
On the Dubins Traveling Salesman Problem with Neighborhoods
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Abstract— In this paper, we address the problem of optimal
path planning to visit a set of regions by Dubins vehicle, which
is also known as the Dubins Traveling Salesman Problem with
Neighborhoods (DTSPN). This problem can be tackled by a
transformation to other variants of the TSP or evolutionary
algorithms. We address the DTSPN as a problem to find
Dubins path to visit a given sequence of regions and propose
a simple iterative optimization procedure to find Dubins path
visiting the regions. The proposed approach allows to efficiently
solve the DTSPN and based on the presented comparison with
existing approaches, the proposed algorithm provides solutions
of competitive quality to the evolutionary techniques while it is
significantly less computationally demanding.

I. INTRODUCTION

Curvature-constrainted path planning for an unmanned
aerial vehicle is a fundamental problem of surveillance
missions where the vehicle is requested to visit a given set of
static locations. The basic variant of this problem is known
as the Dubins Traveling Salesman Problem (DTSP) [1] in
which the problem is to find a shortest path with a bounded
curvature (for Dubins vehicle [2]), such that the path visits
a given set of single points in a plane.

A more general variant of this problem is a situation where
particular waypoints can be selected from a set of possible
locations. This is motivated by surveillance missions, where
it is required to take a snapshot of each target location while
each of such a snapshot can be acquired from a vicinity of
the location [3]. Thus, it is not necessary to visit a particular
location exactly, it is sufficient to visit just its proximity.

The variant of the TSP, where it is requested to find a
tour that visits the given target regions instead of single
point locations is called the Traveling Salesman Problem
with Neighborhoods [4]. Based on this similarity, the prob-
lem addressed in this paper is called the Dubins Traveling
Salesman Problem with Neighborhoods (DTSPN) [5].

Three classes of approaches to deal with the DTSP and
DTSPN can be found in literature. The first class represents
decoupled approaches in which a sequence of visits is deter-
mined independently on determination of the optimal Dubins
path connecting the points [1], [6], [7]. The second class
are transformation methods [8], [5], [9], [10] that sample
possible configurations to visit the regions and the problem
is transformed to a variant of the Asymmetric TSP, which is
then solved using existing algorithms. Finally, the problem
can be addressed by evolutionary approaches [11], [12].
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In this paper, we leverage on the recent reduction of
the DTSP to convex optimization [13] and propose a new
algorithm for the DTSPN. Its main idea follows the existing
approaches where a sequence to visit the goals is determined
prior determination of the Dubins paths; however, instead
of explicit discretization of possible points of visits at each
goal area, we rather employ an iterative local optimization
technique to determine points of visits to the goals together
with the particular headings of the vehicle at that points.

The proposed technique is based on the analysis of the
properties of the optimal solution of the DTSPN. It allows
to quickly find approximate solution of the Dubins planning
problem for a given sequence of the region visits, which
is called the Dubins Touring Regions Problem (DTRP) in
the rest of this paper. Based on the presented comparison
with existing approaches, the proposed algorithm provides
first solutions for problems with hundreds of targets very
quickly (in hundreds of milliseconds) using a conventional
computer, while the quality of solutions is competitive to
more computationally demanding evolutionary approaches.

The paper is organized as follows. An overview of the
related work is presented in the next section. The addressed
problem and considered assumptions are formally introduced
in Section III together with the analysis of the optimal
solution of the DTSPN and its transformation to the DTRP.
The proposed iterative optimization algorithm is presented
in Section IV and experimental results are discussed in
Section V. The concluding remarks are in Section VI.

II. RELATED WORK

Having Dubins vehicle [2] with a minimum turning radius
ρ and a set of goal regions R, the DTSPN is a problem to
determine the shortest path that visits each goal region. The
DTSPN is a generalization of the DTSP, where each goal is
formed from a single point. As the DTSP is NP-hard [14],
also its generalization in the DTSPN is NP-hard.

Dubins shows [2] that the optimal path connecting two
points in a plane with a prescribed heading of the vehicle
at the points is one of the six possible maneuvers (Dubins
maneuvers), which are combinations of straight line seg-
ment and arc of exactly minimum turning radius. However,
headings are not known a priori in our planning problem—
DTSP(N) and we can imagine infinite possibilities of the
heading at the points. Therefore, existing approaches for the
Euclidean TSP (ETSP) cannot be directly used.

