM principles to the TSP [1] follows constructive heuristics and starts with one node.
In that approach, a node is duplicated if it is the winner for two different cities, and it is deleted if it is not selected
as the winner for three complete presentations of cities to the network. Growing ring structure has also been used in
FLEXMAP proposed in 1991 [20]; however, the deletion mechanism was omitted. The maximal number of required
nodes has been close to 2.5n, where n is the number of cities, up to a problem with 2392 cities. In [6], Budinich used
the same number of nodes as cities, and the inhibition was replaced by a real value derived from the winner node and
its neighboring nodes. The tour is constructed from an ordered sequence of cities according to the value.

An inhibition of frequently selected winner nodes has been used in the Guilty net algorithm [9]. The inhibition
mechanism was substituted by the vigilance parameters in the Vigilant Net presented in [7] where the initialization of
weights is discussed. Superior results are reported for starting positions of nodes as the convex hull approximation
of the cities. Aras used the geometrical properties of the connected nodes forming a ring and the topology of cities
in his KNIES algorithm [3]. This algorithm uses a regular adaptation of the winner node, which moves toward the
city. In addition, nodes that are not in the activation bubble (set of neighboring nodes), do not move closer to the city,
but move in a way that allows the preservation of the global statistical properties of the data points. The proposed
algorithm has been used to solve large TSP instances by the decomposition of the problem into several clusters [4].

Probably the most complex and powerful SOM algorithm for the TSP is the Co-Adaptive net introduced in [11].
This algorithm uses a higher number of nodes than the number of cities, and it utilizes an adaptive neighborhood
of the winner node that is updated after each adaptation step. The learning process is divided into competition and
co-operation phases. The co-operation phase is based on winner nodes or their neighbors not moving more than once.
The algorithm also uses the near-tour to tour construction, which creates a complete tour if the current winner nodes
are not distinct. The best tour is kept during the adaptation, and it is used if the final solution is worse. The authors
presented a huge set of results and comparisons with other approaches, and reported that their approach outperforms
other variants and together with [36] provides better results than Aras’s KNIES [3], which uses the statistical properties
of the data points.

Even though the statistical approach (KNIES) has been outperformed, the convex hull property has been studied
in the expanding SOM variant called ESOM [26]. To follow the convex hull property and to design an appropriate
learning rule that considers the global parameters of the problem, Intergrated SOM (ISOM) uses an evolutionary
principle and combines SOM with a genetic algorithm [22]. The convex hull property is also studied in [38], where
the authors considered a more conservative learning rule than ESOM: the movement of the nodes, which follows the
expansion to preserve the convex hull property is restricted. This algorithm provides almost identical results as those
of ESOM, but the learning rule is much simpler.

Another research direction studied is the initialization of neuron weights and the setting of adaptation parameters:
the learning rate µ, the learning gain G, and the gain-decreasing rate α. An initialization of weights was studied

3



in [5], where authors examined four initialization methods: random, small circle around centroid of the cities, a tour
found by the nearest neighborhood algorithm, and a random initialization of nodes on a rhombic frame located to the
right of the cities’ centroids. The fourth initialization method is reported as the most suitable technique. Kohonen’s
exponential evolution of the adaptation rules is studied in [37]. To reduce the number of parameters, the authors
proposed simplified adaptation rules based only on the number of performed adaptation steps k. The learning rate is
defined as µ = 1/ 3

√
k and the learning gain as G = G(1 − 0.01k) with initial value G0 = m/32, where m is the number

of neurons. They used initial weights representing nodes on a rectangular frame around the cities, and the authors
reported superior results in the selected TSPLIB [31] instances in comparison with the SOM approaches [1, 19] and
[9]. These simplified rules have also been applied in [39], where the authors proposed to use µ = 1/ 4

√
k and the initial

value of the gain G0 = 10. For small values of G, the value of the neighborhood function is very small; thus, the
neighboring nodes are negligibly moved. Considering this fact, the authors recommended to gradually decrease the
neighborhood of the winner node after each adaptation step. It decreases the computation burden while not affecting
the quality of solution. The recommended initial size of the neighborhood is d = 0.4m, which is decreased by
d = 0.98d at the end of each adaptation step.

In [28], Murakoshi and Sato applied multiple scale neighborhood functions to decrease topological defects that
may occur during the self-adaptation. The functions have a form

f (G, l) = β jµe
− l2

(γ jG)2 , (1)

where β j and γ j are the gain and width factors of the jth neighborhood function. The authors used six functions
β j = 2−|3− j| and γ j = 2−(3− j) for j ∈ {1, 2, . . . , 6}. These functions have been incorporated into the SOM adaptation
procedure [1], where a function has been randomly chosen during the adaptation. The authors reported up to 42.65 %
less kinks than in the original version of the procedure [1].

4. Self-organizing maps for the Traveling Salesman Problem

Two state-of-the-art SOM adaptation procedures are considered in this performance study as the primal algo-
rithms being modified. The SOM algorithms have been selected regarding the results presented in [11], where these
approaches provide the best performance. Although more recent approaches increase the quality of solution, the im-
provement is not significant, and such approaches are also more computationally demanding. That is why Somhom’s
algorithm introduced in [36] and the Co-adaptive net algorithm [11] have been selected for evaluation of their perfor-
mance for problems in the polygonal domainW. The performance of these algorithms is improved by the proposed
modifications and by the combination of selected approaches (briefly described in the previous section), and there-
fore, the original algorithms are described in more detail in the next subsections. Moreover, an overview of the used
shortest path approximation inW is presented in Section 4.3.

