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Abstract— In this paper, we present a novel path planning
algorithm based on properties that reaction-diffusion (RD)
models exhibit by the underlying non-linear dynamics of the
considered system. In particular herein considered a two-
variable RD model provides advantages of natural parallelism,
noise resistance, and especially the non-annihilating feature that
traveling fronts separating two stable states exhibit upon a
collision. Based on this, we developed a path planning algorithm
that provides paths with lengths competitive to standard path
planning approaches. Moreover, the results presented indicates
the paths are smoother and also within a safe distance from
obstacles; thus, the found paths combine advantages of two
fundamental approaches, namely the DT algorithm and Voronoi
diagram.

I. INTRODUCTION

This paper is concerned with an autowaves based path
planning algorithm for navigating a mobile robot. The type
of dynamics described by reaction-diffusion (RD) models
occurs in many systems ranging from physical, chemical,
or biological, e.g., excitation waves in the heart muscle.
An RD model describes evolution of a vector of at least
two components, where the information exchange takes place
via a diffusive process. Thus, the evolution is expressed
as spatio-temporal concentration profiles that can exhibit
complex patterns as self-sustained structures [1].

RD systems can be numerically reproduced as a network
of coupled cells with short-range coupling, which greatly
simplifies its codification and enables a direct hardware
implementation by means of standard technologies (GPU,
FPGA, VLSI). Even more, combination of the intrinsic mas-
sive parallelism of the model propagation and the short-range
diffusive coupling between cells results in a fault tolerance
that can be interpreted as noise resistance (isolated damage
cells do not influence the overall behaviour), exposing the ro-
bustness of natural phenomena. These interesting properties
have already been explored in the context of computational
analysis as a set of image processing operations [2], [3], [4],
[5], [6]. For the calculation of the shortest time to reach a
destination point [7], and more recently, the shortest path
between two points [8].
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The use of RD systems for path planning (or a mo-
bile robot navigation task) is not a new idea and sev-
eral approaches have been already proposed following both
perspectives: experimental and strictly computational. The
pioneering work has been introduced by Adamatzky [9], [10]
and Trevai et al. [11], [12] whom respectively demonstrated
feasibility of both approaches.

Although several consecutive approaches using the un-
derlying RD process have been proposed, e.g., [13], [14],
[15], [16], [17], the presented approach differs conceptu-
ally, as the change of phase method in combination with
new properties recently achieved by the authors; hence it
constitutes a completely new approach for solving optimiza-
tion problems using an RD system. Moreover, none of the
previous approaches (to the best of our knowledge) provide
a comparison with approaches well established in robotics.
Therefore, in this paper, we compare the proposed novel RD
path planning algorithm with two standard approaches for
planning on a grid representation of the robot working en-
vironment. The selected approaches are the Distance Trans-
form algorithm [18] and extended Voronoi graph (EVG) [19].

The considered non-annihilating feature regarding front-
wave collision in a particular bistable configuration of the
RD system has been effectively used recently [8], [20]. This
small step of generating computational autowaves that do
not annihilate upon a collision contains a fundamental conse-
quences from the information processing point of view, as the
position of collisions now remains in the natural evolution of
the model. All previous attempts to develop algorithms using
autowaves commonly rely on iterative processes, forcing to
restart the computations at the positions where annihilation
took place. Positions that also had to be recorded onto a
memory system each time the computations were restarted.
Regarding this, the approach presented in this paper can be
considered as a use case of the RD-system’s computational
model applied in mobile robotics. The model used forms a
solid base of a unified way based on biological processes to
solve additional navigational problems. Thus, the approach
represents a new class of path planning algorithms based on
different principles than the well-establish planning methods
already used in robotics.

The paper is organized as follows. The next section pro-
vides fundamentals of the autowaves approach. In Section III,
the proposed path planning algorithm based on the RD
model is presented and particular implementation issues are
described. A comparison of the algorithm with standard
approaches is presented in Section IV together with an
example of the experimental deployment demonstrating real
applicability of the proposed approach. Finally, Section V is



dedicated to concluding remarks.