Three main types of approaches to deal with this difficulty
can be found in literature. The first type are decoupling
methods in which a sequence of visits is determined inde-
pendently on the determination of the headings. The second



type are transformation methods, where particular values of
headings are sampled first and the problem is transformed to
the Asymmetric TSP (ATSP) [12]. The third class of meth-
ods are evolutionary techniques, which are computationally
demanding, but may provide high quality solutions.

Probably the simplest decoupled approach for the DTSP is
the Alternating Algorithm (AA) proposed in [1]. It is based
on the optimal solution of the ETSP to determine a sequence
of visits to the goals. Then, headings are established in the
way that even edges are connected by straight line segments
and the odd edges correspond to the optimal Dubins ma-
neuvers. The authors show that the length of the optimal
solution of the DTSP can be bounded by LTSPκdn/2eπρ,
where LTSP is the length of the optimal solution of the
ETSP, n is the number of the goals, and κ < 2.658.

Based on the similar idea, authors of [6] proposed a reced-
ing horizon algorithm called the look-ahead (LA) approach
to determine the heading at the next point in the sequence.
The authors reported the LA algorithm provides superior
solutions among AA and similar results are also reported
in [15].

Optimal solution of the Dubins planning to visit a given
sequence of waypoints that are at the distance longer than
4ρ is presented in [13]. The approach is based on convex
optimization; however, the optimization needs to be solved
several times because of possible alternation of the maneu-
vers directions. The authors bound the number of possible
combinations to 2n−2 for n waypoints.

Transformation methods consider headings at the points
are known and compute the length of Dubins paths between
all pairs of the points. The distances and paths are used to
create a complete graph that represents the original problem.
Then, a solution is found in the graph by an ATSP solver.
Authors of [9] proposed two variants of this approach: 1)
with zero headings for all points; and 2) random values of
the headings. Although approximation bounds are provided
for both variants, the authors suggested to perform several
trials of the randomized variant and select the best solution.

In the DTSPN with goal regions, not only headings have to
be determined, but also the particular points of visits can be
selected from an infinite set. The DTSPN can be addressed
by the three aforementioned types of the methods. However,
due to the regions instead of points, there are problems
with disjoint and overlapping regions, for which particular
algorithms may provide different performance.

Obermeyer et al. [3] propose a genetic algorithm to
address the DTSPN with polygonal goals that may overlap
and they report solutions up to 20 polygonal goals, but
do not provide real computational requirements. Later on,
the authors propose randomized sampling based resolution
complete approach [8] that transforms the DTSPN into
a variant of the Generalized TSP (GTSP) with mutually
exclusive finite node sets. The GTSP is then transformed to
the ATSP that is solved by the LKH algorithm [16]. In [8],
authors report that the randomized sampling based algorithm
is faster than the genetic algorithm [3] and solutions with
20 goals and 1500 random samples are found in several

hundreds of seconds.
A similar approach has been proposed in [5], but Noon-

Bean transformation [17] is used to transform the GTSP
with overlapping node sets to the ATSP. The authors provide
an analysis that the proposed method does not provide a
worse solution than [8] while it is faster for problems with
overlapping goal regions [10].

The DTSPN with overlapping disk goals is studied in [7].
First, a sequence of the visits is found as a solution of the
ETSP using centers of the disks as the waypoints. Then, the
number of waypoints for overlapping disks is decreased by
the combination procedure [18] and the current path is further
shortened by the proposed Alternating Iterative Algorithm,
which provides alternative entry points of the disks to shorten
the TSPN tour length. Finally, headings at the entry points
are determined by the AA [1] for the DTSP.

An evolutionary approach may provide significantly better
solutions of the DTSPN than the AA and sampling based
approaches [11]. However, these techniques are computation-
ally demanding and authors of the memetic algorithm [12]
(for the DTSPN with the disk goals and relaxed terminal
heading) report computational times 8.3 seconds and up to
45.5 seconds for problems with 10 and 17 goals, respectively.