4.1. Somhom’s Algorithm

The algorithm presented in [36] by Somhom et al. uses an inhibition mechanism, i.e., a neuron can be a winner
only for one city during a single adaptation step. In the rest of this paper, Somhom’s algorithm is denoted as SME. The
basic schema of the algorithm is similar for both SOM algorithms considered. The schema is shown in Algorithm 1.

The algorithm works as follows. The ring of nodes is initialized as a small ring around one of the cities. The
adaptation procedure consists of a sequence of adaptation steps in which all cities are randomly presented to the neural
network. For each presented city, the winner node is selected according to ν? = argminν |c, ν|, where |., .| denotes the
Euclidean distance between the city c and the node ν for the Euclidean TSP. The adaptation procedure (adapt) moves
the winner node and its neighboring nodes toward the presenting city c according to the rule ν′j = ν j +µ f (G, l)(c− ν j),
where µ is the learning rate. The neighboring function is f (G, l) = exp(−l2/G2) for l < d and f (G, l) = 0 otherwise,
where G is the gain parameter, l is the distance in the number of nodes measured along the ring, and d is the size of
the winner node neighborhood that is set to d = 0.2m, where m is the number of nodes. The initial value of G is set
proportionally to the problem size G0 = 0.06 + 12.41n. The values of learning and decreasing rates are µ = 0.6 and
α = 0.1, respectively.
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Algorithm 1: Self-organizing map for the TSP
Input: C = {c1, . . . , cn} - a set of cities
Input: (d,G, µ, α) - the parameters of SOM
Input: δ – the maximal allowable error
Input: imax – the maximum number of adaptation steps
Output: (ν1, . . . , νM) - a sequence of node weights representing city tour
init(ν1, . . . , νM) // an initial set of neurons weights

i← 0 // the adaptation step counter

repeat
error ← 0
I ← ∅ // the set of inhibited nodes

Π(C)← a random permutation of cities
foreach c ∈ Π(C) do

ν∗ ← select winner(node to c), ν? < I) // call the select winner procedure

error ← max{error, |ν?, c|}
adapt(ν?, c) // call the adapt procedure

I ← I ∪ {ν?} // inhibit winner node

G ← (1 − α)G // decrease the gain

i← i + 1 // increment the adaptation step counter

until error < δ or i ≥ imax

The original termination condition is based only on the maximal distance of a winner node to the city that is
less than a given δ. However, in the case of poor convergence, e.g., due to the used approximation, the adaptation
procedure is terminated after a given number of adaptation steps imax. The city tour can be reconstructed from the
ring of nodes because each city has a distinct winner. The used value of acceptable error is δ = 0.001, and the used
maximal number of steps is imax = 180.

4.2. Co-adaptive net
The Co-adaptive net algorithm [11] also uses a randomization of the presented cities, but it does not use the

inhibition mechanism. Instead, the winning number wi is maintained for each neuron during the adaptation step.
The required computational time of the select winner procedure is decreased by considering the restricted set of
neighboring nodes of the previous winners. To avoid degenerate solutions, after every K adaptation steps, the winner
is selected from the whole set of nodes.

One of the two adaptation procedures is selected according to the value of the gain G. In the case of G < Gcross,
the winner node ν∗ and its neighboring nodes are moved toward the city if and only if w? = 0. For G ≥ Gcross, the
winner and the neighbors (for w? = 0), or only the neighbors (for w? = 1) are moved; otherwise, none of nodes is
adapted. The neighboring function is similar to the one used in the SME algorithm, but a node-specific gain is used
gi = G(1 − |νi, c|/

√
2). The gain G is changed after each adaptation step by G ← (1 − α)G for G ≤ Gcross/2, and

G ← (1 − 2α)G otherwise.
Another important part of the Co-adaptive net is a construction of the city tour because the inhibition is not used.

If a tour constructed from the winner nodes with wi = 1 contains at least min{n− 100, 0.98n} cities after an adaptation
step, winner nodes are found for the cities not in the tour considering the inhibition. The city tour may be constructed
after each adaptation step, and the best-found tour (the shortest one) is returned as the solution of the TSP.

The adaptation is terminated if the winner nodes are sufficiently close to the cities (similar to the SME approach),
if the neurons are in the same positions as they were at the end of the previous adaptation step, or if the current gain
is small (G ≤ 0.01), which is equivalent to the maximal number of adaptation steps.

Based on the results presented in [11] the following parameters are used as default settings of the Co-adaptive net
in this paper: m = 2.5n, G0 = n/3, Gcross = 10, α = 0.02, µ = 0.626, the size of the restricted set of nodes in the
select winner procedure is C? = 250, the full search is performed after every 10 adaptation steps, and the size of
the neighborhood in the adapt procedure is set to min{2G + 1, 200,m/2}.

5



The authors of the Co-adaptive net use the center of the cities as the point around which a ring is initialized. Such
a point can lie in an obstacle for the TSP inW; therefore, alternative initializations are considered.

