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Abstract— In this paper, we discuss the problem of goal
assignment in the multi-robot exploration task. The presented
work is focused on the underlying optimal assignment problem
of the multi-robot task allocation that is addressed by three
state-of-the art approaches. In addition, we propose a novel
exploration strategy considering allocation of all current goals
(not only immediate goal) for each robot, which leads to the
multiple traveling salesman problem formulation. Although the
problem is strongly NP-hard, we show its approximate solution
is computationally feasible and its overall requirements are
competitive to the previous approaches. The proposed approach
and three well-known approaches are compared in series of
problems considering various numbers of robots and sensor
ranges. Based on the evaluation of the results the proposed
exploration strategy provides shorter exploration times than
the former approaches.

I. INTRODUCTION

The mobile robot exploration is a complex task in which
a mobile robot is autonomously navigated in an unknown
environment in order to create a map of the environment. The
exploration can be defined as an iterative process determining
a new goal for the robot and its navigation towards the goal.
The process is terminated whensoever a complete map of the
environment is created. Having a team of robots, an efficient
allocation of exploration targets among the team is a natural
way how to reduce the required time to collect information
about an unknown environment.

The problem of Multi-Robot Exploration (MRE) is a kind
of the Multi-Robot Task Allocation (MRTA) [1] in which
tasks are new goal locations towards which robots are nav-
igated. The fundamental way how to determine candidates
for goal locations is the frontier based approach proposed
by Yamauchi in 1998 [2] and further extended by many
researchers later, e.g., see one of the recent work [3].

Having a set of candidate positions the robot’s next goal
can be determined regarding a selected criteria. A unifying
concept of how to evaluate candidate positions is based
on the goal utility. Although various utility functions have
been proposed, all of them basically combine information
gain (or expected benefit [4]) together with the required
travelling distance to the goal [5]. Then, the robot’s next
goal is repeatably selected from goal candidates. Such an
assignment of the next robot goal is called a next-best-
view approach and it represents the fundamental stream in
exploration [6].

The next-best-view approach can be formulated as the op-
timal assignment problem studied in operational research [1].
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The problem is to find the best assignment of n goals to m
robots maximizing the overall utility, i.e., to find one goal
for each robot. The problem can be solved in polynomial
time using the Hungarian algorithm. The algorithm has been
applied to MRE in [7], where authors use Voronoi Graphs
of the current known environment to explore a single room
by one robot.

A distributed assignment algorithm called Broadcast of
Local Eligibility (BLE) has been proposed in [8]. A pair
〈robot, task〉 with the highest utility is considered to assign
the task to the robot without tasks. The BLE algorithm works
iteratively until each robot has assigned a task; thus, the
algorithm is also called iterative assignment.

Another stream of distributed MRE solutions is based
on market (or auction) based approaches in which a robot
(auctioneer) offers a task and other robots bid. If any robot
bids with a higher price than the auctioneer’s offer, the task
is exchanged. This approach is used in [9], where a robot
considers its goals in a tour and new (exchanged) goal is
inserted into the tour regarding minimization of the tour’s
cost, i.e., the problem is a variant of the traveling salesman
problem (TSP).

A selection of the next navigational goal considering
the TSP distance cost has been studied in our previous
work [10]. The cost is computed as the length of the shortest
path connecting the robot with the candidate goal and all
remaining goals. The Chained Lin-Kernighan heuristic [11]
is considered to find a solution of the TSP, which provides
sufficiently good solution without expensive computational
requirements. Considering visitation of all current goals leads
to about 30 percentage points shorter exploration path than
using the standard greedy approach.

In this paper, we examine the TSP approach in MRE
as the multiple traveling salesman problem (MTSP). The
encouraging results presented in [10] motivate us to consider
similar approach also in MRE; however, here, the key issue
is how to determine and assign particular set of all goals
to each robot in order to compute the distance cost as the
length of the tour visiting all goals in the set using a solution
of the related TSP. We propose to cluster the goals into m
clusters first, where m is the number of robots. After that,
a 〈cluster, robot〉 pair is evaluated using the TSP distance
cost [10] for determining the next robot’s goal.

