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Abstract— The effectiveness of the robot locomotion can be
measured using the cost of transport (CoT) which represents the
amount of energy that is needed for traversing from one place to
another. Terrains excerpt different mechanical properties when
crawled by a multi-legged robot, and thus different values of the
CoT. It is therefore desirable to estimate the CoT in advance and
plan the robot motion accordingly. However, the CoT might not
be known prior the robot deployment, e.g., in extraterrestrial
missions; hence, a robot has to learn different terrains as it
crawls through the environment incrementally. In this work,
we focus on estimating the CoT from visual and geometrical
data of the crawled terrain. A thorough analysis of different
terrain descriptors within the context of incremental learning
is presented to select the best performing approach. We report
on the achieved results and experimental verification of the
selected approaches with a real hexapod robot crawling over
six different terrains.

I. INTRODUCTION

Autonomous robots are being deployed in long-term data
collection missions in environments with limited or no prior
information about the particular terrain the robots are facing
to, e.g., in extraterrestrial missions [1]. However, efficient
locomotion over a particular terrain greatly influences the
mission effectiveness. It is even more prominent with multi-
legged robots due to their enhanced traversability capabilities
to reside over terrains of different types.

Regarding locomotion of the particular robot, terrains can
be distinguished by the traversability cost metric [2] that can
be a simple binary division between passable and impassable
terrains [3]. Alternatively, there are more elaborating scores
such as the Cost of Transport (CoT) [4], [S], which represents
a measure of the effectiveness of the robot locomotion.
Therefore it is desirable to study the terrain traversability
estimation to support mission planning and improve the real-
time robot performance in accomplishing its mission goals.

Note, the CoT is inherently a continuous measure influ-
enced by many factors, e.g., terramechanical properties of the
terrain, robot morphology, and even seasonal and weather
condition changes in long-term missions. Besides, terrains
that the robot encounters might not be known in advance, and
therefore, a simple classification using a set of pre-learned
classes to estimate the CoT is not sufficient for a real-world
deployment. Hence, self-learning mechanisms are necessary
to estimate the CoT in yet untraversed areas correctly.
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Fig. 1: Multi-Terrain setup and its perceived representation.

In this work, we are concerning the traversability cost
estimation for a small hexapod crawling robot using extero-
ceptive data. A relatively slow speed of crawling robots limits
their capability to map a given area fully. Moreover, an easily
obstructive close-to-ground viewpoint makes the mapping
even more challenging. Nevertheless, a robot capable of
traversing an unknown terrain may observe both the terrain
appearance and terramechanical properties, and thus it can
incrementally build the terrain model describing its CoT.

On the other hand, unmanned aerial vehicles (UAVs)
do not suffer from these problems. From a relatively high
altitude, a UAV can observe a larger portion of the terrain.
Also, a typical UAV often moves faster than most of the
ground vehicles of similar size. For these reasons, UAVs can
be utilized for mapping unknown terrains, which in turn, may
help the robot to improve the mission efficiency.

However, the ground crawling robot and the UAV observe
the terrain with a different perspective, and therefore, it is not
possible to simply infer the CoT over the terrain observed by
the UAV based on the model learned by the ground robots if
arbitrary descriptors are used. Hence, construction of such
a model together with a selection of suitable feature set
for the desired inference is the main goal of this work. In
particular, we aim to develop incremental learning of the
model to estimate the CoT based on the experience of the
hexapod crawling robot with the terrain that can be further
utilized for inference of the CoT using aerial terrain view.
Such an inference may lead to the annotated aerial terrain
cost map as it is visualized in Fig. [I] In this paper, we report
on the achieved results towards this challenging goal which
is addressed as a thorough experimental analysis of a set of
terrain characterization features and learning methods used
in the literature for terrain classification from visual and
scene geometric data and application of these methods in
the problem of the CoT learning and estimation.