III. PROBLEM STATEMENT

The addressed problem is motivated by UAV surveillance
missions, where the vehicle dynamics is often modeled as the
Dubins vehicle, which is going only forward at a constant
speed and with the limited minimum turning radius ρ. The
state of the vehicle q can be represented as the configuration
(x, y, θ) ∈ SE(2), where (x, y) ∈ R2 is the vehicle position
p in the plane and θ ∈ S1 is the heading of the vehicle. The
dynamics of the vehicle can be then described as ẋ

ẏ

θ̇

 = v

 cos θ
sin θ
u
ρ

 , |u| ≤ 1, (1)

where v is the forward velocity of the vehicle and u is the
bounded control input. For simplicity and without loss of
generality, we consider v = 1 in the rest of this paper.

Dubins proved the optimal path connecting two configura-
tions g1 ∈ SE(2) and g2 ∈ SE(2) consists of only straight
line segments and segments with precisely the minimum
turning radius ρ [2]. He also proved that such an optimal
path can have at most 3 segments (where segments can have
zero length) that can be categorized in two main types:
• CCC type: LRL, RLR;
• CSC type: LSL, LSR, RSL, RSR.
Now, we can formally introduce the problem being ad-

dressed in this paper as in [10]. Let R = {R1, . . . Rn} be
a set of n regions Ri ⊂ R2 that are requested to be visited
by Dubins vehicle and let Σ = (σ1, . . . , σn) be an ordered
permutation of {1, . . . , n}. Define a projection from SE(2)
to R2, i.e., P(q) = (x, y), and let qi be an element of SE(2)
whose projection lies in Ri.

The DTSPN stands to find the minimum length tour
in which the Dubins vehicle visits each region Ri while



iR

iC
+

iC
−

S

q

S

i

(a) C+
i and C−

i have the same
length and orientation

i

q’i
C − segment
q

S − segments

(b) C–segment does not satisfy
property of the optimal solution

Fig. 1. C–segment of the CSC maneuver visiting a region Ri in the DTSPN
with the D4 constraint

satisfying the kinematic constraints of (1). This problem is
an optimization problem over all possible permutations Σ
and configurations q as follows:

Problem 3.1 (DTSPN):

minimize Σ,q L(qσn
, qσ1

) +

n−1∑
i=1

L(qσi
, qσi+1

)

subject to P(qi) ∈ Ri, i = 1, . . . , n,
where L(qi, qj) is the Dubins distance between qi and qj .

In this paper, we are focused on problems with regions Ri
that are mutually exclusive at the distance longer than 4ρ.
Formally, we can define the minimum distance constraint
DK on regions R such that for all i, j ∈ {1, 2, . . . , n}, i 6= j
∀pi ∈ Ri,∀pj ∈ Rj : ||pi − pj || > K ρ.

A. On the Optimal Solution of the DTSPN

Here, we discuss properties of the optimal solution of the
DTSPN for D4 goal regions Ri. Our goal is to visit all the
given regions and thus the solution of the DTSPN is a path
with non-zero intersections with all the regions. Moreover,
the optimal path connecting all the regions in the sequence
Σ has to be composed of sequence of Dubins maneuvers
between two consecutive configurations qi and qi+1. It is
obvious that for every region Ri such a path has at least one
configuration qi = (pi, θi) at the border of Ri.

Let D∗ = (q1, . . . , qn) be the optimal solution of the
DTSPN with regions satisfying the D4 constraint. We inves-
tigated properties of such a solution and the found insights
are summarized as follows.

Lemma 3.1: For D∗, all Dubins maneuvers between two
consecutive configurations are always of the CSC type.

Proof: Euclidean distance between qi and qi+1 is
always longer than 4ρ, and therefore, it is not possible to
construct the CCC maneuver [2].

For the D4 constraint, the maneuver between qi and qi+1

is always of the CSC type and we can split the turn segment
Ci corresponding to qi into two parts: C+

i before reaching
qi; and C−i for the leaving part, see Fig. 1a. Notice, having
configurations qi (of the optimal solutions of the DTSPN)
the optimal path is implied by Dubins maneuvers [2].

Lemma 3.2: For D∗, all turn segments Ci, and corre-
sponding qi, it holds that both parts C+

i and C−i are equally
long and they have the identical orientation.

Proof: We can fix the position pi and let the orientation
θi be free in D∗. Then, the problem becomes the DTSP.