The proposed approach is similar in the TSP aspect with
the approach [9]. The main difference is that our approach is
focused on the explicit MTSP formulation and the proposed
solution is compared with the greedy approach [12], iterative
assignment [8], and the Hungarian algorithm [7], which (to
the best of our knowledge) has not been published yet.



Moreover, during an experimental verification of the tested
approaches we have found out that the studied performance
metric significantly depends on particular components of
the whole navigational system, especially on a local path
planner. Therefore, inspired by the methodology described
in [13] we designed a multi-robot exploration framework in
which we can isolate the assignment problem and fix the
navigation issues. In consequence, the framework provides
same conditions for all evaluated methods during the whole
exploration process. However, it is clear that real benefits
of the exploration strategy should be verified in real exper-
iments. Therefore, the methods have been also evaluated in
selected problems using the Player/Stage framework [14],
like in the aforementioned approaches.

The reminder of the paper is organized as follows. The
problem statement is presented in Section II and a brief
description of the examined methods in Section III. In
Section IV, the MRE framework used in the evaluation is
described. The proposed solution of the assignment problem
based on the MTSP formulation is presented in Section V.
Evaluation of the results and discussions of the MRE issues
are presented in Section VI. Finally, Section VII is dedicated
to concluding remarks.

II. PROBLEM STATEMENT

Although the evaluated approaches are general and not
necessarily restricted to the particular sensors or map build-
ing techniques, we consider laser range finder sensor and
occupancy grid approach for building a map of the unknown
environment. The addressed problem of the multi-robot ex-
ploration (MRE) stands for building a map of the unknown
environment using a team of m identical robots equipped
with a laser range finder. The map M is formed from the
occupancy grid using threshold values for probability that
the grid’s cell is occupied or free [2]. Thus, a cell in the
navigational grid represents freespace, obstacle, or unknown
part of the environment.

The exploration algorithm is an iterative procedure that
is terminated once the navigational grid does not contain a
reachable cell with an unknown value. At each exploration
step, the robots’ goals are determined from a set of candidate
positions that are found as representatives of frontier cells.

The goals are assigned to robots using the exploration
strategy that can be formalized as follows. Let the current
n goals be located at positions G = {g1, . . . , gn} and the
current robot poses be R = {r1, . . . , rm}. The problem is
to determine a goal g ∈ G for each robot r ∈ R that will
minimize the total required time, which can be approximated
by the maximal travelled distance by an individual robot, to
explore the whole environment. The assignment is performed
according to the particular strategy using defined utility and
cost functions. In this paper, we consider only a distance cost
L for evaluating the goal assignment; however, the examined
assignment strategies are general and can also be used with
a combined value of distance and utility costs.

For the standard strategies (described bellow) the distance
cost L(gi, rj) (where gi ∈ G and rj ∈ R) is the length of

the shortest collision free path from the robot rj to the goal
gi, e.g., found by the Distance Transform algorithm [15].
The proposed MTSP based assignment strategy utilizes the
TSP distance cost [10].

In this paper, we consider the total distance travelled by a
robot as the performance metric. The main motivation for
utilizing several robots is expected reduction of the total
required time to explore the whole environment, therefore
we are looking for the maximal distance travelled as short as
possible. Thus, having m robots with the distances travelled
l1, l2, . . . , lm the distance metric is L = max{l1, l2, . . . , lm}.

III. STANDARD GOAL ASSIGNMENT STRATEGIES

Greedy Assignment – The greedy assignment is based
on the approach proposed by Yamauchi in [12]; however,
it is modified to avoid assignment of the same goal to two
robots because a centralized approach is considered here.
The modification is that a random permutation of the robots
Π(R) is created first. Then, for each robot from r ∈ Π(R)
the best not assigned goal from G is found. The complexity
of this assignment algorithm can be bounded by O(nm).