4.3. Approximation of the Shortest Path in the Polygonal Domain

A simple approximation of the shortest path based on a convex partition of the polygonal domainW has been used
in [18]. The approximation is based on a refinement of a primary path found in a convex partition ofW. A convex
partition P is a set of convex cells Ci, P = {C1,C2, . . . ,Ck} such that the union of the cells isW,

⋃k
i=1 Ci =W. Cells

are induced by the diagonals ofW, and each cell is formed from a sequence ofW vertices. A node ν is insideW
during the adaptation; thus, it is always inside some cell Cν. The initial approximate path from ν to the city c is found
as the shortest path S (w, c) over vertex w of Cν to c such that w = argminwi∈Cν

|ν,wi|+ |S (wi, c)|, where |., .| denotes the
Euclidean distance between two points, and |S (., .)| is the length of the shortest path between two vertices, or vertex
and city, see Fig. 1a.

The problem of finding the cell Cν is a point-location problem, which can be solved in O(log v) or in the average
complexity O(1) by the “bucketing” technique [14]. Alternatively, the cell can be determined during the node move-
ment toward the city by the walking technique similar to [13]. The complexity of such cell determination is bounded
by O(log nd), where nd is the number of passed diagonals of the used convex polygon partition.

The initial path can be improved by the following refinement procedure. Assume a node ν inside the cell Cν and
the approximation of the path from ν to the vertex vk as a sequence of vertices (v0, v1, . . . , vk), v0 ∈ Cν. A refinement
is an examination of a direct visibility test between ν and vi. The visibility test is similar to [23], a convex partition is
used instead of a triangulation. If a straight line from ν to the vertex vk crosses only diagonals or lies entirely in the
same cell, then the vertex vk is visible, and all vertices vi for i < k can be removed from the sequence. Examples of a
refined path are shown in Fig. 1.

(a) path over v0 (b) path over v1 (c) full refinement

Figure 1: An example of path refinement, the gray segments represent diagonals of the convex partition, small disks
are cities, and a node is connected with the city by the approximation of the shortest path (red segments).

The shortest paths from vertices to cities can be pre-computed by Dijkstra’s algorithm in O(ne log(NV + n)), where
n is the number of cities, NV is the number of vertices, and e is the number of visible pairs (city-city, city-vertex, and
vertex-vertex) of the complete visibility graph. The number of edges are bound by e ≤ NV + NVn. The graph can be
found in O((NV + n)2) by the algorithm [29].

The adaptation process using the approximate path is visualized in Fig. 2. The nodes are connected by the ap-
proximate shortest paths between two nodes, which uses the same principle as the node–city paths, the vertices of the
nodes’ cells are considered. The path between nodes is not needed in the adaptation process; it is used only for the
visualization.
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(a) step 8 (b) step 20 (c) step 29 (d) step 39

(e) step 41 (f) step 47 (g) step 56 (h) step 68

Figure 2: An example of ring evolution in the environment jh; the small green disks represent cities, and the blue
disks are nodes.

5. Modifications Used and Proposed

5.1. Approximation of the Shortest Path

Three variants of the refinement procedure of the approximate shortest path described in Section 4.3 have been
considered in the experimental evaluation of the modified SOM algorithms. The refinement using only one vertex
of the primary path over the vertex of the node cell is denoted as the va-1 variant. Two additional variants are va-0,
which does not use the refinement procedure, and pa, which represents the complete refinement of all vertices on the
primary path.

Based on the results presented in [18], the va-1 variant provides the best trade-off between the quality of the
solutions and the required computational time. The va-0 variant is faster, but the network does not converge in some
cases due to imprecise approximations.

5.2. Select Winner Procedure

A path among obstacles inW has to be found to determine the winner node of the current presented city to the
network, which means m node–city distance queries have to be performed for each presented city. However, the
required computational time can be reduced if the Euclidean distance of the node to the city is considered before the
node–city distance is queried. If the Euclidean node–city distance is longer than the Euclidean distance of the current
winner candidate, it is not necessary to determine the path among obstacles. This Euclidean pre-selection is denoted
as the euclid-pre select winner method in the experimental part of this paper.

Moreover, after several adaptation steps, the winners are preserved over the steps. Thus, the previous winner to
the city can be used as the initial winning candidate. Such an initial selection of the winner candidate can avoid
unnecessary computations of the shortest path. In the final adaptation steps, winners are very close to cities, and a city
and its winner node are typically in the same cell; in other cases, the shortest path can be just a straight line segment.
Therefore, the determination of node–city distance can be very fast, and the Euclidean distance is sufficient to confirm
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that the previous winner is really the closest node to the city. This winner selection method with the Euclidean distance
pre-selection is denoted as informed.

These improvements can be considered technical, because they do not affect the quality of the solution found and
only decrease the required computational time at the cost of a more complex algorithm.