The paper is structured as follows. An overview of the



related approaches on the terrain classification and terrain
features is in Section A description of the proposed
inference learning framework, terrain model, and features
utilized in the herein reported evaluation is presented in
Section Section details the experimental set-up and
reports on the achieved results. Finally, conclusions are
drawn in Section

II. RELATED WORK

Numerous methods on terrain traversability analysis [2],
[6] have been presented in recent years that aim to evaluate
the terrain properties mostly from geometric data and assign
each area a number that characterizes local properties of
the terrain geometry. On the other hand, traversability cost
metrics [4], [5], like the Cost of Transport (CoT), are more
general metrics that incorporate the own robot experience
with traversing the terrain. The value of the CoT is inher-
ently continuous. Even though it can be estimated from the
results of the terrain classification, the classification relies
on a discrete set of pre-learned classes which might not
be available or might get irrelevant during the mission,
e.g., in extraterrestrial environments or long-term missions.
Therefore we are interested in the CoT regression.

The terrain description methods rely on extraction of
terrain characterization features that can be roughly catego-
rized into appearance-based visual features, geometric-based
features, and methods combining both approaches. Moreover,
the approaches can be further categorized based on whether
the feature is dependent on the current robot viewpoint,
and whether the feature makes use of color information.
For example, approaches extracting features from images
are inherently viewpoint dependent. In contrast, approaches
using the extraction of features from point clouds or aerial
scans are position independent. Further, the color information
can be valuable for discriminating terrain types; however, it is
strongly influenced by the illumination and seasonal changes.

The appearance-based features include approaches to clas-
sify terrains based on different colors or textures. The
authors of [7] introduce classification based on a simple two-
dimensional feature which uses mean color components of
superpixels in the Lab color space combined with the SVM
classifier. Bayes decision rules with Gaussian mixture models
on the RGB color space is used in [8]. Regarding the texture
recognition, methods using frequency-based approaches re-
lying on wavelet filters [9], [10], Gabor filters [11], or more
recent approach on Steerable Pyramid Masks [12] can be
used. A survey on visual terrain classification from a monoc-
ular camera is presented in [13]. Further, hybrid approaches
utilizing RGB-D camera [14] and stereo camera [15] use a
combination of the appearance and geometrical features.

The main advantage of the geometrical terrain features is
that they are not affected by illumination changes. However,
they can suffer from a low density of the point cloud in a
far distance to the robot which is limiting especially for a
vast number of approaches that compute statistics based on
normals [16]-[19] where point normals are mostly computed
by fitting a plane to a local neighborhood of the investigated

points. Point-cloud density [20], view-point, and point cloud
centroid relations [18], [19] or minimal and maximal curva-
ture of estimates for local neighborhood [21], or histogram
based features [22] are being used. Features extracted from
LIDAR data are used in [23] with a random forest classifier
to differentiate vegetation and estimate the soil plane using
the geometrical, reflectance, and color information.

In [24], a set of 13 features is proposed to describe terrain,
vegetation, and other objects in an agricultural environment.
The set is computed from the local neighborhood of the
interesting point and divided into four height features based
on the z coordinate, four shape features based on princi-
pal component analysis, three orientation features based on
normal vectors of the local plane, a distance feature, and a
reflectance feature. However, the classifier is trained by SVM
from labeled data [24]. Moreover, the approach requires
the z-coordinate of the point cloud to be orthogonal to the
surface which is made by fitting a global ground plane to
the dataset, which may bias the results in a more structured
environment.

A self-supervised approach is presented in [25] to teach
a terrain classifier from geometric data using the propri-
oceptive data. However, the approach uses a pre-learned
proprioceptive classifier which differentiates only between
several terrain classes.

The most similar approach to the herein addressed problem
of the assignment of the traversability data to the aerial
scan has been presented in [20]. The authors proposed a
self-supervised learning approach with a Gaussian mixture
model. The traversability cost is estimated from the geomet-
rical clues in the LIDAR data to infer the traversability cost
in a map obtained by an aerial recon.

Based on the presented literature survey, we have identified
a set of appearance-based and geometric-based features with
different properties that are commonly used in the terrain
classification, and we adapt these for the CoT regression
presented in this paper. Description of the used features is
presented in the following section. Besides, we can con-
clude that the incremental regression and estimation of the
traversability value for the observed but yet untraversed areas
is still a largely unexplored topic.