Iterative Assignment – The iterative assignment follows
the BLE algorithm [8], but for simplicity it is also imple-
mented in a centralized manner. First, all robot-goal pairs
p = 〈r, g〉 are created and ordered using the distance cost
L, i.e., L(p1) ≤ L(p2), . . . ≤ L(pl). After that, the ordered
sequence is traversed starting from its first element, and the
first not already used goal is iteratively assigned to a robot
without the goal. The complexity of the iterative assignment
can be bounded by O((nm) log(nm)).

Hungarian Method – The Hungarian algorithm provides
the optimal assignment of the n goals to m robots with the
time complexity O(n3) for n ≥ m. Similarly to the iterative
assignment the cost matrix is determined using the distance
cost L, where rows stand for robots and columns for goals. In
particular we consider the C implementation of the algorithm
developed by Cyrill Stachniss [16].

IV. MULTI-ROBOT EXPLORATION FRAMEWORK

Similarly to the approach [13] we consider a simulator
for a focused investigation of exploration strategies. The
simulator is based on a grid map that provides discrete
timing of navigation and sensing operations. In particular,
the motion consists of independent turning and moving steps
using the grid cells (e.g., a robot visits all grid cells during
its motion along a straight line segment) while the sensing is
performed at each such a motion step. The framework also
allows to easily switch the simulator with some robot control
framework like Player/Stage or ROS; thus, MRE strategies
developed can be easily deployed to control real robots.

A schema of the exploration loop is depicted in Algo-
rithm 1. First, the initial robots surroundings are sensed and
the occupancy grid is updated accordingly (Line 3). Then,
the navigation grid is created from the occupancy grid and
all frontiers are detected. The frontiers are particular grid
cells (a set of freespace cells that are incident with cells
with the unknown value using 8-neighbourhood) that form a



Algorithm 1: MRE Framework
Input: R - a set of m robots
Input: smax - the maximal number of the performed

navigation steps before new assignment
Output: M - a map of the explored environment
Initialization of the occupancy grid Occ1

M = ∅ // the environment is unknown2

foreach rj ∈ R do update(Occ, robot sense(rj))3

repeat4

M = create navigation grid(Occ)5

F = detect all frontiers(M)6

G = determine representatives(F)7

(〈r1, gr1〉, . . . , 〈rm, grm〉) = assign goal(R,G,M)8

fix assignment(G, 〈r1, gr1〉, . . . , 〈rm, grm〉)9

Create navigation plan P i for each pair 〈ri, gri〉.10

l = min{|P 1|, . . . , |Pm|}// the plan length11

k = min{l, smax}12

for i = 1..k do13

foreach rj ∈ R do14

move(rj ,P j(i))15

update(Occ, robot sense(rj))16

until |G| == 017

set of connected components. The goals for the assignment
are found as representatives of the connected components
using the K-means algorithm. The number of representatives
nr of a single component F with f = |F | frontier cells is
determined as

nr = 1 +

⌊
f

1.8D
+ 0.5

⌋
, (1)

where D is the sensor range (in grid cells). A detailed
description of the selection procedure can be found in [10].

Once the goals are determined the selected exploration
strategy (Line 8) is used to assign a goal to each robot. It
may happen that in the resulting assignment a robot can be
without the associated goal, e.g., for |G| < m. In such a
case, the assignment is fixed (Line 9) using the closest goal
to the robot, because it is desirable to utilize all the robots
for the whole exploration period in order to minimize the
total required time of the exploration (here, we assume the
explored environment is a single connected component).

The assigned goals are used to determine the execution
plan consisting of simple operations. The plan is then exe-
cuted up to smax steps (Lines 13–16). This part of the loop
is replaced by adding goals to a local path planner if the
algorithm is used with real navigation system, e.g., using the
Player framework. Finally, the exploration loop is terminated
if all reachable parts of the environment are explored.

It should be noted that the set G contains only repre-
sentatives that are reachable by at least one robot, i.e., a
collision free path exists inM. The paths are found using the
Distance Transform algorithm [15] that are then simplified by
a greedy ray-shooting method using Bresenham’s algorithm.
The simplification does not affect the length of the path (on
a grid) but the path is smoother.