5.3. Adaptation Rule

The adapt procedure is more complex than the select winner procedure because a path has to be retrieved
in the node–city path query and the adapted node is moved towards the city, i.e., a particular straight line segment
of the path has to be determined. The node ν is moved closer to the city c proportionally to the node–city distance
D(ν, c), learning rate, and neighboring function. The distance of ν to c is decreased about βD(ν, c), where β has
the form β = µexp(−l2/G2). The value of β decreases with the increasing distance of the neighboring node. It
also decreases with each adaptation step, as the learning gain G decreases. If β is very small, the movement can
be negligible; therefore, once the β is under a given threshold, the adaptation of neighboring nodes can be omitted.
This modification of the adaptation rule is called β − condition in this paper, and it can be used for rules without
decreasing the neighborhood size. The influence of this modification has been experimentally examined for the SME
and Co-adaptive net algorithms.

city

neighboring nodes

winner−city path

winner node

(a) before adaptation

previous path

city

neighboring nodes winner node

(b) after adaptation

Figure 3: Utilization of the winner–city path for the neighboring nodes.

An additional speed improvement of the adapt procedure can be based on the usage of the winner path to the city
c for the neighboring nodes. If nodes are close to each other, and if a path contains a map vertex (avoiding an obstacle),
a path from the neighboring nodes will likely pass the same vertex. Thus, the neighboring node ν can be moved along
the same path as the winner node ν?, while the distance is decreased by the Euclidean distance between ν? and ν, i.e.,
ν is placed at the position of ν? before its movement and adaptation toward c. The situation is schematically shown
in Fig. 3. This modification of the adaptation rule is called approx. adapt, and it is combined with the β − condition
modification.

5.4. Adaptation Parameters

Beside the original adaptation parameters of the SME and Co-adaptive net algorithms, the following modifications
are considered as well. The rules proposed in [39] and denoted as Zhang-Bai-Hu rules are also used in SME. Fur-
thermore, the original SME adaptation rule is complemented by the decreasing size of the winner node neighborhood,
i.e., the size d is updated to d = 0.98d at the end of each adaptation step.

The multiple scale neighborhood functions used by Murakoshi and Sato in [28] are utilized in the Co-adaptive net;
this modification is denoted by the abbreviation MSNF for short.

5.5. Initialization

Due to obstacles, the initialization of the nodes used for the Euclidean TSP described in [5] cannot be directly used
in the polygonal domainW. That is why the following initializations are considered in the experimental examination
of the modified algorithms.

The first initialization method is called first because the first city is used to initialize the ring of nodes as a circle
with a small radius (5 mm) around the city. The small radius ensures that the nodes are placed in W, as cities are
always placed at a greater distance from the obstacles.
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The second method uses the closest city to the centroid of cities, and a ring is also created as a small circle with
the same radius like in the first method. The method is called center in this paper.

The third initialization is similar to the center method, but the center of the circle is selected as the city with the
smallest standard deviation of the distances to other cities. The method is called dev.

Inspired by approach [7], the last examined initialization method is called hull because it is based on the convex
hull of the cities. The cities at the border of the convex hull are connected by the shortest paths. The connected cycle
is then used to initialize nodes equidistantly along the cycle. Examples of the hull initialization are shown in Fig. 4.

(a) potholes (b) warehouse (c) jh

Figure 4: Examples of the hull initialization, the green disks are cities, small blue disks are nodes, and the bold black
line segments represent a connected ring of nodes.

6. Performance Evaluation

The performance of the SOM algorithms is evaluated for a set of inspection planning problems1. The environments
are represented by polygonal maps. The name of the environment with a subscript denoting the visibility range ρ in
meters represents the particular TSP. It means that a robot performing measurement at the city position senses its
surrounding environment in the distance ρ [17]. Parameters of the environments are shown in Table 1, where NV is
the number of vertices, NH is the number of holes, and NC is the number of convex cells of the supporting convex
partition. Environments jh, pb, ta, and h2 represent maps of real buildings; thus, they provide a representative problem
in size. In particular, maps jh, pb, and ta have been used as experimental sites for search and rescue scenarios in the
PeLoTe project [24].

The algorithms have been implemented in C++ and compiled by the G++ 4.2 with the -O2 optimization flag.
All results have been obtained within the same computational environment using single core of the Athlon X2 CPU
running at 2 GHz, 1 GB RAM, and FreeBSD 8.1. Thus, all required computational times presented can be directly
compared.

The cities are applied to the network in a random order in all examined algorithms, and therefore, each particular
algorithm variant is executed twenty times for each problem, and average values are determined. The quality of
solutions is evaluated as the percentage deviation to the optimum tour length of the mean solution value, PDM =

(L − Lopt)/Lopt · 100%, and as the percentage deviation from the optimum of the best solution value (PDB), where
Lopt is the length of the optimal solution found by the Concorde solver [2]. The PDM and PDB have variances due to
randomization, therefore a tolerance between a half and one percent is considered in the quality evaluation of solutions
found by the particular modified algorithm.

