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Abstract— In this paper, we propose a framework for solving
variants of the multi-goal path planning problem with applica-
tions to autonomous data collection. Autonomous data collection
requires optimizing the trajectory of a mobile vehicle to collect
data from a number of stationary sensors in a known configu-
ration. The proposed approach utilizes the self-organizing map
(SOM) architecture to provide a unified solution to multi-goal
path planning problems. Our approach applies to cases where
the vehicle must move within a radius of a sensor to collect
data and also where some sensors can be ignored due to a lower
priority. We compare our proposed approach to state-of-the-art
approximate solutions to variants of the Traveling Salesman
Problem (TSP) for random deployments and in an underwater
monitoring application domain. Our results demonstrate that
the SOM approach outperforms combinatorial heuristic algo-
rithms and also provides a unified approach for solving variants
of the multi-goal path planning problem.

I. INTRODUCTION

As pre-deployed sensors are becoming more prominent
(e.g., in environmental monitoring and surveillance scenar-
ios), it becomes increasingly important to efficiently collect
data from these sensors. For example, sensors are currently
in place on the ocean floor to monitor seismic activity,
but there is currently no way to collect data from them
without physically plugging an underwater vehicle into the
sensors [1]. A less costly and more convenient method for
collecting this data would be to equip the sensors with
wireless communication (e.g., radio in terrestrial domains or
acoustic communication in underwater domains) and utilize
a mobile vehicle to retrieve the data [2].

The above scenario requires visiting a set of pre-specified
goals and can be formulated as a variant to the Traveling
Salesman Problem (TSP). However, two key aspects of
the problem differentiate it from the classical TSP: (1) the
sensors do not need to be visited exactly (the vehicle must
only move within a neighborhood of them to download the
data); and (2) the data from some sensors may be lower
priority (it would be best to ignore those sensors). These
two aspects of the problem can be incorporated using the
Traveling Salesman with Neighborhoods (TSPN) and the
Prize-Collection Traveling Salesman (PC-TSP) formulations.

Both the PC-TSP and the TSPN have been studied in
the literature, including in our own prior work, and solved
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Fig. 1. Ocean Observatories Initiative Endurance Array [3] with simulated
sensors placed on the ocean floor (red squares). An autonomous underwater
vehicle is tasked with collecting data from these sensors using wireless
acoustic communication. Our proposed approach provides a unified frame-
work for planning the data collection tours of an autonomous vehicle in
such multi-goal path planning scenarios.

using combinatorial optimization techniques [2]. Existing
frameworks for the PC-TSP and TSPN problems utilize a
“cocktail” approach where heuristics are used to determine
which locations to visit and a standard TSP solver is then
used to generate a tour. Prior work has left open the problem
of developing a unified architecture that can solve this
entire class of optimization problems (i.e., TSP, PC-TSP,
TSPN, and PC-TSPN). Our proposed approach utilizes self-
organizing map to bridge this gap.

The self-organizing map (SOM) is a two-layered artificial
neural network that provides a non-linear transformation
(map) of a high-dimensional input space into a lower di-
mensional discrete output space. Its main feature is that it
preserves topological properties of the input space in the
output space. Although SOM was originally proposed as a
data visualization technique, it has also been applied to solve
NP-hard routing problems such as the TSP [4].

In the current paper, we follow the recent advancements
of SOM and propose a new adaptation schema to provide
a unified architecture for solving TSP variants. We propose
a new growing SOM approach to multi-goal path planning
problems based on the self-adjusting structure of the neural
network from our prior work [5]. To the best of our knowl-
edge, this is the first application of SOM to multi-goal path
planning with both neighborhoods and prizes on the goals.

The remainder of this paper is organized as follows. We
first discuss related work in autonomous data collection to
demonstrate the need for a unified architecture (Section II).



The multi-goal path planning problem is then formulated,
and the link to autonomous data collection is shown (Sec-
tion III). We then introduce the proposed unified solution
using a self-organizing map (Section IV). Results of the
proposed approach and a comparison with state-of-the-art
combinatorial heuristic methods are presented in Section V
together with a discussion of found insights. Section VI is
dedicated to concluding remarks and future work.