V. PROPOSED MTSP BASED ASSIGNMENT

The proposed exploration strategy is based on formulation
of the goals’ assignment problem as the MTSP. Having the
set of goals G and m robots at positions ri ∈ R for i = 1..m,
the problem is to find m tours starting at the robots positions
ri such that each goal g ∈ G is contained in at least one tour
and the length of the longest tour is minimal. It is known
the MTSP problem is NP-hard, and therefore, we consider
approximate solution of the problem based on an assignment
of m clusters of the goals to robots, i.e., a kind of cluster-
first, route-second heuristic approach. The proposed MTSP
based assignment can be summarized in the following steps.

1) Find m clusters C = {C1, . . . , Cm}, where Ci ⊆ G.
2) Determine the TSP distance cost for each pair 〈Ci, ri〉,

where Ci ∈ C and ri ∈ R.
3) Extract the first goal g ∈ G of the TSP tour from each

non-empty cluster Ci assigned to the robot ri.
4) Fix goals’ assignment if there is an empty set Ci.
Although the proposed clustering based solution of the

MTSP is fairly common, we suggest (regarding the context
of MRE) the following particular solutions of the clustering
and a direct assignment of the clusters to the robots.

A. Goals Clustering

Various methods of clustering can be used. One of the
popular algorithms is K-means; however, a regular variant
of this algorithm is based on the Euclidean distance between
samples. The distances between goals on frontiers in the map
of the environment being explored are rather geodesic due
to presence of obstacles (or missing information). Therefore,
using the Euclidean distance provides clusters for which real
paths to the goals are significantly longer than the expected.

Regarding this fact a more general variant of the K-
means algorithm can be used, e.g., [17]. Alternatively, goals
can be transformed to the Euclidean space where their
mutual distances are preserved using SAMCOF (Scaling by
Maximizing a Convex Function) [18]. Then, a regular K-
means algorithm can be used. In this paper, we consider

(a) regular K-means (b) K-means with SAMCOF

Fig. 1. An example of the found clusters within the jh environment using
a regular K-means algorithm on goals and transformed goals. The goals in
the clusters are shown as red, blue, and orange disks. Unknown parts of
the environment are in gray. The current robot positions are shown as green
disks and the green circle highlights the effect of SAMCOF utilization.



the SAMCOF transformation and an example of the found
clusters can be seen in Fig. 1. The K-means algorithm is
initialized using position of the robots, and therefore, also the
robots’ positions are transformed using SAMCOF as well.

B. Fixing Goals’ Assignment

The utilized initialization of the K-means algorithm results
to the clustering where a cluster Ci is formed in the vicinity
of ri. Thus, the clustering prefers assignment of goals that
are close to the robot, which follows the greedy strategy that
is advantageous in the case of separable clusters and robots
faraway each other. On the other hand, it may happen that
two robots are close, and therefore, one cluster dominates
over the other, which results in a situation when all the goals
are in the first cluster and the second cluster is empty. In
such a situation, it is important that the robot with an empty
cluster is moved towards unexplored part of the environment.
Otherwise (e.g., when the robots stops its motion), it will be
more and more far from new goals, which may result the
robot will not actively participate on the exploration.

Various strategies how to determine a goal for a robot with
an empty cluster can be proposed. Regarding the considered
TSP distance cost, we proposed to assign a goal according to
the expected time when the goal will be visited. Therefore,
once a tour visiting all goals in the cluster is determined
for each robot ri with Ci > 0, a length of the path from
the particular robot to the goal (along the tour) denotes the
expected time of visit. Then, the goals are ordered using the
time and goals with higher times are sequentially assigned
to the robots without already assigned goal.

This procedure assigns a goal to each robot, and therefore,
it replaces the fix assignment in Algorithm 1 (Line 9).

VI. RESULTS

Three standard approaches and the proposed MTSP based
approach have been evaluated in the developed MRE frame-
work first. The framework allows focused study of explo-
ration strategies that can be fully controlled by the trial
setup. Herein presented experimental evaluation has been
performed using a map of the environment (called jh)
representing a real administrative building with dimensions
21 m×24 m. The environment is large enough to exhibit
performance of the MRE using several robots while it
also contains cycles and long corridors with several rooms.
Thus, it provides representative office-like environment for
verifying feasibility of the proposed MTSP strategy.