II. BASIC AUTOWAVES BACKGROUND

A detailed description of RD system dynamics in which
the autowaves phenomena occur is out of the scope of
this paper, therefore, here we present an overview of the
autowaves, the considered RD model, and a straight-ahead
description toward the main principles used in the proposed
path planning algorithm.

Autowaves represent, by definition, a particular class of
nonlinear waves that propagate through an active media at
the expense of the energy stored in the medium and are
manifestations of a strongly nonlinear active media [21].

Reaction-diffusion models are a type of dynamical systems
that are able to reproduce autowaves. The simplest way to
write an RD equation capable of generating autowaves is by
the system of two equations

u̇ = f (u, v) +Du4u
v̇ = g (u, v) +Dv4v

. (1)

This system describes the evolution of the state variables
u = u (~x, t) and v = v (~x, t), where the so-called activator
u influences positively on the formation of both u and
v, whereas the so-called inhibitor v tends to decrease the
concentration of v, by means of the functions f (u, v) and
g (u, v), that takes into account biochemical aspects of the
system and represents the local rate at which the substances
(or morfogens) (u, v) are converted into each other at any
time. The laplacian terms 4u and 4v representing the
diffusive coupling between cells stand for the spreading of
the substances out in the space.

Although the non-linear properties are generic, here, the
two-variables FitzHugh-Nagumo (FHN ) model [22] is used
for a practical realization:

u̇ = ε
(
u− u3 − v + φ

)
+Du4u

v̇ = (u− αv + β) +Dv4u
, (2)

where α, β, ε, and φ are parameters of the model.
The general dynamics of the RD system is determined by

the associated nullcline configurations and those in turn are
the geometric shape (see Fig. 1) for which u̇ = 0 (and v̇ = 0)
in the absence of diffusion:

ε
(
u− u3 − v + φ

)
= 0

(u− αv + β) = 0
. (3)

The fixed points of the system are the ones represented by
the nullclines intersection, and basically can be classified in
stable and unstable states, leading to stable steady states (SS)
or conversely to unstable steady states (US). Concentration
levels of the state variables (u, v) evolve naturally toward the
concentration levels determined by SS. For the purpose of
this work we are concerned with the nullcline configuration
depicted in Fig. 1a leading to the so called bistable regime in
which the model presents two SS and one US (green and
red discs, respectively). It basically means that the system
(i.e., the concentration levels of (u, v) for each grid-cell)
tends to remain in any of this two SS, being feasible that
some portions of the system be in one, while the remaining

(a) General nullcline configuration corresponding to a bistable
system. Green discs shows the stable states, while the red disc
shows the unstable one.

(b) Rightmost SS corresponds to
SS+ during propagation phase.

(c) Leftmost SS corresponds to
SS+ during contraction phase.

Fig. 1. Nullcline configuration, the green disks represent SS and the red
represent US.

parts be in the other. Consequently, an interesting property
of the bistable regime lies in the possibility to modulate
the relative stability of both SS. Allowing to differentiate
between SS+ and SS− that clearly represent the more and
less SS respectively. Moreover, the relative stability of both
SS can be trivially related with the area under the curve,
which is reproduced in Fig. 1c and Fig. 1b. Thus, the relative
stability of the system can be modulated through the nullcline
configuration.

Finally, as the system evolves toward the concentration
level of SS+, a default configuration in SS− causes the
system to move to SS+ if a small perturbation is introduced.
Under these circumstances the mobile frontier that separates
both SS and drives the shift can be considered as a traveling
frontwave. Thereby, only this type of autowaves is used in
this work.

