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Abstract— This paper concerns the self-localization problem
of a hexapod walking robot operating in rough terrains.
Given that legged robots exhibit higher terrain passability
than wheeled or tracked platforms when operating in harsh
environments, they constitute a challenge for the localization
techniques because the camera motion between consecutive
frames can be arbitrary due to the motion gait and terrain
irregularities. In this paper, we present and evaluate an iner-
tially assisted Stereo Parallel Tracking and Mapping (S-PTAM)
method deployed on a hexapod crawling robot in a rough
terrain. The considered deployment scenario is motivated by
autonomous navigation in an unknown environment in an open
loop fashion. The reported results and comparison with an
existing RGB-D SLAM technique show the feasibility of the
proposed approach and its suitability for navigation of crawlers
in harsh environments.

I. INTRODUCTION

Legged robots have attracted an attention from the robotics
community in recent years due to their ability to work in
harsh environments inaccessible for wheeled robots while
being able to carry more load and operate longer than
Unmanned Aerial Vehicles (UAV). Their skills to perform
omnidirectional motion and traverse rough terrains make
them a great choice for many practical robotic applications,
such as Urban Search and Rescue (USAR) missions in
collapsed buildings or disaster areas. In such scenarios,
the walking robot should have enough autonomy to take
advantage of its high locomotion capabilities. Without a
reliable external localization (like GPS or motion capture
system), it is necessary that the autonomous mobile robot
builds a spatial representation of the environment (map)
and localizes itself within it. This problem is referred to as
Simultaneous Localization and Mapping (SLAM) [1] in the
robotics community. An efficient and reliable SLAM method
is the core part of an autonomous navigation system, which
provides both the pose information and the model of the
environment. This information is in turn indispensable for
the efficient motion planning and control of a walking robot.
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Computer Science Department, University of Buenos Aires, Argentina.
{tfischer, tpire, pdecris}@dc.uba.ar
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Fig. 1. Experimental set-up.

Legged robots moving on uneven ground require 3D
positioning with regard to six degrees of freedom. A 6 DoF
pose contains the position of the robot in three dimensions
and its orientation as the yaw, pitch, and roll angles. Some
early works made used of legged odometry methods to de-
termine the pose of the robot [2]. However, legged odometry
often returns erroneous pose estimates due to the presence
of slipping surfaces and mechanical imperfections. In real
USAR missions, a precise self-localization capability based
on exteroceptive sensing is therefore required. In this context,
visual sensors such as cameras or structured light range
sensors (SLRS) become attractive choice to face the SLAM
problem. While being affordable, small and light, they can
provide high resolution 3D data of the environment in real
time with low power consumption.

Visual SLAM has become one of the most studied topics
in mobile robotics in the latest two decades. Nowadays,
there are robust and accurate Visual SLAM solutions that
are capable of working in real-time. Different Visual SLAM
techniques have been deployed to nearly all kinds of robots,
e.g., wheeled [3], [4], flying [5], [6], walking [7], [8], or
even underwater vehicles [9]. In contrast to wheeled and
flying robots, the application of SLAM techniques to legged
robots is scarce. Recently, new methods have been proposed
for fusing Visual SLAM techniques with inertial sensors for
field robotics applications that may also be beneficial for
navigation of legged robots.

In this work, we focus on the deployment of the re-
cently released Stereo Parallel Tracking and Mapping method
(called S-PTAM) [10] on a hexapod crawling platform oper-
ating in rough terrain environment with different obstacles,
e.g., see Fig. 1. In such a scenario, a precise estimation
of the full robot 6 DoF pose is required under presence
of unpredictable camera shaking and motion blur induced
by the robot locomotion. Hence, we propose to extend the
original S-PTAM method to consider additional information
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from the inertial measurement unit (IMU). The deployment
scenario is motivated by autonomous navigation in unknown
environment, and therefore, we do not consider loop closure,
which may significantly improve the localization precision,
but we rather evaluate the method in an open loop fashion.
A comparison with an existing RGB-D SLAM [11] technique
that uses SLRS (Kinect-style camera) is presented to evaluate
suitability of the proposed approach.

The paper is organized as follows. Related work on the
legged robot localization is presented in Section II. Sec-
tion III provides description of the proposed IMU assisted
S-PTAM method and a brief description of the utilized
RGB-D SLAM is presented in Section III-B. Evaluation
results of experimental validation with real hexapod robot are
reported in Section IV. Concluding remarks are dedicated to
Section V.

II. RELATED WORK

This section provides a brief overview of the recent work
addressing the problem of how walking gaits affect vision-
based SLAM techniques.

In [12], a robot motion model based on the control
commands is proposed to improve the MonoSLAM system
of Davison [7] over legged robots. Although the accuracy of
the SLAM system improved with the proposed model, the
frame rate decreased to 2 Hz, which is in a huge contrast to
the original MonoSLAM that works up to 30 Hz.