We followed recommendations of benchmarking the ex-
ploration strategies presented in [13] and considered small
perturbations in the initial positions of the robots forming 20
variants of each problem defined by the sensor range ρ, the
number of robots m, and the maximal planning period given
by smax. The iterative assignment and Hungarian exploration
strategies are completely deterministic, while the Greedy
and the proposed MTSP methods are stochastic. Therefore
for each problem variant a single trial is considered for
the deterministic ones and 20 trials are performed for the
stochastic methods. The studied performance metric is then

computed over all perturbations (problem variants) and trials
as average values (denoted as L) and standard deviations
(sL). All presented distance values are in meters.

The used sensor is a laser range finder HOKUYO
with 270◦ field of view. The occupancy and navigational
grids (map) have identical dimensions with the cell size
0.05 m×0.05 m.

A. Comparison of the Assignment Strategies

The exploration strategies are compared using smax=7 that
provides a good trade-off between the quality of solution
and computational requirements, see Fig. 3. The considered
numbers of robots are m ∈ {3, 5, 7, 10} and the sensor range
is selected from the set ρ ∈ {3, 4, 5} meters, which results
in 10 080 trials in total for this evaluation.

TABLE I
MAXIMAL TRAVELLED DISTANCE, smax=7

ρ m
Greedy Iterative Hungarian MTSP
L sL L sL L sL L sL

3.0 3 94.8 18.9 81.9 8.1 81.4 6.6 69.6 4.3
3.0 5 68.0 9.4 55.6 5.3 56.1 4.5 47.7 3.3
3.0 7 58.2 6.4 50.4 3.0 49.7 3.0 44.5 3.0
3.0 10 68.8 12.4 40.7 1.8 37.9 1.4 42.5 2.4

4.0 3 90.4 15.4 74.9 6.6 77.0 4.7 58.9 3.5
4.0 5 85.2 52.3 53.6 8.0 48.5 4.0 46.2 3.3
4.0 7 77.2 42.0 49.3 5.7 47.5 3.9 44.1 3.4
4.0 10 68.0 13.7 40.0 1.6 37.1 1.6 40.6 2.8

5.0 3 72.2 8.8 66.9 6.3 65.1 2.5 54.6 1.4
5.0 5 70.7 6.8 58.6 3.1 56.8 3.2 45.4 2.1
5.0 7 68.6 8.7 51.7 3.0 49.6 2.8 43.2 3.1
5.0 10 64.2 13.4 39.7 1.6 37.1 1.2 40.9 2.5

The results are shown in Fig. 2 and detailed results in
Table I. The MTSP provides shorter exploration paths than
other strategies; however, with increasing m the benefits of
the MTSP strategy is not evident from the average values.
Therefore we performed statistical evaluation using a null
hypothesis that the algorithms provide statistically identical
results. We consider the Wilcoxon test for the evaluation,
because we assume the distributions are not Gaussian (based
on the Shapiro-Wilk test).

The strategies are considered different if the P-values
obtained by the Wilcoxon test are less than 0.001, which
indicates the difference between L is statistically significant
and a strategy providing lower L is considered as providing
better results. Results of the statistical comparison are shown
in Table II. All the p-values are very small, therefore char-
acters ’–’, ’+’, and ’=’ are used to denote that the particular
strategy provides longer, shorter or statistically identical L.

Regarding the results the considered range does not sig-
nificantly affect L because of relatively small open parts
while the rooms must be explicitly visited. Notice the stan-
dard deviation sL for the greedy strategy. It indicates the
performance is varying and sometimes the solution can be
very close to the solution found by the MTSP. However, in
average, it is worse than all other strategies. Although, the
Greedy strategy is stochastic, we found that the performance
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Fig. 2. Scaling of the exploration strategy with the increasing number of robots and for laser range ρ.

depends on the initial conditions, i.e., a small perturbation
leads to significantly different performance. This is not the
case of the other methods, and especially for the MTSP,
which provide more stable solutions as sL is low.

