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Abstract— Multi-goal curvature-constrained planning such as
the Dubins Traveling Salesman Problem (DTSP) combines NP-
hard combinatorial routing with continuous optimization to
determine the optimal vehicle heading angle for each target lo-
cation. The problem can be addressed as combinatorial routing
using a finite set of heading samples at target locations. In such a
case, optimal heading samples can be determined for a sequence
of targets in polynomial time, and the DTSP can be solved as
searching for a sequence with the minimal cost. However, the
examination of sequences can be computationally demanding
for high numbers of heading samples and target locations. A fast
rejection schema is proposed to quickly examine unfavorable
sequences using lower bound estimation of Dubins tour cost
based on windowing technique that evaluates short subtours
of the sequences. Furthermore, the computation using small
problem instances can benefit from reusing stored results and
thus speed up the search. The reported results indicate that
the computational burden is decreased about two orders of
magnitude, and the proposed approach supports finding high-
quality solutions of routing problems with Dubins vehicle.

I. INTRODUCTION

In this paper, we investigate multi-goal planning to deter-
mine a cost-efficient solution on how to visit a set of target
locations. The addressed problem can be considered as the
robotic variant of the combinatorial optimization problem
such as the Traveling Salesman Problem (TSP), where the
connections between the locations have to satisfy motion
constraints of the utilized robot [1]. Multi-goal planning is
a part of the sequencing task [2] and also aerial surveil-
lance planning [3]. In particular, we address the problem
with curvature-constrained trajectories modeled as Dubins
vehicle [4] that is known as the Dubins TSP (DTSP) [5].

The DTSP stands to determine a shortest closed path
connecting a given set of n target locations such that the
path is feasible for a vehicle moving with a constant forward
velocity and limited minimal turning radius ρ. Although a
closed-form solution is available for the optimal point-to-
point Dubins path between two locations with prescribed
leaving and arrival vehicle headings [4], in the DTSP, the
vehicle headings are not known in advance. The DTSP is
computationally challenging because of the combined com-
binatorial optimization of the sequencing part and continuous
optimization of n variables to determine the optimal vehicle
heading at each target location.

Existing DTSP solvers can be categorized into transfor-
mation approaches, decoupled approaches, and evolutionary-
based direct methods. The transformation approach is based
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on a discretization of possible heading angles and com-
binatorial optimization. In contrast, decoupled approaches
are focused on finding the optimal headings for a given
sequence determined independently on the headings. Both
optimization parts are addressed simultaneously in the direct
methods that are, generally, computationally demanding.
Finding optimal headings is mostly essential for dense in-
stances with mutually close target locations, and high-quality
multi-goal Dubins paths (further called Dubins tours) can be
ensured by tight lower bound [6]. Hence, the transformation
and decoupled approaches can be bridged by searching for
the optimal sequence using an examination of candidate
sequences based on high-quality Dubins tours. Solutions with
the optimality gap 0.1 % are reported in [7], but computation
is prohibitively demanding to examine a considerable number
of sequences; and the solution does not scale with n.

Therefore, we propose to utilize a sliding window tech-
nique to estimate the cost of Dubins tour using a lower
bound estimation based on the tour’s subtours. Moreover,
we propose to incrementally prolong the subtours to make
an early rejection of a candidate sequence using a shorter,
and thus faster to compute, window. Although the worst-case
asymptotic complexity is not improved, the empirical results
indicate a significant speedup in practice. Furthermore, the
windowing technique enables to organize the computation
using small subtours that can be efficiently reused during the
sequence optimization with many examinations of possible
node exchanges within the sequence. Subtours are part of
lengthy sequences and are queried multiple times. Therefore,
storing results for small problem instances and re-usage of
the results significantly reduce the computational burden.

The paper is organized as follows. Related DTSP ap-
proaches are reviewed in the following section. The DTSP
and its discretized variant are formally defined and intro-
duced in Section III. The utilized combinatorial metaheuristic
employed in the sequence determination is overviewed in
Section IV. The proposed sequence rejection based on the
sliding window technique is presented in Section V. Empiri-
cal results on proposed fast sequence rejection in the solution
of the DTSP are reported in Section VI. The concluding
remarks are dedicated to Section VII.

II. RELATED WORK

Existing approaches to the DTSP [8] can be classified
into transformation methods [9], decoupled approaches [5],
and direct evolutionary techniques that address both the
sequencing part and headings optimization simultaneously,
e.g., [10], [11]. A discrete set of heading values for each
target location is sampled in the transformation methods.



Hence, the DTSP becomes an instance of the Generalized
Asymmetric TSP (GATSP) [12] that can be transformed into
the regular TSP [13] using Noon-Bean transformation [14].