1The problems with necessary supporting structures are available at http://purl.org/faigl/tsp/.
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Table 1: Testing environments with obstacles

Name
Dimensions Area

NV NH NC
[m × m] [m2]

jari 4.5 × 4.9 20 48 1 14
complex2 20.0 × 20.0 322 40 3 21

m1 4.8 × 4.8 20 51 4 26
m2 4.8 × 4.8 15 51 6 20

map 4.8 × 4.8 14 68 8 36
potholes 20.0 × 20.0 367 153 23 75

rooms 20.0 × 20.0 351 80 0 33
a 8.9 × 14.1 71 99 6 22

dense 21.0 × 21.5 299 288 32 150
m3 4.8 × 4.8 17 308 50 120

warehouse 40.0 × 40.0 1192 142 24 83
jh 20.6 × 23.2 455 196 9 77
pb 133.3 × 104.8 1453 89 3 41
ta 39.6 × 46.8 731 74 2 30

h2 84.9 × 49.7 2816 2062 34 476

The speed improvement of a particular algorithm variant is measured as the ratio of the average required com-
putational times of the original algorithm and its modified variant. The required computational time consists of the
preparation time Tinit and the time needed to adapt the network Tadapt. The preparation phase is a creation of support-
ing structures: the convex polygon partition, visibility graph, and shortest paths between cities and map vertices. The
convex partition is found in tens of millisecond using Seidel’s algorithm [33], and the construction of the complete
visibility graph takes 41 millisecond for the largest problem h22 with 575 cities and 2062 map vertices. These times
are negligible according to the total required computational time, and they are not included in the presented time
values. The most time consuming preparation part is determination of the shortest path between cities and vertices.
This time is included in the presented total required computational time denoted as T. Regarding the preparation time
the speed improvement of a particular algorithm variant is computed from Tadapt.

The adaptation procedure itself is composed of the selection of winners and adaptation toward cities. The particular
required computational times in these parts are useful for determining the most computationally intensive part of
the algorithm. Therefore, %Ts and %Ta denote computational times spent in the particular part of the adaptation
procedure (select winner and adapt respectively) in percentages of the total adaptation time Tadapt.

To avoid presentation of many detailed results, the examined problems are organized into three sets according to
the number of cities, see Table 2. In the overall comparison of the examined algorithms’ modifications, Tadapt for the
original algorithm is the reference computational time, i.e., an average computational time for each problem of the
reference algorithm is divided by the average Tadapt for the algorithm variant. The speed improvement, denoted as
Sp., is computed as an average value of improvements over all problems in the set.

6.1. The SME Algorithm

The original Somhom’s adaptation procedure has been augmented by the algorithm to find the approximate short-
est path inW. The pa refinement variant and the pure geodesic winner selection are used. Besides, the tour length
at each adaptation step is computed, and the best tour found during the adaptation is used as the found solution.
This algorithm variant is used as the reference algorithm in the presented experimental results of SME algorithm
modifications. This variant is used as the base algorithm for other examined modifications as follows.
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Table 2: Problems sets

Small set Middle set Large set
problem name n problem name n problem name n

jari 6 dense4 53 potholes1 282
complex2 8 potholes2 68 jh1 356

m1 13 m31 71 pb1.5 415
m2 14 warehouse4 79 h22 568

map 17 jh2 80 ta1 574
potholes 17 pb4 104

rooms 22 ta2 141
a 22 h25 168

Table 3: The SME algorithm - improvements of the select winner procedure with the va-1 refinement

Problems
select winner - geodesic select winner - euclid-pre select winner - informed

PDM PDB Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps

small 1.71 0.00 1.2 64 1.10 0.01 2.0 64 1.36 0.01 2.0 64
middle 4.94 2.18 1.3 84 4.77 2.00 2.1 84 4.61 2.38 2.1 84
large 3.94 2.99 1.3 100 4.16 3.04 2.2 100 4.00 3.05 2.1 100

First, the select winner methods described in Section 5.2 have been considered with the va-1 refinement variant,
the results are presented in Table 3. The Sp. column shows how many times the performance of the algorithm has been
improved in comparison to the reference algorithm with the pa refinement and the pure geodesic winner selection. In
the case of the geodesic winner selection, the algorithm spent about forty five percentage points in the select winner
procedure, and about fifty five percentage points in the adapt procedure. After applying the Euclidean pre-selection
of winner node candidates, the dominant algorithm part is the adapt procedure. Consideration of the previous winner
does not significantly reduce the required computational time, and the results are pretty much similar to the euclid-pre
variant. The PDM variances of the select winner methods are below 0.5 % threshold; thus, the overall quality of
solutions is considered to be same.

The most time consuming part of the SME algorithm with the informed select winner procedure is the adapt
procedure, therefore, modifications of the procedure have been examined. The experimental results with modified
adaptation rules described in Section 5.3 are presented in Table 4. The informed select winner method and the va-1

Table 4: The SME algorithm - adaptation rule modifications

Problems
original adaptation rule β-condition modification approx. adapt. + β-condition

PDM PDB Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps

small 1.36 0.01 2.0 64 1.29 0.01 2.4 64 1.62 0.01 2.4 64
middle 4.61 2.38 2.1 84 4.58 2.46 3.3 84 5.23 2.86 3.2 84
large 4.00 3.05 2.1 100 4.03 2.87 4.0 100 4.65 3.63 3.9 100

refinement are used, and the β − condition is set to β = 10−5. The β − condition effectively decreases the active
neighborhood of the winner node, which decreases the required computational time without noticeable degradation of
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the solution quality. The approx. adapt modification does not provide any improvements, and the solution quality is
also worse. In all cases, solutions are found in the same average number of the adaptation steps, see the column Steps.