TABLE II
COMPARISON OF THE MRE STRATEGIES

ρ m

Iterative Hungarian MTSP
vs vs vs

Greedy Iterative Hungarian

3.0 3 + = +
3.0 5 + = +
3.0 7 + = +
3.0 10 + + -

4.0 3 + = +
4.0 5 + = =
4.0 7 + = +
4.0 10 + + -

5.0 3 + = +
5.0 5 + = +
5.0 7 + = +
5.0 10 + + -

1) Influence of the planning period: The influence of
smax to the performance of the exploration is depicted
in Fig. 3. The results have been obtained for m=7 and
ρ=3 m, and for each value of smax all problem variants
have been considered as well as 20 trials for each problem
variant and the stochastic strategy. The total number of the
performed trials in this evaluation is 14 280. The results
indicate that a smaller value of smax generally provides
better results, but for all tested values of smax the pro-
posed MTSP method provides superior results. Regarding the
required computational time the simple greedy or iterative
strategies are computationally less intensive, but due to a
longer exploration time, all the methods are competitive in
the total required computational time.

B. Results using real navigational framework

Performance of the tested exploration strategies have also
been evaluated using Player/Stage framework, in which addi-
tional components of the navigational architecture play role.
The robot configuration and the environment is same as in
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Fig. 3. Influence of the planning period smax to the exploration
performance for m=7 and ρ=3 m; upper: average values of the maximal
travelled distance; bottom: average values of the required computational
times using C++ and a workstation with 3.2 GHz CPU running FreeBSD 9.

the previous tests. The main difference is that a robot is
controlled using the SND driver [19] for the robot motion
and obstacle avoidance.



TABLE III
PERFORMANCE OF THE STRATEGIES USING PLAYER/STAGE AND ρ=3 m

m
Greedy Iterative Hungarian MTSP
L sL L sL L sL L sL

3 73.8 9.8 66.5 4.6 65.2 4.8 56.0 7.1
5 55.5 9.3 47.0 8.2 49.2 9.0 49.2 7.0

In this test, the replanning frequency has not been re-
stricted, i.e., it is limited only by the hardware used. There-
fore, the presented results provide estimation of the real
benefits of more computational demanding methods over
simple and faster methods. The results are shown in Table III.

C. Discussion

The presented results indicate that the proposed MTSP
method provides more efficient tasks allocation than the
former approaches. Hence, the results support the idea to
consider a longer planning horizon rather than just an imme-
diate goal. However, for ten robots the benefit of the method
is not evident from the presented results. It is probably due
to a relatively small environment and the used clustering
initialized by the robots’ position, which can lead to few
dominant clusters and a greedy assignment.

Performance of the Hungarian and Iterative strategies is
very similar, therefore, the main advantage of the Iterative
strategy is its simpler implementation. Besides, the Iterative
strategy can also be easily deployed in a distributed envi-
ronment, which is not the case of the Hungarian algorithm.
On the other hand, computational requirements of the more
sophisticated Hungarian and MTSP approaches are compet-
itive to the simple greedy algorithm; thus, they should be
preferred in the applicable scenarios.

During the experimental evaluation, we have noticed,
the navigational framework, in particular the local planner,
affects the performance of the exploration. This is mostly
visible in a situation where a robot is approaching a narrow
passage (e.g., doors), where its velocity is slow. Differences
in the robot average velocities affect the total required time.
Therefore, the expected distance cost to reach the goal is
only approximation, which in consequence means that the
exploration strategy does not provide the expected benefit.

VII. CONCLUSION

In this paper, we further developed our previous work on
exploration strategy using the TSP distance cost to the multi-
robot exploration. The proposed strategy is compared with
three standard approaches and the results show the proposed
novel multi-robot exploration provides better results while its
total computational requirements are competitive. Although
only relatively small number of robots has been considered,
the results indicated that for a higher number of robots the
Iterative and Hungarian algorithms provides similar results
to the proposed MTSP based strategy.

Regarding the found insights, the real performance of
exploration is not affected only by the used strategy, but also
by the low-level motion control. Therefore, we are aiming
to consider more realistic estimation of the travelling cost
towards the goal in the assignment problem. Besides, we

also intend to evaluate different exploration strategies using
real robots to verify the results presented in this paper.