II. RELATED WORK

The TSP can be formulated as follows: having a set of
locations (cities) in a plane and a distance function between
them, the problem stands to find a shortest tour connecting all
the given cities, such that each city is visited exactly once and
the tour returns to the origin city. This problem arises from
many practical applications, and efficient heuristics have
been proposed in the operations research community [6].

The autonomous data collection problem is closely related
to the TSP. In autonomous data collection, a mobile vehicle
must collect data from a pre-deployed set of sensors. If wire-
less communication is available, the vehicle may not need to
move to the same location as the sensor, but instead may only
need to move within a radius of the sensor. This situation
can be modeled using the TSPN formulation [7], [8]. The
case where locations are associated with different “prizes”
(and can be ignored for a corresponding penalty) has also
been studied by a number of researchers. The prize-collecting
TSP was originally introduced by Balas [9] and has been
extended to a number of related variants [10]. Goemans and
Williamson proposed an approximation algorithm for prize-
collecting TSP using an LP primal/dual scheme that achieves
a factor of two guarantee [11].

Related problems have been studied in the context of
robotic data mules. Bhadauria and Isler derived approxima-
tion algorithms for multiple data mules that must traverse a
sensor field and download data [12]. In their work, download-
ing time is considered as part of the tour, and the communica-
tion radii are assumed to be uniform, fixed, and deterministic
(i.e., data from a sensor is known to be accessible at a given
location). Vasilescu et al. developed a system of mobile and
stationary nodes for underwater data collection based on the
use of both optical and acoustic communication [13]. They
described the networking architecture and sensor specifica-
tions necessary for underwater data collection and presented
field experiments using a mobile network.

In our prior work, we proposed a heuristic solution to the
PC-TSPN problem [2]. This approach generates a covering
set of goals based on the size of the neighborhoods and then
utilizes an approximation algorithm [11] to select a subset of
the covering set to visit. The Concorde solver [6] is then used
to determine a tour of this subset. We demonstrated that this
approach outperforms competing algorithms in autonomous
data collection scenarios [2]. The key drawbacks of our prior
approach are the need to use an underlying TSP solver and
the heuristic nature of the subgoal selection. In the current
paper, we propose an SOM architecture that eliminates these
drawbacks and provides improved performance.

III. PROBLEM FORMULATION

The herein studied data collecting task is formulated as
a combination of two variants of the traveling salesman
problem (TSP) that are called the prize-collecting TSP (PC-
TSP) and TSP with neighborhoods (TSPN) and thus, the
problem is called the prize-collecting traveling salesman
problem with neighborhoods (PC-TSPN). This formulation
provides sufficient generalization of the problem to consider
both practical aspects of the data collecting: 1) the impor-
tance of the data read from a particular sensor station (which
is addressed in the PC-TSP); 2) and the ability to consider
a communication radius to actually retrieve the data from
the station (the TSPN). If it is required that data from all
given sensors must be read and communication is reliable
only within very close distance of the vehicle to the sensor
station, the problem becomes the classical TSP.

Thus, the problem is to find a cost efficient path to retrieve
data from the given set of n sensor stations. For simplicity,
we assume the sensor stations are located in R2, and their
positions are S = {s1, . . . , sn}, si ∈ R2. Each station si has
associated penalty ζ(si) ≥ 0 characterizing the additional
cost if the data are not retrieved from si. The data can be
retrieved from the sensor by a vehicle from the ρ distance,
the vehicle is operating in R2, and the traversal cost c(p1, p2)
is defined for all pairs of points p1, p2 ∈ R2. Based on these
assumptions, the problem is to determine a set of unique goal
locations G = {g1, . . . , gk}, k ≤ n, gi ∈ R2, and gi 6= gj
for all gj , gi ∈ G, at which the sensor data readings are
performed, and to find a tour T visiting these locations G
such that the total cost of the tour C(T ) is minimal.

C(T ) =
∑

(gli ,gli+1
)∈T

c(gli , gli+1) +
∑

s∈S\ST

ζ(s), (1)

where ST is the subset of the sensor stations ST ⊆ S from
which data can be retrieved at the tour goals; i.e., for each s,
s ∈ ST there exists g ∈ G such that the station s is within
the communication radius ρ from g, |(s, g)| ≤ ρ.