III. INFERENCE LEARNING FRAMEWORK

The main goal of this paper is to report on a thorough anal-
ysis of terrain characterization features used in the inference
of the CoT perceived by the hexapod crawling robot to the
aerial scan. This section describes the used framework for
the extraction of the terrain features and CoT learning, i.e.,
the utilized terrain features, the learning procedure, and the
sampling strategy for the inference learning. The individual
building blocks are described in the following sections.

A. Terrain Characterization Features

Based on the literature survey and preliminary results, we
consider the following features for benchmarking. We select
the features that are computationally inexpensive, so that can
be utilized on various mobile robotic platforms. Moreover,



we only use descriptors that are viewpoint robust under the
herein described conditions.

1) Appearance-based features: Two point cloud based
color features and a texture recognition using wavelets [9]
have been selected. For the color features, both the RGB
and Lab color spaces have been considered with either
channel values of the sampled point (denoted as Point in
the reported results) or a channel mean of the points in
a r = 0.2 m spherical neighborhood (denoted as Mean
in the reported results). As the feature is purely based on
color, it is robust to viewpoint changes; however, less to
illumination changes. During the preliminary evaluation, the
wavelet features exhibit low performance presumably due to
a large viewpoint change between the robot and the aerial
scan, and they have been left out of the comparison.

2) Geometric-based features: We use a modified version
of the terrain feature sets presented in [24]. In particular, we
have used 11 out of 13 features, namely the shape feature,
height feature, orientation feature and all of them combined
in a full feature, leaving out the reflectance and distance
features as those do not suit our experimental setup. The
ground plane and normal are estimated by fitting a plane
to the k = 5 nearest neighbors of the sampled point. We
consider the utilized geometric features to be viewpoint
robust. As the coordinate frame is based on the global ground
plane estimate, the height feature and shape features are
robust to viewpoint changes under the assumption that the
aerial scan captures the area with sufficient precision. The
orientation feature robustness depends on the quality of the
aerial scan, although different descriptor values are assigned
to the terrains sloped in different directions. A spherical
region with 7 = 0.3 m radius is considered when querying
the neighborhood of the sampled point.

B. Learning algorithms

We have considered four approaches on top of the utilized
terrain features that are capable of regression from which two
of them support incremental online learning.

1) Support Vector Regression: (SVR) [26] is a maximum-
margin regression algorithm, here utilized with the radial
basis function kernel.

2) Regression Tree: which uses recursive partitioning with
the depth d = 5.

3) Incremental Gaussian Mixture Network Model:
(IGMN) [27], [28] is an online incremental learning ap-
proach, which creates and updates the Gaussian mixture
model based on streamed data points. The IGMN allows a
full prediction of the data point based on an incomplete input
of any kind. We used our implementation of the Fast-IGMN
that is an improvement of the IGMN presented in [28].
The Fast-IGMN improves the IGMN time complexity to
O(NKD?), where N is the number of data points, K
is the number of components, and D is the data point
dimensionality. Experimentally, we parametrized the IGMN
with the & = 10 components, grace period vy, = 100,
minimal accumulated posterior spnin = 3, and scaling factor

0=1

4) Hoeffding Tree: or Very Fast Decision Tree Learner
(VFDT) [29] is an online incremental decision tree learning
algorithm that utilizes Hoeffding bound to create the output
asymptotically identical to that of the conventional learner.
We used a slightly modified VFDT implementation of [30].
However, unlike the other utilized approaches, Hoeffding tree
is used with a discrete number of classes, i.e., k = 10.

C. Sampling and Learning

This section explains how the above-selected terrain fea-
tures and learning algorithms (forming building blocks) are
combined in an inference learning framework that estimates
the CoT in the aerial scan of the terrain. Our model has two
major life stages: (i) the learning phase, when the robot learns
the model based on the RGB-D input and pairs it with the
CoT; and (ii) the inference phase, where the learned model
is used to evaluate the terrain observed from the aerial scan.