Chilian et al. [13] propose a navigation system for a legged
robot crawling on rough terrains based solely on stereo
vision. A visual SLAM system is used for the localization
of the robot and construction of the terrain map containing
the traversability information. A D* Lite planner is used to
guide the robot through the terrain to a predefined goal. The
work reports that an error of reaching the goal location is
less than 3% of the traveled path length about few meters
long. The whole system operates at 1 Hz, which is far to
be useful for real-time applications. An improved version of
the system by considering measurements provided by legs
odometry and IMU has been presented in [14]; however, the
frame rate of the system was not addressed.

Stelzer et al. [15] developed a complete visual stereo-
based navigation framework for their hexapod robot. Pose
estimates are obtained by fusing inertial data with relative
leg and visual odometry measurements using an indirect
information filter. In a similar way, [16] fuses the information
from stereo vision, leg odometry, and IMU to obtain accurate
state estimate of the quadruped robot.

Cited works used the classical EKF-based approaches
to face the SLAM problem (EKF-SLAM). A comparison
between filter-based Visual SLAM approaches and keyframe-
based methods which use global optimization (i.e., bundle
adjustment) throws the conclusion that the latter ones are
found to achieve the best balance between precision and
computational cost [17].

One of the most actively developed keyframe-based ap-
proaches is Parallel Tracking and Mapping (PTAM) [18] that
separates the mapping process from camera tracking in two

different threads, performing an ordinary batch estimation on
a small number of keyframes as one process while tracking
the camera relative position to the map as another process.
The recently proposed stereo version of the PTAM (called
S-PTAM) [10] allows to reconstruct a metric 3D map for
each frame, improve the accuracy of the mapping process
with respect to the monocular PTAM, and it avoids the well-
known bootstrapping problem. Besides, the stereo approach
allows to compute the real scale of the environment, which
is an essential feature for robots that have to interact with
their surrounding workspace. In this paper, we consider
the recent S-PTAM system as a suitable localization and
mapping approach for hexapod walking robots operating in
rough environments because of its performance and accuracy
regarding the Visual SLAM state-of-the-art [19]. Moreover,
it is available as an open-source project.1

III. SLAM METHODS

A. S-PTAM

The feature-based S-PTAM system [10] is a stereo Visual
SLAM method designed for localization and mapping in
large scale environments. S-PTAM is based on the monocular
Parallel Tracking and Mapping (PTAM) method introduced
in [18]. The method consists of two processes working in
parallel. The tracking part, which tracks the camera pose for
each pair of incoming images, and the mapping part, which
builds and refines a map of selected 3D features.

When tracking, for each new pair of stereo images, visual
features are extracted using GFTT [20] and BRIEF [21]
descriptors. The map points are then projected onto the image
plane using a prediction of the current camera pose, which
in turn are matched to the closest image features in the
region of interest. The size of the search region determines
the computational load of the matching process. Note that
the tracking phase should be fast enough to allow real-time
responses, since the better the prediction, the smaller this
search region can be. S-PTAM uses a decay velocity model
to compute the predicted pose.

The matches can be then used to refine the estimated
camera pose using an iterative least squares minimization
method, e.g., using the Levenberg-Marquardt algorithm. Fi-
nally, stereo matches are computed between left and right
image features that could not be matched to the map, and
are in turn triangulated and then inserted as new map points.

Concurrently, a map refinement process is running, which
is also based on the Levenberg-Marquardt algorithm. This
continuously performs Bundle Adjustment optimization on
the current local portion of the map determined by a subset
of the last salient frames called keyframes. Fig. 2 illustrates
the general overview of the S-PTAM system.

As mentioned in [10], S-PTAM uses a decay velocity
model to generate a pose prediction for each incoming
stereo frame. This model assumes the motion transitions are
sufficiently smooth which is mostly satisfied for wheeled
robots, while not for hexapod crawlers operating in rough

1https://github.com/lrse/sptam
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terrains. Therefore, in this work, the original model is
replaced by an Extended Kalman Filter (EKF), which is
fed with IMU measurements (angular velocity and linear
acceleration) and refined pose updates estimated by S-PTAM.
This is known in literature as loosely coupled approach to
sensor integration. The EKF state models position, linear
velocity and acceleration, orientation and angular velocity,
all having three degrees of freedom.

Loose coupling is suboptimal in the sense that the existing
cross-correlations between internal states of different devices
are discarded. However, we show that the original S-PTAM
system [10] can be significantly improved using a loosely
coupled fusion with IMU measurements. It also eases the
integration of other sources of displacement information,
i.e., odometry. Fig. 3 illustrates how IMU information is
integrated into S-PTAM through the Extended Kalman Filter.
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Fig. 2. Overview of the S-PTAM system.
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Fig. 3. S-PTAM with IMU loosely coupled integration through an EKF.

