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An experimental study on feature-based slam for multi-legged 

robots with RGB-D sensors 

1 Introduction 

The advent of compact, lightweight, and inexpensive RGB-D sensors gave rise to new research 

efforts in 3-D visual Simultaneous Localization and Mapping (SLAM). Direct depth 

measurements, readily available from such sensors as PrimeSense Carmine, Asus Xtion, Intel 

RealSense, Microsoft Kinect or Kinect 2 allow solving many of the problems inherent to 

SLAM solutions based on monocular sensing (Mur-Artal and Tardos, 2016). In addition, RGB-

D sensors are easier to use on mobile robots, particularly those of limited size and payload than 

passive stereo cameras that require accurate calibration and high computing power for real-time 

processing of stereo images (Belter et al., 2016b). Besides, the second generation time-of-flight 

RGB-D sensor Microsoft Kinect 2 can be employed also for outdoor SLAM (Belter et al., 

2015b). 

One prominent class of mobile robots that require accurate pose estimates in 3-D and with 

respect to six degrees of freedom are multi-legged machines. Recent advancements in motion 

planning and control algorithms for legged locomotion enable multi-legged walking robots to 

be considered for Urban Search And Rescue (USAR) missions. The localization module is a 

crucial part of an autonomous walking robot navigation software. It was already demonstrated 

that planning footsteps and leg movements taking into account the perceived terrain map brings 

better results than simple reflexes, which often lead to repetitive, the trial-and-error behavior of 

the robot (Belter et al., 2016b). On the other hand, localization with the accuracy of about the 

dimensions of the robot’s foot is required to ensure proper registration of the sensory data into 

a terrain map and foothold planning (Belter and Skrzypczynski, 2013). Thus, a reliable and´ 

accurate 3-D SLAM solution is of pivotal importance to multi-legged walking robots in 

realworld applications. 

Therefore, we evaluate in this article four state-of-the-art open-source SLAM systems. We 

focus exclusively on feature-based SLAM approaches that utilize RGB-D input. Mur-Artal et 

al. already pointed out the benefits of the feature-based approach in the context of monocular 

SLAM (Mur-Artal et al., 2015). Approaches that do not extract features rely on variants of the 

Iterative Closest Point (ICP) algorithm to register dense depth data (Whelan et al., 2015) or 

directly minimize photometric errors over all image pixels (Kerl et al., 2013). These methods 

potentially exploit more information from the RGB and/or depth images, but they are 

computationally expensive and often require hardware acceleration on a GPGPU, which is not 

available on-board of most walking robots. In this paper, we evaluate systems that can run on a 

typical CPU, thus being deployable to on-board computers of walking robots. The four SLAM 

systems being investigated in this work are based on different state estimation principles and 

software architectures. Thus, we can draw conclusions as to the usefulness of these concepts 

for accurate localization of real-world legged robots. Moreover, we identify practical problems 
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related to using an RGB-D camera mounted on a legged robot and investigate the relations 

between the robot motion strategy, and the trajectory estimation accuracy achieved by the on-

board SLAM. 

2 Related work 

In the last fifteen years, we have witnessed a fast development in the area of robotic SLAM. 

Starting from various improvements of the classic Kalman filtering paradigm the focus in 

research has gradually moved to a more robust particle filtering approach (Durrant-Whyte and 

Bailey, 2006), and then non-linear optimization techniques have been adopted, leading to the 

graph-based approaches (Grisetti et al., 2010). A graph-based SLAM system computes the 

sensor motion between consecutive image frames related to sensor poses, and then constructs a 

graph, whose vertices are those poses, whereas the motion-related constraints are treated as 

edges (Belter et al., 2015a). This graph is optimized in order to minimize the discrepancy 

(errors) between the estimated and the measured poses of the vertices. If the robot re-visits an 

already known location, a loop closure introduces pose-to-pose constraints that correct drift of 

the trajectory. When this approach is applied to RGB-D images, the motion constraints 

between frames may be computed applying direct methods (Kerl et al., 2013), or matching 

sparse features using visual descriptors (Endres et al., 2014). Although pose-based SLAM with 

RGB-D data can produce reliable sensor trajectory estimates in real-time, this approach 

neglects a large part of the feature-to-pose constraints resulting from frequent observations of 

the same features (Strasdat et al., 2012). These constraints are exploited in the bundle 

adjustment (BA) approach (Triggs et al., 2000) to jointly optimize the sensor poses and feature 

positions. The BA-based architecture was introduced to real-time monocular SLAM by the 

breakthrough PTAM (Klein and Murray, 2007), and is still considered the gold standard in 

visual navigation for monocular (Mur-Artal et al., 2015) and stereo (Mur-Artal and Tardos, 

2016; Pire´ et al., 2015) systems. The localization systems for micro aerial vehicles based on 

the structure of PTAM (Scherer and Zell, 2013) was an early attempt to adopt BA for RGB-D-

based SLAM. The approach used in PUT SLAM is similar to BA, but whereas typical visual 

BA solutions minimize feature reprojection errors, in PUT SLAM, the errors in feature 

positions in 3-D space are minimized. This allows PUT SLAM to take advantage from 

advanced modeling of the spatial uncertainty of features (Belter et al., 2016a). 