Because we have the optimal solution of the DTSPN, we
can also fix the permutation Σ and the problem becomes
to determine the shortest path of bounded-curvature through
a sequence of points. In [13], it is proven that an optimal
solution of this problem under the D4 constraint has the
property under investigation. Thus, this property is inevitable
also for all optimal solutions of the DTSPN with the D4

constraint.
Lemma 3.3: For each region Ri in D∗, there is only one

configurations qi for each Ri that is an intersection point
with the optimal path such that qi is the center of the
corresponding C–segment Ci, or there is not a turn part of
the optimal maneuver at qi, i.e., C+

i = C−i = 0.
Proof: This can be shown by a contradiction. Let D∗

passes a region Ri by a turn part at the configuration qi.
Assume, there are several intersections of the optimal path
with Ri. Since qi is a part of the optimal path, Lemma 3.2
holds and both parts C+

i and C−i are equally long. Now,
consider for example a configuration q′i in Fig. 1b, which is
also a part of the optimal path. The optimal path consists
of CSC maneuvers (Lemma 3.1) and thus qi must be on the
same C–segment as qi. However, its corresponding C+ and
C− parts are not equally long, which is in the contradiction
with Lemma 3.2, unless there is not a turn segment or C+ =
C− = 0.

Notice, Lemma 3.3 does not forbid more intersections of
the optimal path with a particular region Ri as there can be
infinite intersection points of the path with Ri. The results
should be interpreted as a guideline, how to restrict possible
candidates for the configurations qi for which the optimal
Dubins maneuver can be determined using [2].

B. Transformation of the DTSPN to the DTRP

Assume we have an optimal sequence Σ∗ of visits to the
regionsR in the DTSPN. Then, the problem is to determine a
configuration qi for each region Ri such that the sequence of
configurations prescribed by Σ∗ is connected by the shortest
path for Dubins vehicle with the minimum turning radius ρ.
We call this problem as the Dubins Touring Regions Problem
(DTRP) and it can be defined as follows.

Let Σ be a permutation of the regions Σ = (σ1, . . . , σn)
and Θ = (qi, . . . , qn) be the corresponding configurations.
Then, the problem is to find Θ that minimizes the total tour
length L:

L = L(qn, q1) +

n−1∑
i=1

L(qi, qi+1). (2)

A solution of the DTRP can be considered to find a
solution of our original problem, the DTSPN. Since, we
need a sequence of regions in the DTRP, we can imagine
a generator of sequences for which we need a fast solution
of the DTRP, which can be employed to prune not promising
permutations of visits to the regions. In this paper, we
focus on a quick solution of the DTRP, and therefore,
we follow existing decoupled approaches and determine an
initial sequence Σ as an optimal solution of the related ETSP.



The DTRP is addressed by a local iterative optimization
procedure that is based on the properties of the optimal
solution of the DTSPN with the D4 constraint. The procedure
performs an independent optimization of the heading θi and
position pi of each entry point qi = (pi, θi). Since pi
is always at the border of the region Ri, we can define
a projection A from δR to 〈0, 1), i.e., A(qi) = αi for
qi ∈ δRi. This formal simplification of pi as αi allows to
optimize the position as a single variable, and it is similarly
introduced in [12].

IV. PROPOSED ITERATIVE ALGORITHM FOR THE DTRP
The proposed algorithm is based on the properties of the

optimal solutions of the DTSPN with the D4 constraint that
follow the analysis [13]. The algorithm assumes a given
candidate sequence Σ of visits to the regions R for which
the DTSPN is transformed to the DTRP. The proposed DTRP
algorithm starts with some initial configurations and for each
region Ri it adjusts the configuration qi to satisfy Lemma 3.1,
Lemma 3.2, and Lemma 3.3. After an examination of all
regions, the process is repeated until the path is not improv-
ing or a termination condition is not met, e.g., after a given
number of iterations.