Table 5: Influence of the adaptation parameters to SME with the va-1, informed, and β − condition modifications

Problems
original adapt. param. orig. with decreasing d Zhang-Bai-Hu rules
PDM Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps

small 1.29 2.4 64 4.53 0.36 8.1 163 5.71 0.13 9.1 160
middle 4.58 3.3 84 8.16 4.36 7.6 168 6.15 2.52 21.3 71
large 4.03 4.0 100 3.99 3.14 6.5 100 9.21 4.17 86.4 49

Additional speed improvement is achieved using modifications of adaptation parameters described in Section 5.4.
The experimental results are shown in Table 5. For the small and middle sized problems decreasing the size of the
winner node neighborhood leads to an algorithm three times faster, but the solution quality is worse and a higher
number of adaptation steps is needed. The results indicate that for these problems the restriction of the neighborhood
is too strong, mainly at the beginning of the adaptation. However, for large problems the initial number of nodes
seems to be sufficiently high (possibly unnecessarily high), as the solution quality is preserved. The Zhang-Bai-Hu
rules dramatically reduces the required computational time for problems with a higher number of cities, although the
solution quality is more than two times worse for larger problems.

Table 6: SME with the va-1 refinement, informed, β − condition modifications, Zhang-Bai-Hu rules, and hull initial-
ization

Problems
va-0 refinement va-1 refinement pa refinement

PDM Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps

small 6.03 9.8 177 5.62 0.08 8.3 166 5.96 0.16 8.3 160
middle 6.93 30.8 89 5.00 2.60 22.2 63 4.80 2.86 20.7 65
large 12.55 116.5 64 4.44 3.51 105.7 43 4.33 3.02 99.4 43

The poor solution quality of the Zhang-Bai-Hu rules is improved by the hull initialization, see results for the path
refinement variants presented in Table 6. The most significant improvement in the solution quality and also in the
required computational time is for large problems. Other initialization methods do not increase the solution quality,
which is also the case for other examined modifications of the SME algorithm. The significant reduction of the
number of the shortest path queries allows consideration of the full path refinement variant, although the benefit is not
evident from the presented results. The algorithm with the modifications used has the select winner and adapt

parts almost equally computationally intensive regarding %Ts = 46 % and %Ta = 49 % for large problems.
The additional speed improvements can be achieved by a more restricted size of the winner node neighborhood.

However, using initial size m/8 only decreased the solution quality without significant speed improvement. The
multiple scale neighborhood functions do not improve the solution quality; thus, these results are not presented.

6.2. The Co-adaptive Net Algorithm
The informed select winner procedure with the pa refinement is used in the Co-adaptive net algorithm. Even

though authors of the Co-adaptive net algorithm initialized the ring as a small circle around cities’ centroid, the four
initialization methods described in Section 5.5 do not provide significant differences in the solution quality nor the
computational requirements, and therefore, the first initialization method is used as default. This algorithm variant is
the reference algorithm (of the required computational time) in the overall comparisons of its examined modifications.

Similarly to the SME algorithm, the va-1 refinement does not provide noticeable changes in the solution quality in
comparison with the full path refinement; however, the performance is improved by about more than ten percentage

12



Table 7: Influence of adaptation rule modifications to the Co-adaptive net with the va-1 refinement and informed select
winner procedure

Problems
original adaptation rule β-condition β-condition +MSNF

PDM PDB Sp. Steps PDM PDB Sp. Steps PDM PDB Sp. Steps

small 1.49 0.46 1.1 174 1.33 0.11 1.1 175 1.22 0.07 1.1 196
middle 6.28 3.05 1.2 290 6.59 3.20 1.2 290 4.56 2.13 1.0 311
large 6.60 4.89 1.2 388 6.64 4.87 1.2 389 5.39 4.10 1.0 390

points. The original adaptation rule is modified to consider the β− condition, then the rule is combined with the Multi
Scale Neighborhood Functions (MSNF). The results for the three problems sets are presented in Table 7. Notice, the
Co-adaptive net requires a higher number of adaptation steps than the SME algorithm. However, the total required
computational time is lower because less nodes are involved in the select winner and adapt procedures. Consid-
ering MSNF increases the solution quality and the number of required adaptation steps. Here, it should be noted that
the network adaptation has been terminated by the G < 0.01 condition in all algorithm variants. The minimal distance
of the winner node to the city is significantly higher than in the SME algorithm, i.e., by units or tens in comparison to
Somhom’s δ = 0.001.

Table 8: An influence of the gain-decreasing rate α to the Co-adaptive net with the va-1 refinement and informed
select winner procedure

Problems
original adaptation rule β-condition +MSNF

α = 0.05 α = 0.1 α = 0.2 α = 0.05 α = 0.1 α = 0.2
PDM Sp. PDM Sp. PDM Sp. PDM Sp. PDM Sp. PDM Sp.

small 2.59 2.6 3.49 4.8 4.31 8.8 2.03 2.6 2.59 4.6 4.47 8.6
middle 7.93 2.9 8.36 5.6 10.10 11.4 5.30 2.6 6.58 5.1 7.87 10.0
large 7.43 3.0 10.27 5.8 23.05 12.4 6.08 2.5 6.94 5.1 8.87 10.4

The used gain-decreasing rate α = 0.02 is relatively small, and the computational burden can be decreased by a
higher value. The experimental results for various α are presented in Table 8. The original Co-adaptive net algorithm
is very sensitive to changes of α while MSNF provides significantly better results. The value α = 0.1 provides almost
the same solution quality (about one or two percent worse) as the original algorithm, and it is more than four times
faster. Also in this case, another initializations of the ring do not provide any significant improvements.