Few papers tackle specifically the problem of self-localization or SLAM on a multi-legged 

walking robot. Robust localization of a hexapod robot in man-made environments using 2-D 

laser scans was demonstrated by Skrzypczynski (2012), whereas a 3-D time-of-flight camera´ 

was applied by Ronnau¨ et al. (2009) to localize a similar robot in rough terrain. Among 

visionbased systems an attempt to adopt monocular EKF-based SLAM for a hexapod robot was 

described by Schmidt and Kasinski (2010) with a preliminary demonstration of the resulting 

sys-´ tem, and a stereo-based approach to visual odometry in a hexapod was presented by 

Stelzer et al. (2012) with evaluation on rough terrain. Nonetheless, neither of these systems has 
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been evaluated against ground truth robot/sensor trajectories or directly compared to other 

solutions. An evaluation of the PTAM system adopted for localization of a six-legged robot 

against simple ground truth trajectories was presented by Belter and Skrzypczynski (2013), 

resulting in the con-´ clusions as to the required localization accuracy for foothold planning. 

However, to the extent of the authors knowledge no broader study is available concerning the 

evaluation and comparison of RGB-D-based SLAM systems in the specific context of legged 

robot localization. Only very recently, Cˇ´ızek and Faigl (2016) presented a thorough 

evaluation of the RGB-D SLAM systemˇ (Endres et al., 2014) on a six-legged crawler. This 

work was then extended to a comparison with the passive-stereo-based S-PTAM system 

(Fischer et al., 2016). At the same time Belter et al. (2016c) compared four contemporary 

approaches to localization of a multi-legged robot with the RGB-D sensor. As the need for 

common ground for objective SLAM evaluation is acknowledged across the robotics 

community, we extend in this article the research of Belter et al. (2016c) and Cˇ´ızek and Faigl 

(2016) to provide a systematic experimental evaluation of theˇ representative SLAM 

architectures with RGB-D perception deployed on multi-legged robots. 

3 SLAM architectures 

In this section, we briefly present the four SLAM systems under investigation, focusing on the 

similarities and differences in their architectures. As the first one, we present PUT SLAM, 

which is the only one among the considered systems that was designed with the USAR mobile 

robotics applications in mind. Thus, this system is presented in more details, pointing out the 

elements of its architecture that are motivated by the specific application and the use of RGB-D 

sensing. 

3.1 PUT SLAM 

The Poznan University of Technology SLAM (PUT SLAM)
1 

is based on the BA approach, that 

means it keeps a map of features and optimizes positions of these features jointly with the 

estimated sensor trajectory. Unlike the pose-based approach, which marginalizes the point 

features and constructs a graph whose vertices are only the sensor poses (Fig. 1a), PUT SLAM 

uses a graph with two types of vertices: pf representing the features, and pc representing the 

sensor poses (Fig. 1b). The i-th pose and the j-th feature are related by ti,j ∈R3 constraint 

representing RGB-D measurement. Moreover, a pose-to-pose constraint Mi,k ∈ SE(3) resulting 

from the estimated sensor motion between the poses i and k can be introduced to the graph if 

the number of re-observed features belonging to the map is too small. Sensor poses are 

represented in the map global frame whereas the point features are represented relatively to the 

poses (keyframes) from which they have been observed for the first time. Considering this 

                                                
1
 Open-source code is available at https://github.com/LRMPUT/PUTSLAM/tree/release 
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mathematical representation of the SLAM problem, the following function has to be minimized 

to optimize the map and trajectory: 

 n m n 

 argmin F = XXeTf(i,j)Ωti,jef(i,j) + X eTc(i,k)Ωi,kM ec(i,k), (1) 

 p i=1 j=1 i,k=1,i=6 k 

where e  and e  are error functions for the feature-

topose and pose-to-pose constraints, respectively. The accuracy of each feature-to-pose or 

pose-topose constraint is represented by its respective information matrix . These 

matrices are obtained from the spatial uncertainty model of features (Belter et al., 2016a) or can 

be set to identity matrices as in Endres et al. (2014). The graph representation is held in the 

back-end together with the map structure, which contains point features augmented by their 

visual ORB descriptors. The back-end uses the g2o graph optimization library (Kummerle¨ et 

al., 2011) to solve (1). 

 

Figure 1: Graph structure of pose-based SLAM (a) and BA-based SLAM (b) 

PUT SLAM fully exploits the RGB-D data obtained from the Kinect or Xtion sensor to 

quickly extract 3-D point features and estimate their spatial uncertainty (Belter et al., 2016a). 

Processing of the incoming RGB-D frames takes place in the front-end, which also tracks the 

sensor against the map of features. While other visual SLAM systems use a mathematical 

model of the sensor motion (Klein and Murray, 2007; Mur-Artal et al., 2015; Pire et al., 2015), 

in PUT SLAM, the initial guess of sensor displacement is computed by a fast visual odometry 

pipeline based on the photometric Lucas-Kanade keypoint tracker (Belter et al., 2015a). This 

helps to handle the rapid and unpredictable motion of the robot carrying the sensor. The 

Umeyama algorithm (Umeyama, 1991) is applied to compute the 3-D-to-3-D transformation 

between two consecutive frames from the set of tracked features augmented with the 

corresponding depth data. RANSAC is employed to ensure robustness to outliers. The feature 

keypoints extracted by visual odometry are then augmented by ORB descriptors and used for 

matching between the features from an incoming frame and the map. The binary ORB 

detector/descriptor was chosen mainly because of its computational efficiency and good 
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performance in the context of visual navigation (Schmidt et al., 2013). Moreover, the corner-

like ORB keypoints are well suitable for photometric tracking, unlike their blob-like 

counterparts, produced for example by SURF. Knowing the initial guess of the sensor pose 

enables to consider as matching candidates only the map features located in a small 

neighborhood of the predicted features in the image plane, which increases robustness. The 

matching features establish constraints between the current sensor pose and the features already 

existing in the map (generated from the previous, possibly much older, frames). Owing to this 

mechanism PUT SLAM handles local metric loop closures implicitly, without a need to detect 

the re-visited locations by their appearance. 