The framework operates on individual datasets consisting
of georeferenced RGB-D, i.e., the color RGB and depth
images from the robot and georeferenced RGB-D aerial scan
of the whole environment. Besides, the ground robot collects
the power readings used for estimation of the CoT [5] as

)

where P is the instantaneous power consumption, m is the
weight of the robot, g = 9.81 ms~2 is the gravitational
acceleration, and v is the robot speed. In the regression task,
we understand the CoT to be a function of the robot type,
the robot gait, and the local terrain property. However, the
experimental platform and locomotion gait are fixed; hence,
the CoT is estimated only from the local terrain property.
Note that the evaluated aerial scan is independent of the
robot trajectory, i.e., the robot learned model can be applied
to a different location; however, for the herein presented
benchmarking, it is necessary that the trajectory of the robot
is contained within the aerial scan.

It is essential to address the fact that the robot knows
the CoT only after it successfully traverses the terrain and
estimates its velocity from the georeferenced data. Therefore,
we introduce feature storage that maintains a dictionary of
the georeferenced features extracted from the robot field of
view to deal with this delay in the acquisition of the RGB-
D—CoT pairs that are necessary for the learning phase. Thus,
whenever an arbitrary location is reached by the robot, the
feature storage is queried, and all features located sufficiently
close, i.e., in a spherical region with » = 0.2 m, are passed
to the learning framework together with the measured CoT
of the current location. The temporary feature storage is of
limited size, and it is randomly pruned when its capacity
overflows. Hence, the robot is not creating a persistent feature
map of the environment that would grow over time, and it
incrementally learns the forthcoming terrain.

During the learning phase, points in front of the robot
are sampled according to the scheme described above. The
obtained features are then used for learning of the CoT
model. In the case of the incremental learning, the features
are first used to query the model for the value of the CoT.

CoT =

mguv’
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Fig. 2: Experimental Hardware, Setup, and Results.

For the inference phase, the robot is virtually walked along
the same known trajectory while sampling points from the
aerial scan, which is necessary for the evaluation purposes.
The robot stores the geolocated features in the same manner
as in the learning phase. Similarly, when an arbitrary location
is reached, the feature storage is queried, and all features
located sufficiently close are considered. These features are
then used to query the CoT model for the particular value of
the CoT. Additionally, for the incremental learning enabled
approaches, the model is further taught by these features
combined with the measured CoT.

IV. EXPERIMENTAL EVALUATION

In this section, we report on the experimental results and
verification of the proposed inference learning framework
with terrain features benchmarking using real hexapod crawl-
ing robot. The reported results are organized as follows.
First, the robotic platform and the experimental set-up are
introduced. After that, the results themselves are presented
and discussed.

A. Hexapod Crawling Robot

The used robot is an electrically actuated low-cost hexapod
crawling robot depicted in Fig. It has six legs, each with
three joints attached to the trunk which hosts the electronics
and sensory equipment. The RGB-D ASUS Xtion Pro Live
camera has been utilized for the terrain perception and the
Hall-effect-based current sensor for estimation of the robot
instantaneous power consumption. The camera provides the
data with 30 Hz frequency, and the power consumption data
are provided with 62 Hz frequency. The locomotion over the
rough terrain is performed by the adaptive motion gait [31],
which uses the estimation of the ground-reaction forces based
on the position data provided by the joint actuators.

B. Experimental Setup and Terrains

The experimental data have been obtained on the labo-
ratory test-track consisting of three-meter length path over
different surfaces. Six experiments, each with different ter-
rain and three trials, have been performed. The terrains with