Notice, the requested tour T is a sequence of the de-
termined goal locations T = (gl1 , . . . , glk−1

, glk), where
glj ∈ G, lj ≥ 1, lj ≤ n, and gl1 = glk .

In our motivational problem of autonomous data collec-
tion, the environment can be considered as planar and with-
out obstacles. Therefore, the travel cost between two goals
c(gi, gj) is considered as the Euclidean distance |(gi, gj)| for
simplicity in the rest of this paper.

IV. PROPOSED ALGORITHM FOR THE PC-TSPN

The proposed unifying algorithm for planning data col-
lecting tasks is based on SOM for the TSPN (originally
proposed in [5]) that is accompanied by new adaptation rules
to consider the penalty associated with the sensor stations.

SOM is a two layered neural network that is trained by an
unsupervised learning procedure. The network for the TSP
can be considered as a non-linear mapping function of the
input space R2 to one-dimensional output space representing
the requested tour. The first layer describes the given sensor



stations, and neuron weights represent coordinates in R2 that
adapt to the presented location of the sensor stations. The
array of output units describes a sequence of neuron weights
that can be connected by straight line segments to form a
ring of nodes (neuron weights) that represents the tour.

The unsupervised learning is an iterative procedure in
which the sensor stations are presented to the network in
a random order, and for each station a winning neuron is
selected that is then adapted, together with its neighboring
neurons, towards the station. The neighboring nodes are
adapted with decreasing power according to the neighbouring
function f . However, four important modifications of the
standard SOM approach for the TSP [4] need to be con-
sidered to address the PC-TSPN:

1) the number of neurons should adapt to the currently
selected sensor stations. This is addressed by the winner
selection rule proposed in [5], where a new winner neuron
is selected as the closest point of the current ring, to the
presented goal. Contrary to [5], where the presented input to
the network is a sequence of straight line segments, only
a single sensor location is considered here. This winner
selection might add new neurons to the network, which can
be inefficient (regarding the adaptation of winner neighbor-
hoods), and therefore, only winner neurons are preserved and
all other neurons are removed at the end of each learning
epoch after all the sensor stations are presented to the
network. This approach, called ring regeneration, is further
developed here to improve convergence of the network in
the PC-TSPN. Additional neurons are placed between each
preserved winner with neuron weights set to the center of
the straight line segment connecting the winners.

2) the next modification considers the communication
radius ρ, due to the fact that we must not visit the sensor
stations precisely. Rather, it is sufficient to reach a location
that will be in ρ distance to the station. This can be
represented in the generation of a goal candidate during
winner selection. Let the currently presented station to the
network be s and its winner neuron be νs. Then, the goal
candidate to collect data from s is a point gs on the straight
line segment (s,νs) for which |(gs, s)| < ρ. Here, we rather
consider the sharp inequality to avoid numerical issues.

3) to address selection of the sensors based on their
penalty, the winner node determined in the aforementioned
procedure is chosen as a winner “candidate”. The candidate
νs for the station s becomes the winner only if its distance
to the goal candidate gs is shorter than the sensor penalty,
i.e., |(νs, gs)| ≤ ζ(s); otherwise νs and gs are discarded.

4) finally, several sensor stations can be reached from
newly determined goal candidate location gs. Therefore, after
the adaptation of the network to gs, all stations within ρ
distance from gs are marked as covered for the current epoch,
and the network adapts only to the not covered stations.

A. Computational Complexity

The learning procedure is an iterative procedure where
the most time consuming operations are the selection of
the winner neurons, adaptation of neighboring nodes, and

determination of sensors that can be covered. For n sensor
stations, the number of neurons can be bounded by 3n,
and the number of selections is 3n2. For each winner, all
neighboring nodes can eventually be adapted (up to 3n
nodes), and n sensor stations can be tested to see if they
would to be covered by a new goal. This gives (3n+3n+n)n
operations for each learning epoch. The number of epochs
is related to the convergence of the network.