 

Figure 2: Block scheme of PUT SLAM software 

The software architecture of PUT SLAM is presented in Fig. 2. The front-end and the 

backend work asynchronously in separate threads. They get synchronized on specific events, 

such as insertion of new constraints or prediction of map features for matching. Owing to this 

software architecture PUT SLAM efficiently uses a multi-core CPU and runs in real-time 

without a GPGPU. 

3.2 RGB-D SLAM v2 

This is the latest implementation
2 

of the algorithm presented in details by Endres et al. (2014), 

which follows the pose-based SLAM approach without storing visual features in the map. The 

RGB-D SLAM v2 architecture is also divided into a front-end and a back-end that run in 

parallel. The front-end implements frame-to-frame RGB-D visual odometry employing 3-D-to-

3-D matching of point features with visual descriptors (ORB, SURF or SIFT 

detector/descriptor pairs can be configured). Next, the front-end attempts to detect loop 

                                                
2
 Source code is available at https://github.com/felixendres/rgbdslam v2/tree/indigo 
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closures to decrease trajectory drift. The last RGB-D frame is compared to previous keyframes 

using a heuristic strategy of searching over the past keyframes. To determine possible loop 

closures the RGB-D SLAM v2 applies direct frame-to-frame matching of local descriptors 

using RANSAC, without recoursing to the appearance-based recognition of locations. The 

current frame is marked as a new keyframe when it cannot be matched to any keyframe stored 

by the back-end. 

Finally, the graph of connected keyframes is optimized by using the g2o library, which is 

also employed in PUT SLAM. All experiments presented in this paper were performed using 

the SURF-based variant of RGB-D SLAM v2, as results presented in both Belter et al. (2016c) 

and Cˇ´ızek and Faigl (2016) suggest that with SURF this system yieldsˇ best results even 

without the GPGPU acceleration. In the g2o back-end the PCG solver is used, and the loop 

closure parameters are set as in Fischer et al. (2016). 

3.3 CCNY RGBD 

The CCNY RGBD algorithm was introduced by Dryanovski et al. (2013), and its ROS-based 

implementation is available at GitHub
3
. The algorithm employs depth and RGB data in a 

featurebased framework with a persistent map of features. However, it differs remarkably from 

the PUT SLAM architecture. Although CCNY RGBD can be configured with one of four 

keypoint detectors: ORB, SURF, STAR or GFT, in the case of ORB and SURF this system 

does not use the descriptor part. Instead, the sparse ICP method is used to align the detected 

keypoints to the map. A Mahalanobis-like distance function is used in the alignment algorithm 

to take into account the spatial uncertainty of point features. Then, the positions of features in 

the map are updated using the Kalman filter, with a Kinect-specific feature uncertainty model. 

If the maximum size of the map is exceeded, the oldest features are replaced with the newest 

ones. 

The CCNY RGBD does not use any loop closing procedure based on place recognition, 

thus it can detect and close only small-scale loops by feature re-observations. However, there 

exists a version, which can perform map optimization using g2o, but the optimization works 

off-line, on the final map and trajectory produced by the system. Therefore, it is not used in our 

evaluation. For the experiments, the CCNY RGBD is configured with the ORB detector, used 

also in PUT SLAM and ORB-SLAM2, and the maximum map size is set to 10000 features. 

3.4 ORB-SLAM2 

The very recent ORB-SLAM2 (Mur-Artal and Tardos, 2016) is the second version of the open-

´ source
4 

visual SLAM system presented in detail by Mur-Artal et al. (2015). Initially, it was 

created as monocular SLAM employing point features and the BA approach to optimize both 

                                                
3
 https://github.com/ccny-ros-pkg/ccny rgbd tools 

4
 Available at https://github.com/raulmur/ORB SLAM2 
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the camera trajectory and the map of features. The second version can use either passive stereo 

or RGB-D data, thus avoiding the problem of proper initialization of the map from monocular 

camera images when no depth information is available. The graph of constraints contains both 

sensors poses and feature positions as vertices, and it is optimized using the g2o library, as in 

PUT SLAM. 

Very similar is also the general architecture of both systems. ORB-SLAM2 is divided into 

the front-end processing incoming data, and the back-end storing and optimizing the map. The 

main differences between these two architectures are due to the fact that ORB-SLAM2 retains 

all the properties of a monocular SLAM system, being able to process keypoints from RGB 

images that lack depth information. This allows ORB-SLAM2 to handle also features located 

outside the depth range of the RGB-D sensor. Another important difference is related to the 

definition of the error function in the optimization – ORB-SLAM2 always minimizes the 

reprojection error of features onto RGB images, even working with RGB-D data that produce 

readily available 3-D points. This solution, standard for the BA in computer vision, makes the 

optimization vulnerable to errors that affect the location of pixels in RGB images, such as 

motion blur and rolling shutter. On the other hand, relying on reprojection errors makes it 

possible to use features that do not have proper depth values and increases robustness to range 

measurement errors and artifacts in depth images. In the context of walking robot, the 

important difference is also in the simple constant velocity motion model used by ORB-

SLAM2 to predict the sensor pose in tracking. 