TABLE I: Error Rates for Individual Terrain Characterization Features

Learning Feature Error Learning Feature Error Learning Feature Error
Color Geom. Mean Var Color Geom. Mean  Var Color Geom. Mean  Var
Hoeffding RGB-M Shape 7.4 69.8 | IGMN None Ori 8.7 574 | Reg Tree Lab-P None 64 379
Hoeffding None  Height 74 56.7 | IGMN RGB-M None 5.7 445 | Reg Tree Lab-P  Shape 7.1 709
Hoeffding Lab-M None 8.2 86.1 | IGMN RGB-M  Height 6.6 39.0 | Reg Tree None Ori 81 603
Hoeftding Lab-M Shape 8.6 77.0 | IGMN RGB-M Ori 5.8 43.6 | Reg Tree None Set 79 59.0
Hoeffding Lab-P None 89 1022 | IGMN RGB-M Set 7.8  38.9 | Reg Tree None Shape 69 772
Hoeftding Lab-P Shape 7.7 57.3 | IGMN RGB-M Shape 57 384 | SVR RGB-M Shape 6.8 763
Hoeffding None Ori 9.0 1122 | IGMN RGB-P None 73 594 | SVR None  Height 7.8 739
Hoeffding RGB-M None 8.1 70.1 | IGMN RGB-P Shape 6.7 404 | SVR Lab-M None 7.1 815
Hoeffding RGB-M  Height 7.4 59.8 | IGMN None Set 9.0 585 | SVR Lab-M  Shape 79 649
Hoeffding RGB-M Ori 7.9 66.0 | IGMN None Shape 84 449 | SVR Lab-P None 6.7 63.8
Hoeffding RGB-M Set 9.3 87.9 | Reg Tree RGB-M None 63 515 | SVR Lab-P  Shape 7.8 687
Hoeftding RGB-P None 7.7 63.5 | Reg Tree RGB-M  Height 64 484 | SVR None Ori 7.6 799
Hoeffding ~RGB-P  Shape 8.3 72.5 | Reg Tree RGB-M Ori 58 475 | SVR RGB-M None 72 748
Hoeftding None Set 8.6 76.2 | Reg Tree RGB-M Set 6.8 633 | SVR RGB-M  Height 7.7 740
Hoeffding None Shape 9.1 82.5 | Reg Tree RGB-M Shape 59 496 | SVR RGB-M Ori 74 712
IGMN None  Height 9.0 37.9 | Reg Tree None  Height 73 58.6 | SVR RGB-M Set 7.7 781
IGMN Lab-M None 5.7 38.3 | Reg Tree RGB-P None 6.2 415 | SVR RGB-P None 7.0 755
IGMN Lab-M Shape 9.4 1472 | Reg Tree Lab-M None 6.9 66.6 | SVR RGB-P Shape 6.9 70.7
IGMN Lab-P None 7.5 39.6 | Reg Tree RGB-P Shape 6.6 58.7 | SVR None Set 7.7 783
IGMN Lab-P Shape 7.2 67.6 | Reg Tree Lab-M Shape 6.1 46.0 | SVR None Shape 7.3 737

the increasing difficulty of traversing are: PVC flooring (flat),
turf-like carpet (grass), and semi-transparent soft black fabric
(black) represent different flat terrains. Then, wooden blocks
covered with the turf-like carpet (grass rough), wooden
blocks covered with the black fabric (black rough), and bare
wooden blocks (blocks) are considered as the rough terrain
scenarios. The wooden blocks are 10x10 cm large with
variable height and slope. The three rough terrain setups are
shown in Fig. [2a] The same turf-like carpet and black-fabric
have been used for the flat and the rough terrain setups.

The robot has been remotely guided over the course of
the test-track while collecting visual and power consumption
data. The visual data have been then processed using the
incremental localization technique [32] to extract localization
information that has been further used to estimate the robot
velocity and for calculation of the CoT according to ().

The collected data represent an unbiased belief of the robot
about the traversability of the selected terrains. Besides, an
aerial scan has been captured for each terrain type from the
elevated camera to allow dense reconstruction of the whole
track course simulating an aerial scan.

C. Results and Discussion

First, the individual trials over different terrains have been
merged into a single pass dataset with six terrains each
repeated two times as it is visualized in Figs. 2b-2f] Then,
the proposed framework has been used according to the
description presented in Section The algorithm has
learned on the first six terrains, whereas the CoT value for
the following terrains has been inferred from the aerial scan.
The incremental learning approaches learn from, but also
return the evaluation, for all the terrains, i.e., the terrains
used in both the learning and inference phases.

The quantitative measures of the mean error between
the predicted and ground-truth CoT, and its variance are
reported for all tested combinations in Table [, Additionally,
some of the results are visualized in Fig. Note that the
measure is computed from all the returned values and for the

incremental learning approaches, the metric includes results
returned on the first six learning terrains.

