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Abstract— Proprioceptive terrain sensing is essential for
rough terrain traversal because it helps legged robots to
negotiate individual steps by reacting to terrain irregularities.
In this work, we propose to utilize inertial data in the detection
of the contact between the leg and the terrain during the stride
phase of the leg. We show that relatively cheap accelerometers
can be utilized to reliably detect a foot-strike, and thus allow
the robot to crawl irregular terrains. The continuous data
processing is compared with the interrupt mode in which data
are provided only around the foot-strike event. The interrupt
mode exhibits significantly better performance, and it also
supports generalization of the foot-strike event detector learned
from data collected in slow locomotion to faster locomotion
where the signals slightly change. The proposed solution is
experimentally validated using a real hexapod walking robot
for which the walking speed has been improved in comparison
to the previous adaptive motion gait based on a force threshold-
based position controller for the foot-strike detection.

I. INTRODUCTION

Enhanced traversability capabilities are the main advan-
tage of legged robots in traversing rough terrains. Different
methods of locomotion control have been recently presented
to control the robot attitude when crawling irregular terrains
which all share a common property of utilizing sensory
feedback to negotiate the traversed terrain and maintain the
robot stability. However, for practical deployment of multi-
legged robots in various missions, the efficiency of the rough
terrain locomotion is studied to improve and speed up the
robot locomotion, and thus more quickly accomplish the
mission objectives. Hence the primary motivation for the
proposed approach is to enable fast and reliable locomotion
over rough terrains for affordable hexapod walking robot
using as few sensors as possible.

The critical part of the locomotion control with robot
stability is timely and reliable foot-strike detection, because,
in a case of failure, the robot construction is put under
stress, the stability can be lost, and high torque values in
joints may damage the actuators. Although a direct drive [1]
or highly compliant elastic actuators [2] may mitigate the
stress on the robot construction, they are less energy efficient
than the large-reduction gear actuators. Different approaches
to delivering the tactile feedback for detecting the moment
of the leg contact with the ground have been developed.
A straightforward approach is to place contact sensors at the
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Fig. 1. Hexapod walking robot with ADXL-345 accelerometers mounted on
each leg and wired to the custom designed multiplexing board connected to
the Odroid XU-4 embedded computer. Notice the attached Xsense MTi-30
AHRS (the orange box) is not utilized in the proposed foot-strike detection.

leg foot tips [3]. A more indirect method is to estimate or
measure ground-reaction forces or joint torques. This can be
achieved by measuring joint torques at each joint directly [4],
estimate them using a linear model of the servomotor’s posi-
tion error [5], current [6], or utilizing strain-gauges [7], force-
sensitive resistors [8] or expensive force-torque sensors [9]
to measure the ground reaction force at the leg foot-tip.

In this work, we propose the foot-strike detection based
on inertial measurements provided by the specific feature of
the utilized accelerometers. The proposed approach is based
on the previous adaptive motion gait [5] developed for a
hexapod crawling robot shown in Fig. 1. In the previous ap-
proach, position feedback from the servomotors only is used
to detect the contact point of the leg with the ground, which
represents an affordable approach to crawl irregular terrains.
However, due to the limited communication capabilities of
the used servomotors, the approach provides relatively slow
locomotion because of the minimum latency of 20 ms when
reading position data out of 18 servomotors. Therefore we
investigated the foot-strike detection using inertial data from
cheap, 3-axis ADXL-345 accelerometers attached to the legs.

The challenge of the foot-strike detection from the in-
ertial data is in the nature of the legged locomotion that
induces vibrations into the robot body. Hence, an event
detection mechanism is necessary to detect the foot-strike
events correctly. Aside of the traditional event detection in
the continuous operation mode, we exploit the property of
the used accelerometers to event-filtering at the hardware
level which can isolate the relevant data and improve the
performance of the foot-strike detection.