ORB-SLAM2 uses multi-scale ORB descriptors and divides the point features into two 

categories: close and far, using an inverse depth parametrization for the latter. RGB-D depth 

measurements are used only for close features, whereas they are ignored for the far ones. The 

ORB features are used throughout the system – in sensor tracking, matching the current 

perception to the map (establishing constraints), and in closing the loops. ORB-SLAM2 

implements appearance-based loop closure detection re-using the same ORB features. This 

allows closing a loop of any size, not only local metric loops, even though this process may not 

run in real-time for very large loops. 

4 Evaluation Methodology 

4.1 Motivation and evaluation metrics 

Data sets such as the TUM RGB-D Benchmark (Sturm et al., 2012) facilitate benchmarking of 

SLAM systems and enable comparison between various approaches. However, the data sets 

obtained either using a handheld Kinect/Xtion sensor or a sensor of the same class attached to a 

wheeled robot do not allow us to evaluate robustness of the SLAM systems to problems 

characteristic to walking robots. Legged locomotion is discrete, which gives rise to 

uncontrolled oscillations of the robot attitude (pitch and roll angles of the trunk in particular). 

Walking robots are also characterized by a high level of vibrations, particularly if low-cost 
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servomotors are used in the legs. All that introduces significant motion blur into the images 

acquired in motion. Additionally, the field of view of an RGB-D sensor mounted on a small or 

mid-size walking robot is usually far from being optimal for SLAM. 

Therefore, we have performed a series of experiments on two different six-legged robots: 

the in-house developed Messor II (Belter and Walas, 2014) and the commercially available 

PhantomX platform. In order to facilitate comparison of the SLAM architectures we 

demonstrate the trajectory estimation accuracy with quantitative results, applying the Absolute 

Trajectory Error (ATE) and Relative Pose Error (RPE) metrics introduced by Sturm et al. 

(2012). The ATE measures the distance between corresponding points of the estimated and 

ground truth trajectories, while the RPE metric is correlated to the local drift of the trajectory. 

Computing these metrics for a given SLAM-estimated trajectory of the sensor T = {T1,T2,...,Tn} 

∈ SE(3) we assume that there exists a reference trajectory Tgt, which is synchronized with T 

and contains the same number of n sensor poses Tgt SE(3), where Ti 

and Tgt
i are sensor poses in 3-D for the i-th time stamp (or frame in the RGB-D sequence) 

expressed by 4×4 homogeneous matrices. The Tgt trajectory is obtained from an external 

ground truth acquisition system. Both trajectories are synchronized by frame numbers or by 

alignment of the time stamps, depending on the motion capture system that is employed. The 

RPE metrics for i-th frame is given by the equation: 

 E  . (2) 

Taking the translational or rotational part of the homogeneous matrix ERPE
i and computing the 

Euclidean norm or Euler angle we obtain the relative translational RPEt(i) or rotational RPEθ(i) 

error at i-th frame, respectively. The RPEt and RPEθ metrics for the whole recovered trajectory 

are computed from the Root Mean Square Error (RMSE) for all nodes of T and Tgt. As ATE 

compares absolute distances between nodes of the synchronized trajectories, it is necessary to 

align the trajectories by finding a rotation between these two rigid sets of points that minimizes 

the distance between them (Sturm et al., 2012). Then, the ATE metrics for the i-th frame is 

computed as: 

 EATEi  (3) 

and the ATE value for the whole trajectory is computed from the RMSE of (3) for all nodes. 

Besides, the standard deviation of the absolute trajectory error σATE is computed. 

4.2 Experimental set-up with Messor II 

The Messor II robot is a hexapod with 18 control degrees of freedom in its legs (Fig. 3). It uses 

the Asus Xtion Pro Live RGB-D sensor based on the PrimeSense structured light depth 

measuring technology. On the Messor II, this sensor is mounted at the height of 40 cm above 

the ground, (assuming the default posture of the robot) and slightly tilted down. Although the 

Messor II has an Inertial Measurements Unit (IMU) that can estimate its attitude with respect to 
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the gravity vector, in the present implementation of our SLAM system these measurements are 

not used. This ensures a fair comparison between systems that were not designed to 

accommodate IMU measurements. All experiments with the Messor II were performed on a 

sand-covered terrain mockup of the size 2×2 m (Fig. 4a). Some objects have been placed 

around the mockup to make the environment richer in features. The configuration of these 

objects was slightly different for each experiment. 

The ground truth trajectories were collected using a ceiling-mounted system of cameras. 

This system consists of five high-resolution Basler acA1600 cameras equipped with low-

distortion lenses, but for the presented experiments only the central camera was used (see Fig. 

5a, the used camera is pointed by the arrow), because of a limited area of the terrain mockup 

traversed by the Messor II (Fig. 5b). Employing a single camera simplified the registration 

procedure, as mutual calibration of the co-operating cameras was not necessary (Schmidt et al., 

2014). We exactly synchronized the RGB-D frame acquisition rate of the Xtion sensor on the 

robot with the frame rate of the overhead camera to avoid evaluation errors due to trajectory 

interpolation. The synchronized frame acquisition rate 15 Hz is limited by the parameters of the 

overhead camera. 

 

Figure 3: Messor II, an autonomous six-legged robot with the Asus Xtion Pro Live RGB-D 

sensor and the chessboard marker for ground truth acquisition 

 

Figure 4: Experiments with the Messor II. Experimental set-up (a), and the ground truth 

trajectories: fast tripod gait (b), slower tripod gait (c), slow crawl gait (d) 

The software of the multi-camera system detects and localizes a chessboard marker rigidly 

attached to the Messor II robot. The known size pattern was extracted from images and its pose 

was computed with respect to the overhead camera. Then, the pose of the Xtion sensor with 

respect to the overhead camera was computed using the rigid transformation obtained by the 

calibration. The rigid transformation MTX between the Xtion coordinate system X, and the 
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coordinates of the chessboard marker M were estimated applying the calibration algorithm from 

(Schmidt et al., 2014). Images of an external calibration pattern observed by the on-board 

Xtion’s RGB camera and images registered by the overhead camera observing both the 

external pattern and the marker attached to the robot were used for calibration (Fig. 5c). 