A. RD-System Dynamics Involved in Path Planning

The aforementioned bistable regime of the RD model in
a combination with the non-annihilation feature provides a
solid framework for developing a path planning algorithm.
Therefore, a brief description of the RD dynamics involved is
a desirable introduction to the proposed planning approach.

A visualization of the model state using a basic integration
sequence is depicted in Fig. 2. The sequence consists of
two phases: propagation and contraction. Each phase is
governed by a different nullcline configuration, so that in
the propagation phase the rightmost SS is more stable:
(SS+)launch, and conversely in the contraction phase the
leftmost SS is more stable: (SS+)contract.



Fig. 2. An example of the system evolution; upper: propagation phase;
bottom: contraction phase. The freespace is in white and obstacles in dark,
the green denotes parts of the system that are in the SS+ states, and the
final solution is in red.

Propagation phase: following the series of pictures in
Fig. 2 the whole system (let say background) is set in
(SS−)launch at the beginning of the process, except a
small region representing the starting point that is set in
(SS+)launch. This initial small region spreads itself in
parallel throughout the labyrinth covering all possible paths.
Along this propagation, as the traveling front leading the
shift is sometimes split because of obstacles. It also often
results in two fronts collision at intersections. But here the
non-annihilation property (exhibit due to the specific model-
configuration used in this work), plays a key role: one front
branch usually remains stationary at this point while the
other continues propagating and leading the shift (the other
possibility is that both fronts remain static at this point). In
any case, annihilation of frontwaves under collision never
takes place.

Contraction phase: When the autowave reaches the goal,
the contraction phase is activated. The nullcline configuration
now corresponds to that one in Fig. 1c and the system
starts to move towards (SS+)contract. The sequence of
pictures in Fig. 2 (bottom row) shows how all regions
resting in (SS−)contract start shrinking at the expenses of
(SS+)contract that grows up.

Finally, a simple technique to extract the shortest path
connecting the initial position with the goal position within
the computational grid is used. While the relative stability
switch leading to the contraction phase is activated (right at
the end of the propagation phase), both regions representing
the start and goal positions inside the domain (SS−)contract
are forced to maintain such a level of concentration, in spite
of the system tendency toward (SS+)contract.

Consequently (as it can be observed in Fig. 2) all branches
of the domain (SS−)contract start shrinking until they com-
pletely disappear, remaining only a single path that links the
two forced points, i.e., the shortest path connecting the start
and goal locations, see the right bottom picture in Fig. 2.

B. A Summary of the Computational Model

The computational system consists of a grid of diffusion-
coupled cells, and the evolution of each cell is described

by the FHN model set in a bistable regime. The employed
discretization is the common finite difference method on a
Cartesian grid with Dirichlet boundary conditions: a simple
forward in time centered in space (FTCS).

On the other hand, since the FHN-RD model is derived
from a biochemical one, the information that provides is the
concentration level of u and v. Thus, introducing information
into the system is basically constraining the concentration
levels in adequate places to some specific values. This
process is usually known as external forcing, and here, it
is undertaken through the local modification of nullclines
configuration for the cells of interest.

Regarding practical usage of the RD dynamics in solving
the path planning problem, the grid based representation of
the robot working environment is considered. A grid map is
used to force the concentration levels in the computational
grid in order to represent obstacles, the start and the goal
locations. The computational model needs a particular size of
the computational grid in order to exhibit the full behaviour
of the RD system. Therefore, it is necessary to abide these
requirements together with particular physical dimensions
of the robot and its working environment. Based on the
experimental and theoretical analyses it is necessary to have
at least 24 grid cells for propagating the frontwaves (e.g.,
through a narrow passage)1. Having a robot with a shape
that can be bounded by a disk with a diameter d, then
the dimensions of the computational grid should be at least
24w/d× 24h/d including the map borders, where w and h
represent real dimensions of the environment.