For the foot-strike detection, we propose to employ a
signal detector that is learned from the real data using
the adaptive motion gait [5] which is capable of crawling
irregular terrains, but it is relatively slow. In the presented
results, we show that the learned detector of the inertial
feedback is sufficient to allow the robot to traverse irregular
terrains. Moreover, we show that the signal classifier learned
using data from slow locomotion generalize to faster move-
ment, and thus the proposed approach scales with increasing
locomotion speed. The proposed approach provides up to 1.6
times speedup of the base approach [5] in irregular terrains
mainly due to the event-filtering as a similar generalization
is very challenging with continuous signal processing.

The remainder of the paper is organized as follows. Sec-
tion II reviews related approaches to gait event detection and
terrain sensing using inertial data. The addressed problemm,
the necessary background of the employed robotic platform,
and its locomotion [5] are provided in Section III. The pro-
posed approach is presented in Section IV and experimental
results are reported in Section V. Finally, concluding remarks
are in Section VI.

II. RELATED WORK

Multi-legged locomotion over rough terrains is a largely
studied topic for which numerous contributions have been
proposed in the past years. In legged robotics, the foot-strike
detection is usually done using contact sensors [3] or various
setups with force/torque measurements. The inertial data are
utilized primarily for the attitude control to determine a slope
of the traversed terrain and adjust the robot pose accord-
ingly [6], [10]. Another application is a terrain classification
on both legged [11], [12] and wheeled platforms [13].

Most of the related work on the foot-strike detection and
gait phase detection using the inertial data can be found in
the field of medical applications and rehabilitation. In this
field, inertial data, possibly combined with force sensitive
resistors (FSR), are utilized to detect foot-strikes [14], gait
phases [15], and stimulate muscle activity [16], and thus help
to restore walking abilities [14]. Different setups using sin-
gle [16] or multiple [17], [18] 2-axis or 3-axis accelerometers
are used similarly to the setups utilizing the FSR on the foot
for improving reliability and robustness [19] or training the
gait event classifiers [16], [20].

The foot-strike or gait phase detections are achieved using
rule-based detection with a given set of states and transitions
between them [15] or by detecting extremes in inertial mea-
surements [17]. Besides, methods utilizing detection based
on feed-forward neural networks [20] and recurrent neural
networks (RNN) [16] have been introduced. Last but not
least, the support vector machine (SVM) has been used
in [21] to distinguish five different gait phases from the
inertial data. Stream-Based detection is used in approaches
with classifiers that are usually trained by the FSR detection.

The herein proposed method uses only a single accelerom-
eter per each leg, and for the foot-strike detection, the SVM
based classifier and neural network based classifiers have
been evaluated. The learning of the classifiers is based on

collected data using the existing work on the adaptive motion
gait [5] as it is suggested by multiple related work to use real
data with successful ground detection [15]–[17], [19]–[21].

III. PROBLEM STATEMENT

The addressed problem is to provide fast and reliable de-
tection of the leg foot strike using only inertial measurements
provided by relatively cheap accelerometers. Moreover, we
aim to speed up the locomotion over the irregular terrains
concerning the previous work based only on the feedback
from the Dynamixel AX-12 servomotors firstly introduced
in [5]. In particular, the proposed approach is considered
with the hexapod walking robot depicted in Fig. 1 with the
single ADXL-345 accelerometer attached to each leg.

A locomotion controller capable of crawling irregular ter-
rains is necessary to collect real data for learning classifiers
of the inertial signals, and thus learning the detection of the
leg contact with the ground. Since [5] already provides this
capability, it is employed for the first initial data collection.
Therefore, the used hexapod walking robot platform and a
brief description of the operation modes of the employed
ADXL-345 accelerometers are presented in the following
section together with the groundwork [5] described in Sec-
tion III-B.