 

Figure 5: Ground truth acquisition for the Messor II robot: ceiling-mounted cameras (a), 

experimental set-up seen by the overhead camera (b), and the calibration concept (c) 

4.3 Experimental set-up with PhantomX 

The second experiment is focused on rough terrain conditions and has been performed with the 

PhantomX hexapod walking robot (Fig. 6). The robot has six legs attached to the trunk that 

hosts all sensors and the control unit. Each leg is composed of three intelligent servo motors. 

Estimation of the torque at the joint is utilized in the adaptive motion control (Mrva and Faigl, 

2015) that enables the robot to negotiate the terrain the robot is crawling on. The used adaptive 

motion gait is based on a regular tripod gait enhanced by the ability to sense the contact of 

individual legs with the ground by utilizing the servo drives feedback only (Mrva and Faigl, 

2015). The estimated tactile sensing is based on the servo position error that allows stopping 

the movement of the leg avoiding high torque values at the joints. The motion is divided into 

displacement of the individual legs with fixed body that is followed by a body movement with 

fixed legs. Therefore, the RGB-D sensor movements are smooth but periodic. This not only 

enables to traverse rough terrain but provides also smooth motion without significant impacts 

when the legs hit the ground. Due to the used adaptive motion gait, the speed of the robot is 

approximately 0.014 m/s and it is almost constant regardless the terrain being traversed. 

 

Figure 6: PhantomX, a six-legged robot with WhyCon markers for ground truth acquisition 
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The only sensor used for SLAM systems evaluation is the Asus Xtion Pro Live RGB-D 

attached to the robot body about 20 cm above the ground. The used height prohibits the depth 

sensor to observe the terrain directly in front of the robot on the ground level, but it reduces 

shaking of the camera during locomotion through the rough terrain. Besides, the XSens MTi-30 

AHRS inertial measurement unit has been attached to the robot body to provide a ground truth 

orientation of the robot. This unit is, however, not used by the robot control algorithm and the 

evaluated SLAM systems. 

The experimental test track consists of a square path of approximately 9 m length involving 

a plain ground, a hill of irregularly height wooden blocks, a set of stairs, and an inclined ramp. 

The test track is visualized in Fig. 7a. Each of the particular terrain types represents a different 

challenge for the hexapod platform and also the SLAM system. The test track is located in a lab 

environment which has not been distinctly modified to be richer in features, except a few boxes 

placed in the first two corners of the trajectory to provide the algorithms with features both in 

the near and distant field of view. The hill of irregularly height wooden blocks has been 

designed to evaluate the SLAM methods on an uneven terrain where angular rotation of the 

camera can occur with a high frequency. The stairs represent a challenge where the camera 

pose changes abruptly 

 

Figure 7: Experiment with the PhantomX. Experimental set-up (a), ground truth trajectory (b), 

and visualization of the recovered trajectories (c) 

and randomly because of slippage. During the descent, the forward-looking sensor is inclined 

to the ground and only limited number of features in a close distance is visible. The individual 

turns represent another significant challenge for the SLAM systems due to the motion blur in 

the acquired images. 

The 6 DOF ground truth for the experiment has been obtained by visual tracking of the 

robot position using WhyCon system (Krajnik et al., 2014) that is accompanied by the 

orientation of the robot provided by the precise XSens MTi-30 AHRS unit. The visual 

localization system tracks circular patterns rigidly mounted to the robot by a multicamera setup 

to provide a precise 3 DOF position of the robot. Due to the size of the test track, two cameras 

have to be employed to cover the whole experimental arena with the achieved accuracy of 

about 2 cm, which has been considered as sufficient for this research. The tracked position of 

the robot by the individual cameras have been merged into a single coordinate frame using four 

static markers on the ground (see Fig. 7a). The acquisition rates for the utilized Asus Xtion Pro 
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RGB-D sensor, the WhyCon reference system, and the AHRS unit are restricted to 10 frames 

per second, 6 frames per second, and 400 samples per second, respectively. The 

synchronization of the RGB-D data with the ground truth data is based on timestamping and 

interpolation similarly as it has been used by Sturm et al. (2012). However, the slow average 

velocity of the robot locomotion does not cause a significant error of the interpolation. 

5 Experiments and results 

In the first experiment, three runs were performed with the Messor II. The shape of the test 

trajectories resemble rectangles of the size similar to the size of the mockup (see Fig. 4b, c, and 

d). The runs differ mainly in the velocity of the robot, and the gait type being used. In the first 

two runs, the Messor II uses its regular tripod gait. The tripod gait is the fastest statically stable 

gait of this walking robot. The robot was controlled by a human tele-operator using a joystick. 

Thus, the step length wasn’t constant, and the effective velocity of the robot fluctuated slightly 

along the path. For the first experiment, the velocity was 0.15 m/s, which is 95% of the 

maximal value. In the second run, the velocity was decreased to 45% of the maximal one, 

resulting in the velocity value of 0.09 m/s. In the third run, the gait was changed to a slower 

crawl gait. During the crawl gait, the single leg of the robot is in the swing phase at once. This 

resulted in a velocity of about 0.05 m/s. 