III. PATH PLANNING BASED ON AUTOWAVES

The aforementioned computational model of the RD sys-
tem provides the main principle for the proposed path
planning algorithm. Although the core of the algorithm is an
integration step of the FHN model, it has to be complemented
by additional functions to be usable for finding a path in a
map of the robot working environment. The algorithm is
a two phases procedure. In the first phase, a frontwave is
propagated through the environment model until the goal
location is reached. An exhibition of this phase is similar to
the wavefront algorithm well-known in robotics; however, in
this case the internal principles are based on the underlying
RD model. The second phase is a contraction in which a
path is formed. The path is represented by different values
of the concentration level, therefore it has to be extracted
from the computational grid. The path planning algorithm
can be summarized as follows.

• Let G be the computational grid, W be a grid map of
the robot working environment, and gs and ge be initial
and desired positions of the robot within W , respec-
tively. The grid consists of several matrices representing
particular variables of the model (2). A particular robot
position within the grid addresses a particular cell in

1Due to a page limited only the result of the analyses are presented here.
Besides, detailed description of the analyses is also out of the scope of the
paper, and it is going to be published in a dedicated paper.



a matrix, e.g., Gu(gs) represents the value of u at the
position gs.

- Propagation Phase
1) Initialization - set model parameters (forcing):

– Initialize u and v, e.g., Gu = -0.9, Gv = -0.22.
– Set border to avoid the propagation out of the

computational grid.
– Forcing robot position.

2) Perform one integration step according to (2).
3) Termination Condition - if the frontwave reaches

ge go to Step 4, otherwise repeat integration
Step 2.

- Contraction Phase
4) Initialize - set model parameters (forcing).
5) Perform one integration step according to (2).
6) Termination Condition - |u̇| < ε, where ε > 0 - if

a static situation has been reached continue with
the path extraction, otherwise go to Step 5.

- Path Extraction
Each phase of the algorithm is basically an integration loop

that is terminated once a static situation is reached. However,
the termination condition can be a bit tricky because of
underlying chemical process, which can have very long
time constants. Therefore, the integration is terminated once
the frontwave reaches the goal position in the propagation
phase, i.e., Gu(ge) > 0. In the propagation phase, the
activity (changes of the concentration levels) is mainly at
the front wave. Contrary to the contraction phase, in which
the concentration levels are changed more dramatically due
to a longer band of reacting border of parts with different
concentrations. After the initial fast contraction, the process
becomes a bit slower. In this case, the integration can be ter-
minated if changes in the concentration level of u are small,
e.g., using T steps period |u(t)−u(t+T )| ≤ 0.001. The used
parameters of the underlying FHN model are: α=5.0, ε=10.0,
Du=0.1, Dv=1.5, and β=-0.2 in the propagation phase and
β=0.1 in the contraction phase.

Path Extraction – Once the contraction phase is termi-
nated, the solution found is represented by the grid cells
with u > 0. A path in a form of a sequence of desired robot
positions can be then determined using a searching algorithm
considering these cells. The cells form a corridor in the grid,
see Fig. 2 for an example. Voronoi diagram of the corridor
is constructed and the final path is found using Dijkstra’s
algorithm.

Implementation Notes – The computational complexity
of the underlying process depends on the discretization of
the laplacian, which can by bounded by O(1) for computing
a single cell; however, the whole integration step depends
on the grid size. Hence, the integration can be computa-
tionally demanding, especially for a large sized grid. On
the other hand, the integration can be easily parallelized,
e.g., using the OpenMP technology. Moreover, we addressed
the high computational requirements by monitoring active
cells (cells where the integration takes place, which basi-
cally corresponds to the wavefront) since after reaching the

concentration level of the corresponding SS they remain in a
static situation. A combination of the parallelization with the
monitoring results the computational burden is significantly
reduced (up to three orders of magnitude). In terms of the
real required computational time a path through the whole
environment is found in tens of minutes using a 1000×1000
grid and four cores of CPU running at 3.2 GHz. Without
these optimizations the same computation needs a couple of
hours.