A. Hexapod walking robot

The utilized hexapod robot has six legs attached to the
trunk, each with three joints named coxa θc, femur θf ,
and tibia θt, respectively, as shown in Fig. 2a. The joints
are actuated by the Dynamixel AX-12 servomotors that
provide the position feedback utilized in the force threshold-
based position (FTP) controller [5] further described in the
following section. Each servomotor support reading and
writing of the desired position every 1.2 ms, which represents
a significant bottleneck concerning 18 active actuators.
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Fig. 2. (a) A schematic diagram of the leg. Each leg has three parts (links)
– Coxa, Femur, and Tibia connected by three joints (θc, θf , and θt). The
coxa joint is fixed to the body with a vertical rotation axis while the two
other joints are oriented with respect to the horizontal axis. (b) The leg
trajectory without feedback; and (c) the leg trajectory for the adaptive gait
that combines the detection of the ground during the swing down phase of
the leg motion with the follow-up robot body leveling.

In the proposed approach, the ADXL-345, a low-cost
3-axis digital accelerometer, is attached to each leg and
connected to the main controller via the 400 kHz I2C
interface with the raw output data rate at 800 Hz. Besides, an
interrupt pin is connected directly to the controller because
the ADXL-345 can operate in two modes as follows.

The first mode is the traditional continuous mode when
the data are fetched by the controller immediately as they
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Fig. 3. An overall schema of the utilized adaptive locomotion control,
together with visualization of the body leveling.

are available. The second mode is the interrupt mode that
interrupts the controller if a predefined event occurs, e.g.,
free fall, single tap or double tap, that is a single acceleration
event larger than a predefined threshold. In the interrupt
mode, the ADXL-345 provides data within a pre-set time
window directly preceding and following the event with
the sampling rate up to 3200 Hz. The raw acceleration
measurements in all three axes αx, αy , and αz are stored in
a 32-element deep buffer. The main controller is the Odroid
XU-4 with 2 GHz ARM Cortex A7 octa-core processor
(Samsung Exynos5422) and with 2 GB RAM.

B. Foot-Strike Detection in Adaptive Motion Gait

During the locomotion, the leg foot-tip follows a pre-
scribed trajectory which defines whether the leg is in the
swing phase, reaching a new foothold, or in the stance phase
supporting the body. On flat surfaces, a simple feed-forward
controller is sufficient for reliable locomotion as the leg
follows the trajectory as shown in Fig. 2b. However, in rough
terrains, proprioceptive feedback has to be incorporated in
the locomotion control for adaptation to terrain irregularities.
The adaptive motion gait [5] splits the robot motion into
legs movement followed by the body movement. The ground
detection is performed during the leg swing down phase (see
Fig. 3) and the leg trajectories can look like in Fig. 2c.

The main idea of the ground detection [5] is to move the
leg using the position control until a contact point of the leg
with the ground is detected. The position feedback of the
servomotors is used to estimate the ground reaction force and
stop the leg motion when the servo position error between the
desired and current position exceeds the predefined threshold.

During the swing down phase, the leg trajectory is inter-
polated into small steps, and the collision check of the leg
with the ground is performed. Once the active leg reaches
a new foothold position, its movement stops and the robot
posture is adjusted to cope with the terrain irregularities
using the body leveling. Although the adaptive locomotion
control [5] enables the robot to crawl irregular terrains, it
is relatively slow because of the limited communication of

the servos. Therefore, the presented approach is to detect the
ground during the leg swing down motion using independent
inertial data provided by the ADXL-345 accelerometers, i.e.,
we aim to develop inertial based ground detection shown as a
blue block in Fig. 3. Two different approaches based on two
operational modes of the ADXL-345 have been investigated,
and they are described in the following section.

IV. PROPOSED FOOT-STRIKE DETECTION METHOD

The proposed foot-strike detection method relies on de-
tection of the ground contact point from the inertial data
provided by the accelerometers attached to each leg. The tra-
ditional approach based on the event detection in a stream of
accelerometer measurements has been investigated together
with the proposed exploitation of the single tap feature of the
utilized ADXL-345 accelerometers, further referred as the
tap event mode. The overall structure of these two methods
is visualized in Fig. 4 and Fig. 5, respectively.

For the both approaches, the inertial data processing
pipeline consists of three individual steps: 1) data acqui-
sition, 2) data preprocessing, and 3) detection. The data
acquisition and detection steps differ for each particular
approaches, but both methods share the same data prepro-
cessing step. The preprocessing step is to unify the data and
simplify the event detection by compensating the effect of
the robot posture and sensor mount. A detail description of
individual steps together with the classifier training using the
groundwork [5] is presented in the following parts.