 

Figure 8: SLAM evaluation results for the Messor II robot walking at 95% of its maximal 

speed: estimated trajectories with ATE (a,c,e,g), and translational RPE plots (b,d,f,h) 

Figure 8 shows the plots of ATE and RPE metrics generated by the (from left to right) PUT 

SLAM, RGB-D SLAM v2, CCNY RGBD, and ORB-SLAM2 evaluated on the sequence of 

frames obtained in the first run (messor2 1, Fig. 4b). The accuracy of trajectory estimation is 

rather low for all the SLAM systems. Albeit PUT SLAM produced the smallest absolute (Fig. 

8a) and relative (Fig. 8b) errors, the RMSE ATE of about 9.5 cm is too large if we want to 
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register the depth measurements into a global terrain model (Belter and Skrzypczynski, 2013).´ 

The RGB-D SLAM v2 was also capable of accomplishing the trajectory reconstruction, but its 

RMSE ATE is about 15 cm (Fig. 8c). Note that in spite of yielding a reasonable global 

trajectory estimate RGB-D SLAM v2 generated much larger relative errors (Fig. 8d). The 

CCNY RGBD was not able to compensate some large pose drifts that appeared along the 

trajectory, and the obtained trajectory estimate is useless (Fig. 8e). Surprisingly, the ORB-

SLAM2, which is known for providing extremely precise run trajectory estimates on several 

benchmarks (Mur-Artal and Tardos, 2016), failed on the´ messor2 1 sequence (Fig. 8g). It 

lost tracking of the sensor at the end of the first leg of the trajectory, apparently during a sharp 

turn of the robot. The system was unsuccessful in trying to re-localize after this failure (see the 

arrow in Fig. 8h). In this run the main reason for large sensor pose errors or even failure of the 

evaluated SLAM methods seems to be the excessive amount of motion blur appearing in the 

collected RGB-D frames. This made detection and description of point features unreliable, and 

in the case of ORB-SLAM2 perhaps affected also the reprojection error computations. 

In the second run, denoted the messor2 2 sequence (Fig. 4c), the speed of the robot was 

reduced to 45% of the maximal value, and the robot’s trunk vibrations had smaller amplitude. 

In this case, PUT SLAM estimates the trajectory with a better, but still not acceptable precision 

(Fig. 9a). There was no noticeable improvement of ATE and RPE metrics for the RGB-D 

SLAM v2 and CCNY RGBD systems, although the CCNY RGBD trajectory is qualitatively 

better (Fig. 9e). Also in this run, ORB-SLAM2 was unable to complete the run, but it managed 

to process 

 

Figure 9: SLAM evaluation results for the Messor II robot walking at 45% of its maximal 

speed: estimated trajectories with ATE (a,c,e,g), and translational RPE plots (b,d,f,h) 

about a half of the sequence (Fig. 9g). The reasons for the failure were very similar – the 

inability to match enough features when the robot was almost turning on the spot at the corner 

of the trajectory, followed by an unsuccesful re-localization (see the arrow in Fig. 9h). 

Page 13 of 23 Industrial Robot

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Industrial Robot

 

◦  
◦  
◦  

◦  
◦  
◦  

 

Figure 10: SLAM evaluation results for the Messor II robot using crawl gait: estimated 

trajectories with ATE (a,c,e,g), and translational RPE plots (b,d,f,h) 

In the third run (messor2 3, Fig. 4d), the Messor II motion was slower than the previous 

runs, because of the crawl-type gait being used. Therefore, all RGB-D frames were acquired 

when the robot was supported by at least five legs, avoiding vibrations due to the momentarily 

overload of the servos, and significantly reducing the motion blur. The PUT SLAM system was 

able to recover a smooth trajectory with RMSE ATE of about 5 cm (Fig. 10a). This accuracy 

should be satisfactory for terrain mapping and motion planning. Surprisingly, there was no 

improvement in the trajectory estimation by RGB-D SLAM v2 (Fig. 10c), although RPE values 

are reduced (Fig. 10d). Conversely, the results of CCNY RGBD improved (Fig. 10e and 10f). 

This sequence was the first one on which ORB-SLAM2 recovered the full trajectory. As both 

RMSE ATE and RPE values were small, we can conclude that the motion blur on RGB images 

(practically not present in this sequence) combined with fast rotations of the robot were the 

main failure causes of ORB-SLAM2 in the first experiment. Table 1 summarizes the 

quantitative results of the first experiment for all runs and all the SLAM systems. 

Table 1: ATE and RPE values obtained by the tested systems for the messor2 sequences 

 RGB-D sequence and SLAM architecture ATE [m] σATE [m] RPEt [m] RPEθ [deg] 

 PUT SLAM messor21 0.095 0.052 0.054 4.96 

 RGB-D SLAM v2 messor21 0.155 0.059 0.138 15.93 

 CCNY RGBD messor21 0.468 0.262 0.140 10.02 

 ORB-SLAM2 messor21 — — — — 

 PUT SLAM messor22 0.069 0.033 0.041 5.66 

 RGB-D SLAM v2 messor22 0.210 0.082 0.139 10.54 

 CCNY RGBD messor22 0.307 0.107 0.118 6.39 
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 ORB-SLAM2 messor22 — — — — 

PUT SLAM messor2 3 0.053 0.025 0.012 5.42 

RGB-D SLAM v2 messor2 3 0.147 0.062 0.094 

11.04  
CCNY RGBD messor2 3 0.102 0.044 0.032 6.37 

ORB-SLAM2 messor2 3 0.085 0.019 0.012 5.43 

The second experiment conducted with the PhantomX hexapod focuses on the evaluation of 

the SLAM systems in the rough terrain scenario. During this experiment, the robot has been 

remotely guided by a human operator along the whole path. Altogether five experimental runs 

have been performed on the test track from which we have selected for evaluation the run 

where the robot did not finish the whole path, and therefore, did not close the loop (Fig. 7b). 