IV. COMPARISON WITH STANDARD APPROACHES

The proposed path planning algorithm has been experi-
mentally verified in several simulations regarding its appli-
cability in robotic problems. In this section, the performance
of the proposed autowaves based planning approach is com-
pared with two state-of-the-art (grid based) approaches. The
first approach is the Distance Transform (DT) algorithm [18].
The second approach is based on the Voronoi diagram
computed on a grid using the approach [19]. The diagram is
then converted into a graph in which final path is found by
Dijkstra’s algorithm. A disc robot with radius ρ is assumed,
and therefore, obstacles are enlarged appropriately using the
discrete version of the Minkowski Sum to find a path within
a safe distance from the obstacles.

The quality metrics are the length of the path found l, and
the minimal, maximal and average distances from each path’s
point (grid cell) to the closest obstacle denoted as dmin,
dmax and davg , respectively. The path length and distances
are computed as the Euclidean distances between the cells’
centers.

Although the approach has been tested within several
environments, herein presented results have been computed
using the var density environment because of page limit. The
environment is relatively complex as it contains many narrow
passages; thus, it provides the opportunity to find different
paths according to the robot’s dimensions. Three problems
are considered in this environment that are denoted as p1, p2
and p3. In addition, three radiuses of the disc representing the
robot has been considered ρ ∈ {0.3, 0.2, 0.15} (in meters),
which determine an appropriate size of the computational
grid. For each problem all values of ρ have been considered
and the paths have been found by the all evaluated methods.
Thus, the total number of the evaluated problems is nine and
the total number of found paths is 27.

(a) DT-algorithm (b) Voronoi diagram (c) Autowaves

Fig. 3. Found paths for the problem var-density-p1, robot with ρ = 0.30 m
and the size of the computational grid 2350×2350.

Results are presented in Table I and selected found paths
are visualized in Fig. 3, Fig. 4, and Fig. 5. Regarding the



TABLE I
PATH LENGTH AND QUALITY WITHIN THE var density ENVIRONMENT

Problem Grid ρ Distance Transform Voronoi Diagram Autowaves
[m] L dmin dmax davg L dmin dmax davg L dmin dmax davg

p1 2370×2370 0.30 42.2 0.30 1.49 0.55 48.9 0.32 1.85 0.92 47.1 0.30 1.47 0.89
p1 2220×2220 0.20 37.2 0.20 1.49 0.48 44.3 0.24 1.84 0.88 41.7 0.22 1.46 0.82
p1 1270×1270 0.15 28.5 0.15 1.65 0.58 35.4 0.17 1.84 0.99 31.0 0.16 1.56 0.79

p2 2370×2370 0.30 42.7 0.30 1.72 0.60 48.4 0.32 1.85 0.92 46.1 0.30 1.75 0.92
p2 2220×2220 0.20 37.9 0.20 1.67 0.53 43.7 0.24 1.84 0.88 41.1 0.22 1.73 0.87
p2 1270×1270 0.15 23.4 0.15 1.65 0.44 28.8 0.15 1.63 0.81 25.7 0.16 1.56 0.63

p3 2370×2370 0.30 24.5 0.30 1.14 0.52 27.2 0.32 1.52 0.76 25.0 0.30 1.29 0.67
p3 2220×2220 0.20 20.2 0.20 1.27 0.40 22.6 0.24 1.51 0.66 21.8 0.22 1.35 0.72
p3 1270×1270 0.15 20.1 0.15 1.21 0.50 22.5 0.24 1.51 0.66 21.3 0.20 1.22 0.66

(a) DT-algorithm (b) Voronoi diagram (c) Autowaves

(d) DT-algorithm (e) Voronoi diagram (f) Autowaves

Fig. 4. Found paths for the problem var-density-p2, the robot size ρ and two
grid sizes; top: ρ = 0.20 m and the grid 2200×2200; bottom: ρ = 0.15 m
and the grid size 1250×1250.