A. Data Acquisition

The data acquisition differs for the continuous and the tap
event modes. In the continuous mode visualized in Fig. 4,
the controller continuously reads the available data that are
preprocessed and then, the detection of the foot-strike events
is performed. Multiple legs can be simultaneously in the
swing phase, and therefore, the bandwidth of the I2C bus has
to be divided equally between the individual accelerometers
of the currently moving legs to read all the data.

On the other hand, the tap event mode (visualized in
Fig. 5) relies on the ability of the ADXL-345 accelerometer
to generate a hardware interrupt whenever the specified event
occurs. The accelerometer features a buffer for 32 entries,
which can be set up to hold the acceleration data for the
specified time window around the event. The controller is
triggered when the interrupt is generated and delivered via
the dedicated IRQ signal. Afterward, the content of the buffer
is read through the I2C bus and processed similarly to the
continuous operation mode. The particular parameters for
generating the tap event have been found experimentally
as follows: the minimum tap duration is 6.9 ms, the tap
threshold as 4.9 g, the sampling rate should be 800 Hz, and
the window event index is set to 16.

B. Data Preprocessing

Before detecting the foot strike itself, the raw accelerom-
eter measurements have to be preprocessed to compen-
sate for the robot posture as the leg can hit the ground
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Fig. 5. Foot-strike detection in the tap even (interrupt) operation mode.

at different angles. Therefore, the acceleration readings
accα = (αx, αy, αz) expressed in the reference frame
relative to the particular accelerometer (further denoted with
the superscript acc) have to be transformed to the global
coordinate frame denoted with the superscript 0, i.e., 0α.

Given the joint angles (θc, θf , θt) of the respective leg and
the global orientation of the robot body (φyaw, φpitch, φroll),
the transformation compensating the body posture can be
expressed as

0α = RbodyRlegRacc
accα, (1)

Rbody = Ry(φpitch)Rx(φroll), (2)

Rleg = Rz(θc − θoffc )Ry(−θf − θt), (3)
Racc = Ry(βoff ), (4)

where Rx, Ry , and Rz are the rotations around the respec-
tive axes, θoffc is the coxa angle mount offset, and βoff is
the mount offset angle of the accelerometer w.r.t. the leg.
The transformed data are then processed for the foot-strikes.

The global orientation of the robot can be provided by the
AHRS unit attached to the robot trunk. However, to make
the robot affordable, we rather propose to estimate the global
orientation from the accelerometer measurements of the legs
that are in the stance phase using

accφpitch = arctan

(
αy√

α2
x + α2

z

)
,

accφroll = arctan

(
−αx

αz

)
.

(5)

The orientation of the accelerometers is transformed from
the leg to the body coordinate frame RbodyRleg to get the
global orientation. Note, the legs in the stance phase do not

move except small vibrations because of the split motion of
the legs and the body. Hence, the estimation according to (5)
is sufficient and has been used in preprocessing, albeit more
elaborate methods might improve the performance [22].

C. Foot-Strike Event Detection

After the preprocessing, the data are fed into the event
detector in the case of the continuous operation mode and
to the event classifier in the case of the tap event mode.
This difference is based on the fact that the former operates
on a stream of continuous data, whereas the tap event
mode only classifies discrete events which are not related
in time. Besides, the discrete events consist always of 32
measurements because of the size of the ADXL-345 buffer.

In our experimental evaluation, we consider the SVM for
both of the methods. However, a sliding window approach
is used in the continuous operation mode, whereas in the
tap event mode, the whole input vector of all 96 values is
fed to the learned SVM. Besides, we consider the long-short
term memory [23] (LSTM) recurrent neural network learning
using the backpropagation through time [24] (BPTT) for the
detection in the continuous mode. Finally, we also consider
a simple multi-layer neural network (NN) for the event
classification of the tap event mode.