Algorithm 1: Local Iterative Optimization for the DTRP
Data: Input regions R, candidate sequence Σ
Result: Configurations (q1, . . . , qn), qi ∈ δRi

1 initialization() // random assignment of qi ∈ δRi;
2 while global solution is improving do
3 for every Ri ∈ R do
4 θi := optimizeHeadingLocally(θi);
5 αi := optimizePositionLocally(αi);
6 qi := checkLocalMinima(αi, θi);
7 end
8 end

The proposed algorithm is an iterative procedure in which
particular candidate configurations qi are locally adjusted by
a consecutive optimization of the heading θi followed by an
optimization of the waypoint position αi. Then, a test for a
local optimality of the new configuration qi is performed
to avoid a sub-optimal global solution. The algorithm is
depicted in Algorithm 1 and it works as follows:

Let qi be the current configuration under examination.
Lemma 3.1 holds as qi−1 and qi+1 are at least in D4

distance from qi and thus the Dubins maneuvers between
(qi−1, qi) and (qi, qi+1) are of the CSC type, see [13].
First, we evaluate a local optimality of the heading θi.
If C+

i differs from C−i we adjust θi appropriately and
Lemma 3.2 holds for qi. We call this local optimization
optimizeHeadingLocally.

Then, the optimizePositionLocally procedure
evaluates if there is only one intersection of the path with
Ri. If so, Lemma 3.3 is satisfied and we can switch to the
next configuration qi+i. Otherwise, we need to select a new
point at the border of the region Ri. This is performed by
a local hill climbing method, which adjusts α about a small
increment δα until the total tour length L is not improving.

Ri-1 Ri+1

Ri

qi

qi-1 qi+1

alternative
locally
optimal
path

(a) Two locally optimal solutions

Ri-1 Ri+1

Ri

qi

qi-1 qi+1

qi' qi''

(b) Local minimum of position αi

Fig. 2. Local extremes evaluated during the proposed local optimization

Finally, two additional tests are performed in the
checkLocalMinima procedure to avoid local optima.
First, an eventual exchange of the heading orientation θi
about π is evaluated, which may shorten the tour length,
e.g., see Fig. 2a. The second test is related to the position
αi, which is visualized in Fig. 2b. If this situation is detected,
a position of q′i or q′′i (the one providing a shorter tour length)
is selected for the value of αi to escape the local minima.

Here, it is worth mentioning that the simple hill climb-
ing optimization accompanied by checkLocalMinima
does not necessarily find the optimal qi regarding δRi,
for non-convex regions. For convex regions the proposed
checkLocalMinima procedure covers most of the local
minima cases, which are not discussed here due to the space
limit. An empirical validation of the fast convergence is
reported in Section V.

V. RESULTS

The performance of the proposed algorithm has been
evaluated in a series of scenarios. First, the algorithm has
been evaluated for random instances of the DTSPN with
convex regions and the D4 constraint. In particular, the
considered regions are points, disks with the radius ρ, ellipses
with the semi-axis 2ρ and 0.5ρ, and random convex polygons
with up to 6 vertices created from a disk with ρ radius. The
problems with up to n=500 regions are randomly generated
inside a bounding box with the side 6

√
nρ, which provides

a relatively high density for the D4 constraint. In addition,
we relax the D4 constraint and investigate the algorithm
performance for closer and non-convex regions. An example
of examined problems is depicted in Fig. 3.

(a) D4 convex regions (b) D1 convex regions

Fig. 3. Examples of the randomly generated instances of the DTSPN

The quality of the solutions provided by the proposed
Local Iterative Optimization (LIO) is compared with two
evolutionary algorithms [3], [12], which are able to provide



high quality solutions of the general DTSPN. In addition,
we compare LIO with the decoupled approach [7] based
on the ETSPN, which is the most similar approach to the
proposed LIO-based method. In both approaches (LIO and
ETSPN-based), a sequence of visits is found as an optimal
solution (using CONCORDE [19]) of the ETSP with centers
of the regions. Therefore, the proposed approach is denoted
as ETSP+LIO in the presented comparisons.

The evolutionary approach [3] is denoted as Genetic
whereas [12] as Memetic. The ETSPN based method [7]
is considered in two variants based on the procedure for
determination of headings. The first variant denoted as
ETSPN+AA utilizes the Alternating Algorithm (AA) [1] as
in [7], while the second variant uses the proposed local opti-
mization of the heading and it is denoted as ETSPN+HoLIO.

For each scenario (defined by n and the minimal allowed
mutual distance between the goal regions) several random
problem instances have been created with the minimum
turning radius ρ=1. Based on the first results, we found out
that the proposed method provides solutions with outstanding
quality, and therefore, we evaluate the performance of the
algorithms as the ratio of the final tour length to the solution
found by the proposed ETSP+LIO algorithm.