6.3. Algorithms Comparison

Based on the examination of described modifications two new variants of the SME and the Co-adaptive net al-
gorithms are selected as successors of their originals. The applied modifications are selected as the best trade-off

between the solution quality and required computational time, mainly concerning the h22 problem. Particular parts of
the original algorithms and the proposed modifications are as follows.

The full path refinement pa and the pure geodesic variant of the select winner procedure are used in the
original SME algorithm. The nodes are initialized around the first city. The pa refinement is also used in the proposed
successor of the SME algorithm, as the computational burden is only slightly increased in comparison with the va-1
variant. The informed select winner procedure, the hull initialization method, β−condition, and the Zhang-Bai-Hu
adaptation rules are utilized. In both Co-adaptive net algorithms, the informed modification of the select winner

procedure with the pa path refinement are utilized. The initial size of the winner neighborhood is set to m/2. In the
case of the original Co-adaptive net, the parameters described in Section 4.2 are used, and nodes are initialized by
the method dev, which provides the highest solution quality for large problems. Nodes are initialized by the center
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Table 9: Proposed modifications of the original algorithms

A Part of the Adaptation Procedure Modified SME Modified Co-adaptive Net

Initialization hull center
Select Winner informed informed
Adaptation Rule β − condition β − condition
Neighbourhood Function(s) - MSNF
Adaptation Parameters/Rule Zhang-Bai-Hu α = 0.1

initialization method in the modified Co-adaptive net algorithm that uses the β − condition with MSNF. The only
changed parameter is the gain-decreasing rate α = 0.1, which decreases the computational burden without significant
solution quality changes. The proposed modifications of the particular part of the adaptation procedures are depicted
in Table 9, where ‘-’ denotes the original part the algorithm.

Detailed performance results of the original and the modified algorithms are presented in Table 10. To provide an
overview of the algorithms’ performance, average values of the required computational time and the solution quality
measured by the PDM are shown in Fig. 5 as histograms of the problem size. Selected solutions found by the modified
SME algorithm are presented in Fig. 6.
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Figure 5: Average values of the required computational time and the solution quality.

Regarding the presented results the modified SME algorithm provides superior results for middle and large prob-
lem sets. For problems with less than fifty cities the modified Co-adaptive net algorithm provides better results. This
can be caused by a fewer number of neighboring nodes used in the SME algorithm in comparison to the Co-adaptive
net algorithm. Besides, the Co-adaptive net uses the winning number, and the algorithm avoids adaptation of the
winners and neighboring nodes, which means the nodes are moved with less frequency than in the SME algorithm.
The performance of the Co-adaptive net algorithm in the examined large non-Euclidean TSP is quite surprising. Even
though several modifications and parameter settings have been used, the algorithm does not provide competitive re-
sults to the modified SME algorithm. The original SME algorithm provides solutions with significantly higher quality,
which is not the case of the TSPLIB problems presented in [11]. The applied modifications to Somhom’s algorithm
significantly decrease the required computational time, and make penalization by the shortest path determination less
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(a) m31, L=40.9 m (b) warehouse4, L=381.3 m (c) h22, L=1339.1 m (d) ta1, L=567.8 m

Figure 6: Selected solutions found by the modified SME algorithm, the small green disks represent cities that are
connected by the shortest path among obstacles using the complete visibility graph.

important. From a certain point of view, the modified algorithm in the non-Euclidean problem starts to be competitive
to the original algorithm in the Euclidean problem, e.g., according to results presented in [15].
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6.4. Modified SME Algorithm Discussion

A detailed insight into the performance results of the modified SME algorithm gives several interesting observa-
tions, as is shown in Table 11. The worst performance of the algorithm in the small problems is related to the poor
convergence as can be seen from the number of required adaptation steps. The presented results are average values
over twenty runs; thus, the problems with 180 steps do not converge at all. The reason for this may be an excessively
small value of the learning gain G together with the decreasing size of the neighborhood. However, the final found
route (the length is denoted as Lbest) is found very early, in S best steps. So, worse solutions are found in the consec-
utive steps. The tour found in the last step is about units of percentage points worse than the best found tour, which
is indicated in the column PDMlast. Although this is not the expected behaviour, the computational requirements are
lower than for the original algorithm. These results indicate further potential improvements of the algorithm.

The minimal distance of winners to the cities is also affected by the poor convergence. Notice the Error values are
in centimeters, due to default units of the maps used. Even though this error is not too important in the combinatorial
TSP, as the solution can be considered as a sequence of cities, the error is crucial in other routing problems in the
polygonal domain, e.g., the watchman [16] or safari route problem [15]. The difference is that in these problems,
the ring may be the route itself, and not a representation of a route over cities. Here, it is worth mentioning that for
the Co-adaptive net algorithm the error is negligible for small problems, and equals to tens of centimeters for larger
problems.