The most important part of the foot-strike detection is
the learning of the detector/classifier using real data. We
employed a real working adaptive motion gait [5] capable of
walking rough terrains. The robot has been guided through
the rough terrain area, and both the data from the accelerom-
eters and the detected events provided by the adaptive motion
gait [5] have been recorded. Then, these labeled data have
been used for training as follows.

In the continuous operation mode, the unbalanced nature
of the data (one event per several hundreds of measurements)
leads us to modify the labels to alternate between the zero
and one in the case of the foot-strike event. Hence, it is
possible to use the standard learning approaches with the root
mean squared error minimization as the objective function.

For the tap event mode, the main challenge is to assign
the event to the corresponding tap event produced by the
accelerometer. Therefore, we consider k-nearest neighbors
in a pre-defined time window around the labeled event for
the selection of the corresponding tap event, which shows
to be sufficient for a reliable foot-strike detection. The
experimental results together with the visualization of the
data are reported in the following section.

V. RESULTS

The proposed ground detection approach has been ex-
perimentally verified in two scenarios using the real data
and hexapod walking robot. Besides, the performance of
the proposed approach is compared with the groundwork
method [5]. The first scenario evaluates the performance of
the individual detection methods with datasets collected us-
ing the groundwork method. In the second scenario, the best
performing method from the first scenario has been deployed
on the real robot and tested in several experimental trials to



Fig. 6. Experimental rough terrain test-track.

compare its performance with the groundwork approach. The
achieved results are reported as follows.

A. Performance Analysis of the Foot-Strike Detection
The performance of the learned foot-strike detection has

been statistically evaluated on the dataset collected using the
groundwork method [5] on a rough terrain laboratory test-
track shown in Fig. 6. It has dimensions 2.5× 1.2 m, and it
consists of irregular height and sloped 10 × 10 cm wooden
blocks. The robot has been guided by the operator across
the experimental test-track and the acceleration data together
with the ground-detections provided by the adaptive motion
gait [5] have been recorded. Altogether, 1332 events for the
continuous mode and 1401 events for the tap mode have
been recorded and split into the training and testing data in
the ratio 0.7:0.3. Each detection method has been trained
on the collected data, and its parameters have been further
experimentally tuned.

For the stream-based processing, the SVM classifier has
been parametrized to detect events on the 32 elements wide
window of 0α values with the radial basis function (RBF)
kernel, because the polynomial kernels perform poorly on
the given data. Next, the LSTM [23] with 3 inputs, 32
hidden states, and a single output with the sigmoid activation
function has been evaluated.

For the tap event mode, the individual events are rep-
resented as 32 vectors 0α where each batch of vectors is
processed at once. In addition to the SVM classifier with the
RBF kernel, we also tested a feed-forward neural network
(NN) with 32 inputs, two hidden layers, and a single output
layer trained using the backpropagation, which provides
competitive results to the SVM classification.

TABLE I
DETECTION RESULTS

Stream processing Tap event processing
SVM LSTM SVM NN

Precision 0.63 0.57 0.81 0.78
Recall 0.31 0.15 0.85 0.60

Example waveforms of the collected data for the stream
processing and tap event processing, together with the
groundwork detections and the results of the best performing
event detection using SVM are visualized in Fig. 7a and
Fig. 7b, respectively. The statistical measures of the precision
and recall of the individual detection approaches are listed in
Table I. The results indicate that the processing of the stream
data is more error prone as there is a huge number of miss
detections, whereas the filtering using the single tap feature

of the utilized accelerometers provides detection with the sig-
nificantly improved precision. The major problem with both
approaches is the false positive detections induced mainly
due to the fast acceleration of the leg when transferring from
the forward swing to the downswing phase. Nevertheless, the
best performing method is the foot-strike detection in the tap
event mode using the SVM classifiers that is further used in
practical deployment with our real hexapod walking robot.