Due to the adaptive gait, the speed and motion type of the robot were similar in all runs. Thus, 

we have chosen a sequence, which is interesting because it best evaluates the ability of a 

SLAM system to work while exploring an unknown environment, which is a typical scenario in 

USAR missions. Moreover, it was also the most challenging trajectory in terms of camera 

shaking and abrupt motions. 

The evaluation results are summarized in Tab. 2 and depicted in Fig. 11 for (from left to 

right) PUT SLAM, RGB-D SLAM v2, CCNY RGBD, and ORB-SLAM2. The constant-

velocity smooth gait directly affects the resulting trajectory and the SLAM outcome as well, 

because the particular type of terrain ceases to affect the precision of the SLAM system 

(Cˇ´ızek andˇ Faigl, 2016). The large values of ATE and RPE are mostly caused by inability of 

an algorithm to track the features in specific parts of the trajectory which are usually related to 

fast and abrupt motions when the camera pose changes unexpectedly or the parts of the 

sequence which contain a significant motion blur. Therefore, the recovered trajectories are 

similar for all the evaluated solutions (Fig. 7c). In spite of these similarities specific problems 

and failures can be observed for particular architectures. 

Table 2: ATE and RPE values obtained by the tested systems for the phantomx sequence 

 SLAM architecture ATE [m] σATE [m] RPEt [m] RPEθ [deg] 
PUT SLAM 0.171 0.074 0.044 11.75 
RGB-D SLAM v2 0.193 0.036 0.021 

11.72  
CCNY RGBD 0.183 0.061 0.023 11.85 
ORB-SLAM2 0.164 0.058 0.021 11.71 

Although ORB-SLAM2 scored first with respect to the RMSE ATE value (see Tab. 2), it 

was unable to complete the trajectory to the very end. It loses tracking close to the end of the 

sequence. The failure is caused by the rapid orientation change of the robot with additional 

vibrations, characteristic to a legged robot. The inability to track the sensors pose due to motion 

blur is a typical problem for visual SLAM systems, which in ORB-SLAM2 manifests itself 

also when RGB-D data are used. In this sequence, ORB-SLAM2 loses tracking also earlier on 
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the trajectory (arrow no. 1 in Fig. 11g), but is able to recover when the robot takes a short 

pause. But toward the end of the trajectory, it loses the tracking once again and this time does 

not recover (arrow no. 2 in Fig. 11g)
5
. This is a result of not adding new map features fast 

enough, as ORB-SLAM2 usually localizes itself only on well-established map features. The 

ORB-SLAM2 system once lost, it always tries to re-localize itself against the already built 

map, which might be also considered a disadvantage of this architecture, because ORB-

SLAM2 does not restart the mapping procedure if the tracking is lost, and the robot is 

exploring a new environment (as in our experiment), rendering the SLAM module useless. The 

map built by the ORB-SLAM2 till the moment it got lost contains 7610 point features. 

 

Figure 11: SLAM evaluation results for the PhantomX robot in rough terrain: estimated 

trajectories with ATE (a,c,e,g), and translational RPE plots (b,d,f,h) 

The PUT SLAM scored second in the RMSE ATE category. This system was able to 

optimize the whole recovered trajectory and map yielding a reasonable absolute error as for an 

openloop sequence, but at the same time, it produced larger transitional RPE errors, which can 

be problematic for relative localization, e.g., when planning footholds. We attribute this 

problem to the very slow motion of the PhantomX robot, which combined with the 10 Hz 

frame rate of the RGB-D sensor resulted in very small distances between consecutive frames. 

Whereas this is typically good for vision-based SLAM systems (Klein and Murray, 2007) in 

PUT SLAM it may lead to accumulating errors in Lucas-Kanade feature tracking and increased 

the uncertainty of the depth measurements for the observed features. The PUT SLAM had the 

largest relative error when the robot was turning at the top of the stairways. At this moment 

almost all of the features were located pretty far, which increased the Xtion depth 

measurements errors. The PUT SLAM is more prone to this type of problems than systems 

relying more on the visual information. The PUT SLAM successfully managed rapid 

orientation changes of the robot at locations rich in close features, e.g., at the first turn of the 

trajectory. In such situations, when only a limited number of features can be re-observed due to 

                                                
5
 See also the video https://www.youtube.com/watch?v=cgYo6ISxPZk 

Page 16 of 23Industrial Robot

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Industrial Robot

 

fast changes of the field of view, this system quickly adds new features to the map (see Fig. 12 

around frame no. 1000), which prevents it from getting lost. However, the keyframe-culling 

mechanism in the back-end allows PUT SLAM to delete the excessive features with a minimal 

number of re-observations. The map grows with time, reaching 8330 features at the end of the 

sequence, but this is caused by the exploratory nature of the trajectory. 

 

Figure 12: Evolution of the number of map features in PUT SLAM for the phantomx 

sequence 

The relatively simple CCNY RGBD system performed surprisingly well in this experiment. 

This system is less prone to problems with fast rotations. However, the RMSE ATE value is 

larger than for the BA-based architectures. It should be noted that while the BA-based systems 

expand their maps gradually along the trajectory, reaching about 8000 features, the CCNY 

RGBD local map has a constant size, and the oldest features are replaced by the most recent. 