The adaptation rule is stable, since the learning rate
and neighboring function f are always less than 1.0 [14].
The winner neighbors are effectively adapted only for a
sufficiently high value of f , which is decreasing with the
distance of the neighbor from the winner and its highest
possible value is decreased after each learning epoch. Thus,
the network is stabilized in a constant number of learning
epochs and the overall complexity can be bounded by O(n2).

B. Discussion

The aforementioned learning procedure creates a SOM
that maps the input space into a uni-dimensional structure
of a discrete number of units. These units try to best fit
the input space. The learning is a stochastic procedure, and
it does not provide a guarantee that the optimal solution
would be found in a finite number of learning epochs. Thus,
the proposed approach represents a heuristic polynomial
algorithm for solving NP-hard problems. On the other hand,
a feasible solution is available at the end of each learning
epoch; hence, an initial guess about the solution quality can
be provided quickly. To the best of the authors’ knowledge,
there are no known approximation bounds for SOM-based
TSP solvers. The empirical performance of the proposed
solution is evaluated in Section V.

The presented procedure utilizes Euclidean distance in
R2 to find the best matching unit to the presented station.
An extension of the approach to R3 is straightforward by
adding one more dimension to the input layer and con-
sidering neuron weights as points in R3. The output layer
would be identically the one-dimensional array representing
the sequence of goal locations in R3. In addition to this
possible extension, the self-organizing map has already been
successfully deployed for problems with obstacles [4], 3D
environments [15], and with a general graph used as an
input [16]. An extension of the proposed modifications to
these types of environment representations is straightforward,
and therefore, the proposed adaptation schema for the PC-
TSPN can provide a wide range of possible applications. To
further foster deployment of the proposed SOM-based PC-
TSPN solver, we made the implementation available at [17].

V. RESULTS

The performance of the proposed unifying SOM-based
planning approach has been evaluated in a series of data
collection problems where it is compared with the existing
combinatorial deterministic approach for the PC-TSPN [18].
The deterministic approximation algorithm, denoted as PC-
TSPN here, is based on finding a covering set of goals
considering the neighborhoods of the sensor stations defined



by the communication radius ρ. Then, the corresponding
optimal solution of the TSP is found using the Concorde [19]
solver on a subset of the covering set determined by the
heuristic from [11].

The proposed SOM-based approach is considered in two
variants. First, the unsupervised learning procedure is used
for simultaneous determination of the goals together with the
tour connecting them. In the second variant, only the goals
determined by SOM are considered, while the tour is found
as the optimal solution of the TSP by [19]. These algorithm
variants are denoted as SOM and SOM+TSP, respectively.

A. Simulations with Random Deployments

The algorithm comparison is based on evaluation in sev-
eral variants of random problem instances for different values
of penalties and communication radius ρ. These instances
include the standard TSP (for ρ = 0 and very high penalties),
PC-TSP (for ρ = 0), and TSPN (for ρ > 0 and very
high penalties). The considered communication radius is
0 ≤ ρ ≤ 50 km, and penalties of sensor stations (from
which data are not collected) are set randomly according
to four different schemata listed in Table I.

TABLE I
CONSIDERED VALUES OF PENALTIES IN THE RANDOM DEPLOYMENTS

Penalty Assignment Schema Penalty Range

very high penalties 0 ≤ ζ ≤ 25000
high penalties 0 ≤ ζ ≤ 250
middle penalties 0 ≤ ζ ≤ 25
low penalties 0 ≤ ζ ≤ 5

The first data collection scenario consists of 100 randomly
placed sensors in a 100 km × 100 km large area. Similarly
to [18], the vehicle speed is assumed to be 5 km per hour, and
thus the goals are effectively placed in 20 × 20 large square
and the cost between the locations is directly computed as
their Euclidean distance.

For each scenario, 50 random instances were created, and
for each such instance, the penalties were assigned according
to the four different schemata depicted in Table I. The consid-
ered communication radius ρ consists of 11 different values
(ranging from 0 to 50 km), which gives 2200 problems. The
PC-TSPN algorithm [18] is deterministic, and thus only a
single trial is considered for each problem. However, SOM
is a stochastic algorithm, and therefore, 50 trials are solved
for each problem instance.