B. Deployment on the Real Hexapod Walking Robot

Feasibility of the proposed approach and its expected
benefits have been verified by the deployment of the best
performing method on the real hexapod walking robot, i.e.,
the tap event processing with the learned SVM classifier. The
robot has been requested to traverse the rough terrain test-
track using the feedback solely from the accelerometers. The
robot has been able to traverse the test-track as expected,
and therefore, we started to speed up its motion to verify
the benefits of using the accelerometers in the foot-strike
detection. Specifically, we focused on the generalization of
the learned classifier for higher speeds of the locomotion.

We have gradually increased the forward speed of the
robot by decreasing the swing time from 2.8 s, which is
the default setting for the groundwork [5], down to 1.2 s,
which has shown to be the limit for a reliable operation of
the proposed ground detection, and measure the time it takes
the robot to traverse the test-track in ten trials. The absolute
value of the robot forward speed has been increased from
0.034 ± 0.006 ms−1 to 0.056 ± 0.007 ms−1. Hence, about
1.6 speed-up in comparison to the groundwork [5] has been
achieved while maintaining a similar velocity variance.

Beyond this speedup, the tap event detection method
ceases to detect the foot-strikes correctly; however, we be-
lieve that by self-supervised learning of the event classifier
for the increased speed, it would be possible to achieve a
higher speedup, which is a subject of our future work.

VI. CONCLUSION

In this work, we propose a foot-strike detection method
solely based on inertial measurements that enables a hexa-
pod walking robot to traverse rough terrains. Besides, the
proposed method speeds up the robot locomotion in com-
parison to the previous approach which uses only the po-
sition feedback from the servomotors. Two complementary
approaches based on stream data event detection and single
tap events classification have been presented and experi-
mentally evaluated. In the made comparison, the former
method needs to perform event detection on time series,
whereas the later exploits the capability of the sensor itself
to isolate the relevant data, and thus supports effective
classification into two discrete classes over these data. The
proposed tap event-based method achieves better results and
delivers a competitive performance in comparison to the
groundwork [5]. Moreover, an overall 1.6 speedup has been
achieved for crawling the irregular terrain. For the future
work, we aim to use the inertial readings from the body-
attached inertial unit in self-supervised learning of the event
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(b) Single tap event data from the ADXL-345 accelerometer

Fig. 7. Visualization of the raw data provided by the ADXL-345 accelerometer. The foot-strike events given by the groundwork approach used for
detection learning are visualized in red, the events detected from the accelerometric data are visualized in blue.

classifier based on the evaluation of the locomotion stability,
and thus further improve the performance of the ground
detection and locomotion.

REFERENCES

[1] G. Kenneally, A. De, and D. E. Koditschek, “Design principles for a
family of direct-drive legged robots,” IEEE Robotics and Automation
Letters (RA-L), vol. 1, no. 2, pp. 900–907, 2016.

[2] G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in IROS.
IEEE, 1995, pp. 399–406.

[3] W. A. Lewinger and R. D. Quinn, “A hexapod walks over irregular
terrain using a controller adapted from an insect’s nervous system,” in
IROS. IEEE, 2010, pp. 3386–3391.

[4] A. Winkler, I. Havoutis, S. Bazeille, J. Ortiz, M. Focchi, R. Dillmann,
D. Caldwell, and C. Semini, “Path planning with force-based foothold
adaptation and virtual model control for torque controlled quadruped
robots,” in ICRA. IEEE, 2014, pp. 6476–6482.

[5] J. Mrva and J. Faigl, “Tactile sensing with servo drives feedback only
for blind hexapod walking robot,” in 10th International Workshop on
Robot Motion and Control (RoMoCo), 2015, pp. 240–245.

[6] M. Bjelonic, N. Kottege, and P. Beckerle, “Proprioceptive control of an
over-actuated hexapod robot in unstructured terrain,” in IROS. IEEE,
2016, pp. 2042–2049.

[7] He Zhang, Rui Wu, Changle Li, Xizhe Zang, Xuehe Zhang, Hongzhe
Jin, and Jie Zhao, “A Force-Sensing System on Legs for Biomimetic
Hexapod Robots Interacting with Unstructured Terrain,” Sensors,
vol. 17, no. 7, p. 1514, 2017.