B. RGB-D Method

The RGB-D method chosen for a comparison to the
Vision-based stereo SLAM is the RGB-D SLAM based
on [11]. It benefits from integrating the scale information
provided by 3D depth sensing into a visual SLAM system
to provide a reliable localization for the legged robot. An
overview of the system is depicted in Figure 4 and it operates
as follows.

First, salient image points are extracted from the RGB
image and descriptors are computed using the SURF algo-
rithm [22]. Then, 3D position of each feature is obtained
by extracting the depth information from the depth image at
the coordinates of the feature. Since the depth information

RGB-D Sensor

Depth image RGB image

Feature extraction: (SIFT, SURF, ORB) + Depth

Transformation estimation (RANSAC)

Pose Graph
Global optimisation

(g2o)

3D point cloud / OctoMap

Fig. 4. Overview of the RGB-D SLAM system.

provided by the structured light sensor might not be available
in certain portions of the image (e.g., due to the sunlight,
maximum and minimum distance or occlusion near the edges
of obstacles) features without depth information are directly
discarded at this stage. Next, pairwise correspondences be-
tween the current image features and a set of the mapped en-
vironment points are computed. This set consists of directly
np preceding frames, ng graph neighboring frames and nr
random frames from the whole trajectory which are used
for discovering of large loop closures. An estimation of the
rigid transformation is computed between successfully estab-
lished frame-to-frame correspondences using the RANSAC
algorithm [23]. Then, the frame is added as a node to the
pose graph (map) of the SLAM method. The node contains
the estimated 6-DOF pose of the frame together with the
set of the detected image features and the estimated dense
point cloud given by the depth measurement. The edges of
the pose graph represent the pairwise rigid transformations
between the individual frames.

The pairwise transformations between RGB-D sensor
poses in the pose graph are optimized using the g2o graph
optimisation framework [24] to further refine the map and
provide a reliable localization. The g2o framework provides
a globally consistent trajectory estimation which is especially
beneficial in loop-closures, when the robot revisits some
previously visited area that is mapped in the constructed pose
graph representation of the operational environment.

Based on the estimated trajectory resulting from the pose
graph, an environment map is built by projecting the sensor
depth measurements directly in a form of point clouds or
voxelized OctoMap [25].

The whole method evaluated in this paper is implemented
using the ROS framework [26]. The considered parametriza-
tion of the RGB-D SLAM used in the evaluation has been
chosen with respect to a thorough evaluation [27]. The
parametrization is the SURF feature extractor detecting 500
features and keeping 250 best matches. The comparison
horizons were set to np = 3, ng = 3 and nr = 0 as we
want to disable the loop-closure detection.

IV. EXPERIMENTS

The experimental evaluation was performed on a labo-
ratory test-track simulating rough terrain conditions. The
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experimental setup is depicted in Fig. 1. The test track
consists of a square path of approximately 9 m length
involving a set of stairs, a ramp, and a hill of irregular-height
cubes. Each of these terrain types represents a different
challenge for the visual SLAM system. The pile of irregular
wooden blocks simulates an uneven terrain where the SLAM
method needs to deal with the constant unpredictable shaking
of the camera. While going up the stairs the robot motion
is subjected to slippage, which causes the camera to change
its pose abruptly. During the ramp descent, the camera is
pointing to the ground, which usually has low texture; so, a
limited number of features are available. The in-place turns
also represent a challenge for the visual SLAM system due
to the significant motion blur.

The utilized hexapod crawler is based on the PhantomX
Mark II platform. The robot control is based on the adaptive
motion gait [28], specifically designed for crawling rough
terrains. The robotic platform is further equipped with the
Bumblebee 2 stereo camera, Asus Xtion Pro Live RGB-D
sensor, and the XSens MTi-30 inertial measurement unit. The
robot with the sensors is shown in Fig. 5.

Fig. 5. The used hexapod walking robot.

The robot has been guided along a predefined path by an
operator to record the required sensory data. Both SLAM
algorithms were then executed offline, but inside the ROS
[26] framework to simulate real time behavior. Unfortunately,
the camera and RGB-D data could not be recorded simulta-
neously, because the infrared pattern projected by the RGB-
D sensor interferes with the image sensor of the Bumblebee
camera, causing a constant noise pattern. Therefore, several
runs of the same experiment were performed for each SLAM
system and the errors were aggregated over all of them to
compensate over differences in the recordings.