(a) DT-algorithm (b) Voronoi diagram (c) Autowaves

Fig. 5. Found paths for the problem var-density-p3, robot size ρ = 0.15 m
and the grid size 1250×1250.

quality metrics the proposed path planning approach provides
competitive solutions to the standard algorithms. It provides
safer paths than the DT (regarding davg) and also they are
shorter than Voronoi diagram paths. In addition, the main
benefit of the autowaves paths is evident from the figures.
The paths are smooth, while they are not significantly longer
than the shortest paths found by the DT.

A. Real Deployment of the Proposed Method
A real applicability of the developed path planning method

has been verified using a map of the environment built
automatically by a mobile robot.

The considered robot G2Bot (developed at the dept. of
Cybernetics, FEE, CTU in Prague) [23] has been equipped

(a) Occupancy grid (b) G2Bot in the experiment

Fig. 6. A raw occupancy grid acquired using SICK laser range finder and
G2Bot.

(a) initialization (b) propagation (c) contraction (d) a path found

Fig. 7. Steps of the underlying RD-system evolution using the built map
from the occupancy grid.

with the SICK LMS200 laser range finder, and the map has
been built using the probabilistic occupancy grid, see Fig. 6.
Then, the grid has been used for forcing the computational
grid of the RD model and path has been found, see a
sequence depicted in Fig. 7. The main advantages of the
proposed path planning approach is its ability to deal with
noisy data that do not influence smoothness of the final path
as can be seen in Fig. 7d.

B. Discussion

The results indicate that the proposed path planning pro-
vides competitive paths to the standard approaches. More-
over, the paths found are shorter than paths provided using
the Voronoi diagram and they are also safer than paths found
by the DT regarding distance from the robot towards the
obstacles along the path. In addition, paths provided by the
proposed planner are smoother, which also holds for maps
built from the real sensors, which suffers from sensor noise.

On the other hand, the underlying RD model makes
the implementation further computationally demanding, in
comparison with the tested standard approaches. However,



the model is strongly parallelizable and with a combination
of the current progress in massive parallel processing, e.g.,
GPU and related technologies (or eventually implementation
via VLSI or similar architecture), it can be expected this will
not be a significant issue in the future.

The observed smoothness of the found paths is an interest-
ing feature of the proposed approach as it does not explicitly
consider a robot dynamic. The smoothness comes from
the biochemical underlying processes. Moreover, during the
experimenting we have found out that the model parameters
affect the dynamic of the propagation (i.e., the frontwave
propagation in a narrow passage is slower). These findings
make us a bit optimistic for a further research about including
a robot dynamic into the proposed approach.

V. CONCLUSION

In the presented study, a novel path planning algorithm
based on the general dynamics provided by the FitzHugh-
Nagumo reaction-diffusion model is introduced. The under-
lying model provides beneficial properties that have clear
advantages for developing a navigation framework, e.g., like
natural parallelism and fault tolerance to damaged cells
(noisy data). Although there are widely used standard path
planning approaches using a grid based map representation
(e.g., based on standard state space search algorithms like
D∗ or Theta∗), the proposed planning framework is based
on different principles coming from natural processes. More-
over, the presented results demonstrate the provided paths are
competitive and smoother, therefore the proposed approach
provides new quality of solution originated from different
principles.

The current computational requirements can be considered
as high; however, the relation between the RD dynamics
and the geometrical information representing the real world
results that all decision-logic takes place naturally through
the system evolution. Therefore, increasing the complexity
of the environment does not propagate similar effect to the
computational burden.

Further studies not shown in this paper have confirmed the
ability to extend the presented approach to deal with more
advanced navigation tasks (e.g., exploration of unknown
environment, or multi-robot navigation) in a straightforward
way. The algorithm extension to a 3D environment is also
trivial, and let us to envisage future applications. These are
subjects of our future work in this field.
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