[8] K. Walas, “Foot design for a hexapod walking robot,” Pomiary,
Automatyka, Robotyka, vol. 17, no. 2, pp. 283–287, 2013.

[9] ——, “Tactile sensing for ground classification,” Journal of Automa-
tion, Mobile Robotics & Intelligent Systems, vol. 7, no. 2, pp. 18–23,
2013.

[10] M. Reibert, K. Blankespoor, G. Nelson, R. Playter, and the BigDog
Team, “Bigdog, the rough-terrain quadruped robot,” in International
Federation of Automation Control (IFAC), 2008.

[11] F. Garcia Bermudez, R. Julian, D. Haldane, P. Abbeel, and R. Fearing,
“Performance analysis and terrain classification for a legged robot over
rough terrain,” in IROS. IEEE, 2012, pp. 513–519.

[12] K. Walas, D. Kanoulas, and P. Kryczka, “Terrain classification and
locomotion parameters adaptation for humanoid robots using force/-
torque sensing,” in IEEE-RAS International Conference on Humanoid
Robots (Humanoids), 2016, pp. 133–140.

[13] S. Otte, C. Weiss, T. Scherer, and A. Zell, “Recurrent neural networks
for fast and robust vibration-based ground classification on mobile
robots,” in ICRA. IEEE, 2016, pp. 5603–5608.

[14] A. T. M. Willemsen, F. Bloemhof, and H. B. K. Boom, “Automatic
stance-swing phase detection from accelerometer data for peroneal
nerve stimulation,” IEEE Transactions on Biomedical Engineering,
vol. 37, no. 12, pp. 1201–1208, 1990.

[15] I. P. I. Pappas, M. R. Popovic, T. Keller, V. Dietz, and M. Morari, “A
reliable gait phase detection system,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 9, no. 2, pp. 113–125,
2001.

[16] Y. Shimada, S. Ando, T. Matsunaga, A. Misawa, T. Aizawa, T. Shira-
hata, and E. Itoi, “Clinical application of acceleration sensor to detect
the swing phase of stroke gait in functional electrical stimulation,”
The Tohoku Journal of Experimental Medicine, vol. 207, no. 3, pp.
197–202, 2005.

[17] J. K. Lee and E. J. Park, “Quasi real-time gait event detection using
shank-attached gyroscopes,” Medical & Biological Engineering &
Computing, vol. 49, no. 6, pp. 707–712, 2011.

[18] R. Williamson and B. J. Andrews, “Gait event detection for fes using
accelerometers and supervised machine learning,” IEEE Transactions
on Rehabilitation Engineering, vol. 8, no. 3, pp. 312–319, 2000.

[19] I. P. I. Pappas, T. Keller, S. Mangold, M. R. Popovic, V. Dietz, and
M. Morari, “A reliable gyroscope-based gait-phase detection sensor
embedded in a shoe insole,” IEEE Sensors Journal, vol. 4, no. 2, pp.
268–274, 2004.

[20] A. Miller, “Gait event detection using a multilayer neural network,”
Gait & Posture, vol. 29, no. 4, pp. 542–545, 2009.

[21] H.-Y. Lau, K.-Y. Tong, and H. Zhu, “Support vector machine for clas-
sification of walking conditions using miniature kinematic sensors,”
Medical & Biological Engineering & Computing, vol. 46, no. 6, pp.
563–573, 2008.

[22] M. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for position
and orientation estimation,” arXiv preprint arXiv:1704.06053, 2017.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] I. Sutskever, “Training recurrent neural networks,” Ph.D. dissertation,
University of Toronto, 2013.


	Introduction
	Related work
	Problem Statement
	Hexapod walking robot
	Foot-Strike Detection in Adaptive Motion Gait

	Proposed Foot-Strike Detection Method
	Data Acquisition
	Data Preprocessing
	Foot-Strike Event Detection

	Results
	Performance Analysis of the Foot-Strike Detection
	Deployment on the Real Hexapod Walking Robot

	Conclusion
	References