Perhaps this simple strategy makes the local metric loop closures less efficient, as some useful 

features may disappear with time, eventually leading to a drift of the estimated trajectory. 

Similarly, the RGB-D SLAM v2 produced a smooth trajectory, which in spite of the 

reasonable translational RPE has the largest RMSE ATE among all the tested systems. This 

suggests that the pose-based approach is less efficient in the integration of a large amount of 

information provided by a feature-based front-end. The RGB-D SLAM v2 system was already 

evaluated thoroughly on very similar sequences from the same robot (Cˇ´ızek and Faigl, 2016). 

This evalu-ˇ ation revealed that the performance of this architecture to a large extent depends 

on the chosen configuration and the detector/descriptor type in particular. As Cˇ´ızek and Faigl 

(2016) conclude,ˇ the performance of RGB-D SLAM v2 with the ORB features is not 

satisfactory because of their poor discriminability. Therefore, we configured this SLAM system 

with the much slower to compute SURF features. This yielded results comparable to other 

systems under investigation, but at the cost of making RGB-D SLAM v2 slower than these 

systems. 

In the second experiment the frame rate of the recorded RGB-D sequence was 10 Hz, and 

all the evaluated systems were able to work in real-time on a standard i5 PC computer without 

GPGPU acceleration. The Ubuntu Linux was used as the operating system, with the ROS 

framework for the PUT SLAM, RGB-D SLAM v2, and CCNY RGBD systems. We have noted 

that ORB-SLAM2 took only 55% to 65% of the processor time, being thus the most efficient 

SLAM system in our tests. On the other hand, we have observed that the RGB-D SLAM v2 

slowed down with the growing amount of keyframes, as the optimization took more time. In 
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the experiment with the Messor II sequences, when the frame rate was higher, the RGB-D 

SLAM v2 was not able to process the incoming frames in real-time. 

6 Conclusions 

The experiments presented in this article revealed that the predominant problem characteristic 

to the legged robots as platforms for SLAM with RGB-D perception are the abrupt and 

unpredictable sensor motions, as well as oscillations and vibrations, which corrupt the images 

captured in-motion. In the Messor II experiment substantially reduced trajectory estimation 

errors were observed if the RGB-D frames were collected when the robot was supported by 

five legs. This suggests that the perception process should be tightly coupled with the gait 

control algorithm. The PhantomX experiment results support this conclusion, as the used 

adaptive gait, albeit slow, allowed all the evaluated SLAM systems to reconstruct acceptable 

trajectories, in spite of the more challenging terrain. 

The two BA-based systems produced best results, which is attributed to the use of a 

persistent map of visual features, which enables to establish a large number of constraints for 

the estimated trajectory. However, both evaluated BA-based systems have their distinctive 

features. The PUT SLAM utilizes a very fast visual odometry pipeline, which allows tracking 

the sensor even during fast rotations of the robot. The BA optimization based on the Euclidean 

error involving depth measurements seems to help this system to overcome some problems 

with motion blur and rolling shutter in the acquired images. The ORB-SLAM2 failed altogether 

on the two sequences with highly blurred images in the first experiment. But on the other hand, 

the ORBSLAM2 architecture having its roots in a pure visual SLAM algorithm handles more 

efficiently features located at various distances, also those detected beyond the effective range 

of the depth camera. Also the ORB feature management and optimization strategy in ORB-

SLAM2 appear to be more efficient than their counterparts in PUT SLAM. 

The third architecture implementing a persistent map of features – CCNY RGBD also 

demonstrated much accuracy boost with the improving quality of images in the first 

experiment. However, the Kalman filter used in CCNY RGBD was probably unable to handle 

the highly uncertain feature locations obtained from blurred images, whereas this was possible 

using BA in PUT SLAM. The RGB-D SLAM v2, which also uses the g2o optimization engine, 

as the BA-based systems, but in the pose-based SLAM framework, benefits less from the 

increased number of visual features detected at reduced speed in the first experiment, yielding 

less accurate trajectory estimates. 

Our observations from the second experiment suggest that if the robot uses a gait that 

protects it from strong impacts and shaky motions, then the terrain type does not influence 

either the ATE or RPE significantly. However, the abrupt motions during the locomotion may 

have profound effects on the performance. From both experiments, we can draw a conclusion 

that as the motion gets smoother, the results get better for all the evaluated systems, but the 

BA-based architectures make the best use of the good quality features. 
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Further research on RGB-D-based SLAM for walking robots in challenging terrain should 

attempt to combine the best features of the existing systems. Whereas the ORB-SLAM2 is 

perhaps the most efficient and universal BA-based SLAM available now as open-source, it 

should benefit from the integration of such solutions as the fast visual odometry replacing the 

simple sensor motion model. Also better handling of the depth measurements uncertainty could 

allow this system to take more advantage of the RGB-D sensing. Another promising research 

direction for SLAM on walking robots is the integration of SLAM from RGB-D data and the 

IMU measurements. As demonstrated in Fischer et al. (2016) for the stereo-based S-PTAM 

system, even a loosely coupled approach to IMU data integration improves the localization 

accuracy of the walking robot, helping to overcome problems due to abrupt motions. Very 

recently, the monocular ORB-SLAM has been extended by tightly coupling an IMU and pre-

integrating the inertial measurements directly in the BA (Mur-Artal and Tardos, 2017). 

However, such approach still´ has to be implemented for the RGB-D-based SLAM on a 

walking robot. 
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