All the algorithms have been implemented in C++ and run
on a single core of the Intel Pentium E6300 CPU running
at 2.8 GHz accompanied with 2 GB RAM. All the reported
required computational times for the ETSPN-based and LIO
methods include the required time to find the optimal solution
of the underlying ETSP by CONCORDE [19].

Algorithms comparisons in the DTSPN with D4 – The
quality of found solutions regarding the dedicated compu-
tational time has been evaluated for problems with n=20
and n=40 goal regions. Due to the space limit, only the
results for n=20 are shown in Fig. 4. Then, scalability of
the algorithms for increasing number of the goal regions n
has been evaluated for the computational time limited to 10
seconds, see results in Fig. 5.
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Computational requirements of the proposed ETSP+LIO
algorithm mostly depends on the optimal solution of the
ETSP to determine the sequence of the visits to the goal
regions. A detailed performance study of the LIO algorithm
is depicted in Fig. 6, which shows quick convergence of the
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ETSP+LIO solution for problems with increasing number of regions. The
Memetic and Genetic algorithms have been terminated after 10 seconds.

optimization in the first few iterations of the main while–
loop (Line 2) of Algorithm 1 while it consumes a fraction
of the required computational time.
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Fig. 6. Performance of ETSP+LIO in particular iteration of the main loop

Performance in DTSPN with relaxed D4 constraint is
depicted in Fig. 7 and examples of found solutions for the
relaxed constraint are shown in Fig. 8.
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A. Discussion

The presented results support feasibility of the proposed
decomposition of the DTSPN into the DTRP and the idea of
the local optimization based on the independent adjustments
of the vehicle heading and entry point to the goal region. The
proposed LIO algorithm provides solutions of competitive
quality with significantly lower computational requirements



(a) ETSP+LIO, L = 70.73 m (b) ETSPN+HoLIO, L = 82.85 m

Fig. 8. Example of found solutions for the DTSPN with 23 regions that
may be closer than D4 and with ρ = 1 m

(about three orders of magnitude lower) than the evolutionary
approaches.

Although LIO has been designed on top of the found
properties of the optimal solution of the DTSPN with the
D4 constraint, the results for the relaxed constraint indi-
cate suitability of the proposed approach also for general
problems. The solutions quality provided by the ETSPN-
based algorithm is competitive with LIO for D4; however, it
seems LIO provides better solutions for the problems with
the relaxed constraint in comparison to other techniques. The
results also support suitability of HoLIO as an alternative to
the AA, which is faster but provides worse solutions, see
Fig. 7.

The ETSPN-based method seems to be faster than the
utilized hill climbing technique in LIO. Here, it is worth
mentioning that we expect the performance can be improved
by a more sophisticated implementation of the local op-
timization and parameters tuning. However, the presented
results indicate that a selection of the entry points based
on a fast computation of the Euclidean distance in the TSPN
provides fast yet suitable estimation of the entry points to
the regions. This estimation can be utilized in the proposed
LIO method, which might reduce the number of the required
computations of the Dubins path and thus decrease the
computational burden.

Only a single sequence of visits to the regions is con-
sidered in the current decoupled approaches based on the
solution of the ETSPN and ETSP, while the evolutionary
methods are allowed to alternate the sequence, and therefore,
they might find better solutions than the iterative algorithms.
The proposed LIO algorithm for the DTRP converges very
quickly, which makes it suitable to evaluate a set of candidate
sequences to visit the requested goal regions. Therefore,
the proposed idea to solve the DTSPN as the DTRP can
be extended to consider generation of alternative sequences,
which may further improve the solution quality.

VI. CONCLUSIONS

We propose to address the DTSPN by a transformation
to the DTRP for which we propose a new algorithm based
on the local iterative optimization (LIO) of the vehicle
headings and entry points. The LIO method is based on
properties of the optimal solutions of the DTSPN with the
D4 constraint. Although the proposed algorithm has been
primarily developed for this restricted variant of the DTSPN,

the presented results indicate a high performance of the
algorithm in general problems where regions are allowed
to be closer than 4ρ distance. The proposed LIO algorithm
provides solutions of competitive quality to the evolutionary
algorithms while it is about two or three orders of magnitude
faster. A solution is found in less than 100 milliseconds
using conventional computational resources, which makes it
suitable for on-line deployment using an on-board computer
of small UAVs.
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