The WhyCon [29] external localization system has been
utilized to provide ground truth data of the performed
trajectories. Position estimation errors are considered to be
below 1% of the distance from the camera to the marker.
For a single visual marker, the WhyCon system provides a
realiable estimation only for the 2D position and precision
of the 3D estimation significantly depends on the camera
resolution and pattern size. During the experimenting, it
has been observed that much more reliable estimation of
the robot orientation is provided from the utilized attitude
heading reference system (AHRS) XSens MTi-30. Therefore,
the robot orientation estimated by the AHRS has been used

instead of WhyCon data.

A. Evaluation metric

It is hard to judge the performance of a SLAM system
solely based on absolute error measurements, since localiza-
tion is performed relative to the computed map, and different
maps may yield different geometries or biases, even when
running the same SLAM algorithm. Therefore we employ a
commonly used approach [30], [31] specifically designed for
evaluating the performance of SLAM systems to cope with
these differences. The approach works as follows.

Let xk be the estimated pose at the frame k and x∗
k be

the corresponding ground truth pose. Let us note the set of
differences (or motions) between two frames of a sequence as
δi,j = xj	xi, where 	 is the inverse of the standard motion
composition operator [32]. Analogously δ∗i,j = x

∗
j	x∗

i . The
relative error committed between the frames i and j can be
then defined as δi,j 	 δ∗i,j .

In practice, the inverse motion composition operation
between two poses can be computed from the corresponding
transformation matrices representing each pose, namely T xi

and T xj
as

xi 	 xj = T−1
xj
T xi

(1)

These equations intentionally leave open the choice of
which relative displacements δi,j are included in the metric.
As discussed by the original authors [30], different choices
will highlight different properties of the data. In our case,
we strive for local consistency, which is better highlighted by
taking displacements as small as possible. Therefore, relative
displacements are taken between the consecutive frames.

Moreover, to obtain meaningful numerical results, we need
to separate the translational εt and rotational εθ parts of this
error, since they are different in nature. This separation was
also suggested by the original authors [30]. Since a relative
error ε is a product of transformation matrices and thus, it is
itself a transformation matrix T ε =

[
R t

]
representing

the error displacement. The translational and rotational parts
can be extracted as follows:

εt = tT t (2)
εθ = acos ((Tr (R)− 1) /2) . (3)

B. Results

An example of trajectories estimated by the RGB-D and S-
PTAM are shown together with their respective ground truths
in Fig. 6. Both trajectories look like to perform relatively well
and at a first sight the RGB-D seems to outperform the S-
PTAM in terms of precision. However, only absolute errors
are not appropriate indicators of the SLAM performance
due to biases and localization relative to the computed map.
Therefore, a relative error metric provides further insights
to the system performance. We can observe a slightly better
performance of the S-PTAM when comparing the relative
error metric shown in Fig. 7. Boxes represent interquartile
range (IQR), whiskers reach to −1.5×IQR and 1.5×IQR,
and the points represent data beyond those ranges, considered
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Fig. 6. RGB-D and S-PTAM trajectories with the ground truth.

Fig. 7. Boxplots showing relative translation and rotation errors committed along the trajectory of both methods with respect to the ground truth.
Measurements were aggregated over all experiments.

Fig. 8. Boxplots showing absolute translation and rotation errors committed along the trajectory of both methods with respect to the ground truth.
Measurements were aggregated over all experiments.
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outliers. The line inside the box represents the median. The
absolute error is presented for completion in Fig. 8.

Regarding the real computational requirements, the S-
PTAM outperforms the RGB-D SLAM by running at 10 Hz
over 3-4 Hz of the RGB-D SLAM. Therefore, the proposed
extension of the S-PTAM method seems to be more suitable
for localization and mapping with hexapod walking robots.

V. CONCLUSIONS

In this paper, we propose an improvement of the stereo
SLAM system S-PTAM, originally proposed in [10], to
work on hexapod platforms crawling over rough terrains. In
particular, a loosely coupled integration using an EKF filter
has been considered to utilize angular velocity and linear
acceleration measurements provided by inertial measurement
unit. The new system has been validated in a challenging in-
door environment with specifically designed obstacles, such
as ramps, stairs, and irregularities. Moreover, we compare the
performance of the newly proposed system with the state-of-
the-art RGB-D SLAM method [11]. The results show that the
proposed system is suitable for hexapod robot localization
and it outperforms the RGB-D SLAM system in terms of
accuracy and speed. Besides, due to limitations of the utilized
RGB-D camera, the further advantage of the proposed system
is ability to work in outdoor environments.

As future work, we plan to add tightly coupled integration
of the IMU [33], [34] to include IMU measurements directly
in the Bundle Adjustment phases of S-PTAM to increase
the robustness of the whole system. In addition, we plan
to deploy the SLAM method to the onboard computer of
the hexapod robot to achieve autonomous navigation and
perform experimental evaluation in outdoor environments.
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