The preliminary analysis has shown a low quality of the
results provided by the Hoeffding trees and SVR learning
algorithms. Therefore, the qualitative evaluation is focused
on the best performing terrain features using the IGMN
and Regression Trees. From the quantitative comparison, the
best performing features are the sole appearance-based the
LAB Mean feature and RGB Mean feature together with the
geometric-based Shape feature.

A good performance of the sole Lab Mean feature (see
Fig.[2b) is not surprising partially because of the experimen-
tal setup where the four well distinguishable colors appear
on the terrains. Besides, only a little difference between the
CoT values for three out of six terrains, namely flat, grass and
grass rough, has been observed, which is correct behavior as
we are not interested in the terrain classification, but rather
in the CoT estimation. The CoT over the wooden blocks is
less uniform, with low-cost areas being similar to the flat
or grass datasets and high-cost peaks. Finally, the black and
rough black datasets are the most costly with the high-cost
peaks. Presumably, it is caused by the inability of the robot
to find a proper grip on the fabric covered terrain. The made
observations comply with the CoT map presented in Fig.
where the blocks have assigned a range of different costs,
whereas the black fabric is assigned the high costs only.

From the further qualitative analysis, we can see that
the standalone geometric features do not perform well (see
Fig. 2c). However, the combination of the color and shape
feature provides, in our opinion, the best results as the
combination is able to better cope with the high peaks and
low values of the CoT. In Table |lI, we present the aerial-
ground scan correlation of the RGB Mean Shape feature.
Although the individual feature dimensions do not exhibit
a high correlation for all the terrains, for each terrain,
there is at least one dimension with considerable correlation.
The comparison of different models favors the IGMN setup
in both quantitative and qualitative measures (see Fig.



TABLE II: Walk- and Environment-scan Correlation Rates for the RGB
Mean Shape feature. For each of the examined terrain type pairs the metric
is computed from 1000 randomly selected points. Each point is represented
by the RGB-Means Shape descriptor computed from the environemnt scan,
and the same descriptor computed from the walk scan. Then each dimension
of the descriptor is reported separately, i.e., the correlation for one dimension
in one terrain type is computed from 2 1000-length vectors. A median of
the individual dimension correlations is also reported.

Terrain Type | Individual Feature Building Blocks Full Feature

Shape ‘ RGB Means Median
Grass Flat 0.62 040 034 066 | 0.66 047 0.64 0.62
Grass Rough | 031 033 029 0.19 | 0.78 0.75 0.58 0.33
Black Flat 056 046 042 053 | 0.86 085 0.84 0.56
Black Rough | 036 048 038 036 | 0.74 075 0.75 0.48
Flat 0.63 051 043 078 | 0.09 0.03 0.08 0.43
Cubes 055 034 031 047 | 079 080 0.78 0.55

Fig. and Fig. 2f). It is most likely due to its incremental
learning property that allows the model to adapt quickly to
CoT changes.

A rather interesting property of our datasets is that at
the far end of each examined terrain, there is usually a
section of a flat ground that has been traversed by the robot.
Such a border represents a change of the terrain type. When
investigating the recovered data, it is possible to observe
that the most of the good performing setups are capable of
reacting on such a terrain change and presume a lower value
of the CoT in that region.

V. CONCLUSION

In this paper, we present a framework for model learning
the CoT in a two-viewpoint setups, where the model is firstly
learned by a small ground hexapod crawling robot, which
can observe not only the exteroceptive terrain properties
but also its associated CoT, and then the model is used
for CoT inference from an aerial scan to yet untraversed
areas. From a set of several feature setups, we chose the
best performing combination of the RGB Mean and Shape
feature which forms the descriptor of only seven dimensions.
Several learning setups have been evaluated and based on the
achieved results, the incremental Gaussian mixture and post-
estimation regression trees suit best the selected features.
In future, we aim to utilize this system in planning tasks
and explore the transferability of the terrain traversability
evaluation between different robotic platforms.
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