ACKNOWLEDGMENTS

This work has been supported by the Technology Agency
of the Czech Republic under Project No. TE01020197 and
by the Ministry of Education of the Czech Republic under
Project No. LH11053.

The access to computing and storage facilities provided
under the National Grid Infrastructure MetaCentrum, pro-
vided under project No. LM2010005 funded by Ministry of
Education of Czech Republic is highly appreciated.

REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” Int. J. of Robotic Research,
vol. 23, no. 9, pp. 939–954, 2004.

[2] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
Proceedings of the second international conference on Autonomous
agents, ser. AGENTS ’98. NY, USA: ACM, 1998, pp. 47–53.

[3] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the
efficiency of frontier-based exploration strategies,” in ISR/ROBOTIK,
2010, pp. 1–8.

[4] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Co-
ordinated multi-robot exploration,” IEEE Transactions on Robotics,
vol. 21, no. 3, pp. 376–386, Jun. 2005.

[5] F. Amigoni and V. Caglioti, “An information-based exploration strat-
egy for environment mapping with mobile robots,” Robotics and
Autonomous Systems, vol. 58, no. 5, pp. 684–699, 2010.

[6] N. Basilico and F. Amigoni, “Exploration strategies based on multi-
criteria decision making for searching environments in rescue opera-
tions,” Autonomous Robots, vol. 31, no. 4, pp. 401–417, 2011.

[7] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordinated multi-robot
exploration using a segmentation of the environment,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2008, pp. 1160–1165.

[8] B. B. Werger and M. J. Mataric, “Broadcast of local eligibility for
multi-target observation,” in Distributed Autonomous Robotic Systems
4, L. E. Parker, G. Bekey, and J. Barhen, Eds. Springer-Verlag, 2001,
pp. 347–356.

[9] R. Zlot, A. Stentz, M. Dias, and S. Thayer, “Multi-robot exploration
controlled by a market economy,” in IEEE International Conference
on Robotics and Automation (ICRA), vol. 3, 2002, pp. 3016 –3023.

[10] M. Kulich, J. Faigl, and L. Preucil, “On distance utility in the
exploration task,” in IEEE International Conference on Robotics and
Automation (ICRA), 2011, pp. 4455–4460.

[11] D. Applegate, W. Cook, and A. Rohe, “Chained Lin-Kernighan for
large traveling salesman problems,” Informs J. on Computing, vol. 15,
no. 1, pp. 82–92, 2003.

[12] B. Yamauchi, “Decentralized coordination for multirobot exploration,”
Robotics and Autonomous Systems, vol. 29, pp. 111–118, 1999.

[13] F. Amigoni, “Experimental evaluation of some exploration strategies
for mobile robots,” in IEEE International Conference on Robotics and
Automation (ICRA), may 2008, pp. 2818 –2823.

[14] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage
project: Tools for multi-robot and distributed sensor systems,” in Proc.
of the 11th Int. Conf. on Advanced Robotics, 2003, pp. 317–323.

[15] R. A. Jarvis, “On distance transform based collision-free path planning
for robot navigation in known, unknown and time-varying environ-
ments,” in Advanced Mobile Robots, Y. F. Zang, Ed. World Scientific
Publishing Co. Pty. Ltd., 1994, pp. 3–31.

[16] C. Stachniss, “C implementation of the hungarian method,” 2004,
[cited 29 Feb 2012]. [Online]. Available: http://www.informatik.
uni-freiburg.de/∼stachnis/misc/libhungarian-v0.1.2.tgz

[17] N. Asgharbeygi and A. Maleki, “Geodesic K-means clustering,” in
19th Int. Conf. on Pattern Recognition (ICPR), 2008, pp. 1–4.

[18] A. Elad and R. Kimmel, “On bending invariant signatures for sur-
faces,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 25, no. 10, pp. 1285 – 1295, oct. 2003.

[19] J. W. Durham and F. Bullo, “Smooth nearness-diagram navigation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2008, pp. 690–695.