To evaluate this large set of results, we standardize the
solution quality as a ratio to a reference value, which allows
us to aggregate results across various scenarios, penalty
schema, and ρ values. We consider the following solution
quality metric: the ratio of the tested algorithm’s solution
to the optimal solution of the underlying TSP (without
considering the penalties and communication radius). Thus,
for an optimal tour TTSP of the underlying TSP, the ratio is
computed as

R =
C(T )
C(TTSP )

. (2)

The average values of the ratio R with the error bars
denoting standard deviations are presented in Fig 2. We note
that considering the prizes and neighborhoods, the proposed
algorithms should typically outperform the underlying TSP.

In this scenario, the proposed SOM-based approach pro-
vides improved results versus the combinatoric PC-TSP
heuristic. Regarding SOM and SOM+TSP, the main differ-
ences are for ρ = 0, which represents a solution of the
TSP (or PC-TSP). SOM is a heuristic algorithm, and thus
it does not guarantee the optimal solution would be found.
The average difference is about 3-5% in comparison to the
optimal solution found by [19]. The sensor station selection
in the deterministic PC-TSP is not evident, as in most cases
all stations are visited for ρ = 0, which is indicated by the
ratio R close to 1.

Required Computational Time: The evaluated algorithms
are implemented in C++, and all the presented results have
been computed using a single core of the iCore7 processor
running at 3.4 GHz. The required computational time mainly
depends on the number of determined goals, which is higher
for high penalties and low ρ. Required computational time
is depicted in Fig. 3. The SOM algorithm provides solutions
in tens of milliseconds (less than 100 milliseconds), while
the optimal solution of the TSP using [19] increases the
computational time significantly. With increasing communi-
cation radius ρ, the computational burden decreases more
significantly than for decreasing value of penalties.

B. Underwater Monitoring Deployment

We have also tested our proposed algorithm using a
scenario taken from the Ocean Observatories Initiative (OOI)
Endurance Array [3]. The OOI Endurance Array is a de-
ployment of Autonomous Underwater Vehicles (AUVs) that
is currently scheduled to go into operation off the coast of
Oregon and Washington in 2014. Approximately six AUVs
will remain in continuous operation along pre-specified op-
erating lines, and they will monitor important biological and
physical measurements related to the coastal ocean. For the
purposes of this research, we only consider the case where a
single AUV is deployed. Extensions to multiple vehicles is
an interesting area for future work.

We have devised the following scenario based on the OOI
Endurance Array to test our proposed approach. In simula-
tion, we place approximately 100 sensors along the planned
AUV paths, and we assume that the sensors and AUV are
equipped with acoustic modems for wireless communication.
Such acoustic modems are becoming widely available and
have been proposed for sensor data collection tasks [2].
Depending on the type of acoustic modem and the power
supplied to it, the range of communication can vary, which
corresponds to the size of the neighborhoods. Recent work
has shown that ranges up to 50 km are possible with current
acoustic communications technology [20].1

1We note that in some scenarios, the communication radius will vary
over the region of interest. In these cases, neighborhoods with variable size
would need to be considered. This extension to the SOM architecture should
be straightforward but is left for future work.
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Fig. 2. Average ratios R of the solution cost to the optimal solutions of the related TSP in the 100 km × 100 km area scenario (lower is better)
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Fig. 3. Average required computational time (in milliseconds) for the problems in the 100 km × 100 km area scenario (lower is better)

In the OOI scenario, we assign prizes to each sensor based
on the calculated variance of a Gaussian Process (GP) [21].
A GP is a non-parametric Bayesian inference technique that
can be used to estimate a quantity of interest and also
predict the variance of those estimates. In other words, the
output of the GP is both an estimate of a quantity (e.g.,
temperature, salinity, chlorophyl, etc.) over a spatial area and
an uncertainty in this estimate at each point in the space.
The variance of a GP has been widely used in the adaptive
sampling literature as a metric for sensing performance (i.e.,
reducing the variance corresponds to a better estimate of a
quantity of interest over a spatial field) [22].