The columns T, Tinit, and Tadapt show the total required computational time, and particular times spent in the
initialization and adaptation procedures. All shortest paths between cities and also from all map vertices to the cities
are determined in the initialization. In several cases, Tinit is similar to Tadapt. The initialization time is even greater than
the adaptation time for the problem h22. The last column TLK shows average values of the required computational time
to find a solution by the linkern algorithm from the Concorde package [2], which uses the Chained Lin-Kernighan
heuristic. The algorithm utilized a distance matrix that is found in time Tinit; thus, the last two columns can be used
to compare the computational burden of SOM and the combinatorial heuristic. In three cases, the SOM adaptation
procedure is less computationally expensive than the heuristic approach. These results are particularly interesting
because the used path approximation is a relatively complex algorithm in comparison with the usage of the distance
matrix in the combinatorial heuristic.

Regarding Tinit and Tadapt for the h22 problem, the most intensive part of the algorithm is the preparation of all the
shortest paths. These paths are not involved in the adaptation process, and therefore, an additional speed improvement
can be based on omitting the paths pre-computation, and consideration of approximate paths determined during the
adaptation. The solution quality can decrease; so, the idea would need further investigation.
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6.5. Discussion
Two state-of-the-art SOM algorithms have been examined for the non-Euclidean TSP in the polygonal domainW.

The algorithms have been improved in several ways by already published modifications of the adaptation rule, and
also by new proposed improvements. One of the main issues of SOM application inW is determination of node–city
path, which is computed many times. The presented modifications significantly reduce the number of node–city path
queries, and reduce the required computational time up to one hundred times.

The improvements are mostly visible for problems with a high number of cities. However, SOM approaches for
the Euclidean TSP are able to solve problems with thousands of cities. In the presented results, the largest examined
problem has “only” about five hundreds cities. From the practical point of view, the largest examined problems are
the inspection planning problems within real environments and quite small visibility range2. The considered problems
represent a realistic upper bound of the problem size because for a higher number of cities the visibility range has to
be unrealistically small, or the environments have to be significantly larger. The visibility range and the size of the
environment relate with a structure of cities (sensing locations in the inspection planning) in an environment, which
can affect the solution quality. Cities that are relatively close to each other make the local search for a shorter route
more important, which is a quite difficult task for a conventional SOM; mainly because of the decreasing learning rate
during the adaptation. In these cases, the proposed hull initialization improves the quality because the adaptation starts
with a spread ring. The modified algorithms have been examined only inW and it is expected that the benefit of the
presented modifications will not be significant in the Euclidean problems due to relatively inexpensive computation
of node–city distances.

An additional performance improvements can be based on consideration of smaller or dynamic number of nodes.
In literature, 2.5 times more nodes than cities has been reported as the most suitable. Also for the examined problems
and algorithms, different numbers of nodes decrease the solution quality. The idea of the approx. adapt modification
does not provide expected improvement. However, in early adaptation steps, nodes are often moved over map vertices
that mean the neighboring nodes of the winner node are placed at the same shortest path from the particular map
vertex to the city. In these cases, new nodes can be created and adaptation can start with only a very small number of
nodes, which is an idea for future work.

One remark about the Co-adaptive net algorithm and the proposed improvements has to be mentioned. The
algorithm is quite complex, which can be considered as a weak point of an eventual massive parallelization. This is
also a weak point of the determination of the geodesic path, and the applied improvements to the select winner

procedure, which can increase the complexity of a parallel implementation. Thus, it seems that one of the SOM
features is lost inW.

Another point of the Co-adaptive net algorithm is its relatively strict orientation to the routing optimization, which,
in fact, is not an issue for the TSP. The modified SME algorithm provides much better performance in this aspect,
i.e., the maximal distance of the winner nodes to cities. From this perspective, the modified Somhom’s adaptation
schema with the Zhang-Bai-Hu adaptation rules is more suitable for other routing problems in W. Consideration
of the ring evolution in W provides opportunity to find a solution of the watchman route problem [16] or other
inspection problems where cities are not explicitly prescribed, which is one of the main SOM benefits over the classical
combinatorial approaches [15].

7. Conclusion

Improved self-organizing map-based algorithms for the TSP in the polygonal domain have been proposed. The
required computational time of the algorithms has been decreased by the proposed β − condition adaptation rule
and the informed select winner procedure in combination with the approximate shortest path inW. In addition, the
performance of the SME algorithm has been improved using a combination of the Zhang-Bai-Hu adaptation rules
with the new hull initialization technique. The successor of the Co-adaptive net algorithm utilizes the MSNF adaptive
rule with the center initialization to improve the quality of solutions.

The algorithms have been examined in several instances of the inspection planning task in the polygonal do-
mainW. The proposed algorithms move the performance of the SOM algorithms inW to the next level, and allow

2The visibility range in meters is denoted as the subscript of the problem name.
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their further application in other routing problems in the polygonal domain. The complexity of non-Euclidean distance
determination is indicated in the SOM literature as a drawback. The encouraging results presented in this paper, and
the significant performance improvements can be motivation for a further investigation of SOM applications in other
variants of routing problems, not only in the polygonal domain but also in high-dimensional spaces with obstacles,
where approximate paths between nodes and goals (cities) are necessary, e.g., route planning in 3D environments or
in high-dimensional configuration spaces.
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