In the OOI deployments, we input simulated sensor data
of ocean temperature from the Regional Ocean Modeling
System [23] into a GP using a squared exponential ker-
nel. Hyperparameters were learned using standard conju-
gate gradient ascent techniques on the marginal likelihood.
The resulting variance was then used as the prizes for
the deployment in Fig. 1, which yields an instance of the
PC-TSPN problem. Fig. 4 demonstrates that the proposed
approach provides substantial improvement over the PC-
TSPN heuristic in this real-world monitoring scenario.

An example of found solutions is depicted in Fig. 5.
Notice that data from all sensors are collected, and the
performance improvement of the proposed approach is in
the determination of new goal locations. In contrast, the
deterministic PC-TSPN algorithm considers only the sensor
locations as part of the tour. The red discs denote the most
important measurements, which are located at the very far
part of the area.

C. Discussion

Regarding the presented results, the proposed SOM-based
approach provides superior results and outperforms the
heuristic PC-TSPN algorithm in almost all the problem in-
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Fig. 4. Comparison of the proposed SOM algorithm to the PC-TSPN
heuristic in the OOI data collection scenario (see Fig. 1) with penalties
corresponding to the variance of a Gaussian Process

stances examined. Inferior solutions are provided in problems
with high penalties and small communication radii. In these
setups, the problem is close to standard TSP, where SOM per-
formance is worse than the optimal solution. This drawback
is addressed by the proposed combination of SOM+TSP, at
the cost of increased computational requirements.

It is also worth mentioning that for low penalties and high
neighborhood size, the found solutions are small tours that
cover an arbitrary subset of the sensors. When this occurs,
it may indicate that the penalties are not set appropriately.
Based on our observations, we believe this behavior is
also related to the assumptions that the penalties are static
and the sensor measurements are independent. The low
computational requirements of the proposed approach allow
for the possibility that the penalties can be computed online
during the learning process, which could further improve the
solution.

Differences in the solutions provided by the SOM and



(a) PC-TSPN [18], C = 647 (b) Proposed SOM, C=484

Fig. 5. An example of found solutions in the OOI deployment scenario
and neighborhood size ρ = 6 km. The sensor stations are shown as large
discs that are filled by the color according to its penalty, where red denotes
high penalty and blue a low penalty value. The found tour is shown as the
black straight line segments connecting the determined goal locations that
are represented by small orange discs.

SOM+TSP approaches are small, and the only noticeable
improvement of the optimal solution of the TSP is for zero
neighborhood size and high penalty. Therefore, regarding
the results, it seems that selection of appropriate goals is
more important than finding optimal tour. The results also
indicate that in the addressed problems, the SOM provides
a competitive solution to the underlying TSP for ρ > 0.
Differences between a pure SOM-based TSP solution and
the optimal solution are often negligible in comparison to
the provided improvement gained by not visiting all sensors.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a unifying approach for solving
multi-goal path planning problems arising from data collec-
tion tasks where it is necessary to consider penalties on the
goals and neighborhoods surrounding the goals. Based on the
evaluation, the proposed SOM-based algorithm outperforms
currently available combinatoric heuristic approaches and
provides improved solutions in all the TSPN, PC-TSP, and
PC-TSPN problems examined. The proposed approach also
achieves substantially lower computational requirements.

Even though combinatoric heuristics for the TSP provide
better results in the standard TSP than the discussed SOM
method, the main source of solution improvement in the data
collection tasks relies on the selection of the appropriate
goal locations and consideration of the communication radius
during planning. Thus, based on the current results, such an
error seems to be negligible. Besides, the final tour over the
determined goal locations can always be improved by solving
the related TSP optimally (at the cost of higher computational
requirements).

During the performance evaluation, we have found out that
the main difficulty in solving the data collection problem
in the desired way relies on designing appropriate penalties
regarding the distance cost between the sensor stations. This
is because the penalties are domain specific and depend on
the particular phenomena being studied by the sensors. In
addition, the current formulation of the problem assumes

the sensors provide independent measurements. To overcome
this drawback, our future work will consider an on-line
determination of sensor penalties during the unsupervised
learning stage.
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