In decoupled approaches, the sequencing part is solved
as a solution of the Euclidean TSP (ETSP), followed by
optimization of the headings. For a fixed sequence, the
DTSP becomes the Dubins Touring Problem (DTP) [7].
Simple heuristic Alternating Algorithm (AA) has been pre-
sented in [5] that has been surpassed by receding horizon
approach [15], k-step look-ahead algorithm [16], and by
hill-climbing heuristic called Local Iterative Optimization
(LIO) [17]. The DTP can also be addressed as a discrete
problem with a fixed number of heading samples similar
to transformation methods [18]. Then, the optimal headings
(among sampled angles) can be determined in polynomial
time by a graph search, see Fig. 1b.
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Fig. 1. Dubins Interval Problem (DIP) [6] and search graph for finding
the optimal heading angles of the discretized instance of the DTP.

(a) Uniform heading sampling (b) Informed heading sampling

Fig. 2. Solution of the DTSP as the DTP with the sequence of visits
found by the Euclidean TSP. The target locations are small green disks, a
feasible solution is the blue curve, and heading samples are yellow. The
uniform sampling uses 224 heading samples in the total (32 samples per
each location) with the Dubins tour length L = 19.8 while the informed
sampling (IRIS method [7]) uses only 128 samples and provides a tour with
L = 14.4 [7]. The lower bound solution (determined using DIP) is the red
curve. It is not a feasible Dubins trajectory because the arrival heading angle
might not be the same as the leaving heading angle at a particular location.

Although dense heading samples improve the solution
quality [19], the first systematical study of the tight lower
bound of the DTSP has been proposed by Manyam et al. [6]
using the introduced Dubins Interval Problem (DIP), where
the leaving and arrival heading angles are constrained to
intervals, see Fig. 1a. The authors provide a closed-form
solution of DIP and a tight lower bound of the DTSP for
a particular sequence of visits [20]. DIP is employed in
the Iteratively-Refined Informed Sampling (IRIS) [7], where
heading intervals are split based on the lower bound solution
to improve convergence to a high-quality solution, see Fig. 2.

Direct methods simultaneously optimize the sequence and
headings, and they can provide high-quality solutions at

the cost of high computational requirements [3]. Having an
efficient DTP solver, a direct method can be considered a
generator of possible sequences that can be examined as DTP
instances. Although the DTP is an integral part of solving
the DTSP, it is also a part of the routing with profits and
limited travel budget called the Dubins Orienteering Problem
(DOP) [21], where a subset of locations that can be visited
has to be determined together with Dubins tour to visit the
subset. Therefore, an efficient solution of the DTP is an
enabler for multi-goal planning with Dubins vehicle.

In [22], a combinatorial metaheuristic, the Variable Neigh-
borhood Search (VNS) is employed for the combinatorial
part only, and headings are determined as a solution of the
DTP that shows to be less demanding than a direct VNS-
based solution of the discretized problem as a whole [23].
Thus, a separate solution of the DTP might bridge trans-
formation and decoupled approaches. Moreover, it can also
improve the performance of combinatorial heuristics and
evolutionary methods, which might provide better solutions,
but are slower, than decoupled approaches [24].

The informed sampling-based solution of the DTP [7]
is more efficient than uniform sampling; however, it is
still computationally demanding. Therefore, we propose to
address the sequencing part of the DTSP by a sliding window
approach to quickly examine the sequence quality and thus
support a quick rejection of candidate sequences with many
examinations of DTP instances. The windowing technique
has been utilized in [25] to generalize surrogate approximator
learned for small tours to arbitrarily long sequences. In
this paper, we consider windowing as a sole technique to
support a quick rejection of examined sequences and also as
a way how to organize computation to exploit reuse solutions
of a part of the sequences (subtours) during searching for
sequences in the DTSP. Although the proposed rejection
procedure can be employed with any solver of the sequencing
part, motivated by [23], we employed the VNS-based solver
that is overviewed in Section IV.

III. PROBLEM STATEMENT

The proposed sequence rejection is intended to support a
solution of curvature-constrained multi-goal planning prob-
lems with Dubins vehicle. It is considered in the solution
of the DTSP that stands to determine a cost-efficient tour
to visit a given set of n target locations S = {s1, . . . , sn},
si ∈ R2 by Dubins vehicle [4]. Dubins vehicle is a model
of curvature-constrained trajectory. The vehicle moves only
forward with constant velocity v and can turn with the limited
minimal turning radius ρ. The vehicle state can be described
as the position (x, y) ∈ R2 and heading angle θ ∈ S1; thus,
the state q = (x, y, θ) is from the Special Euclidean group
q ∈ SE(2). The vehicle motion according to bounded control
input u can be expressed as

q̇ =

ẋẏ
θ̇

 = v

cos θ
sin θ
u
ρ

 , |u| ≤ 1. (1)

W.l.o.g., v = 1 and ρ = 1 are considered in this paper.



A solution of the DTSP consists of the sequence of
visits Σ to the targets S and corresponding heading angles
Θ = {θi, . . . , θn}. The sequencing part of the DTSP is
to determine the optimal permutation Σ = (σ1, . . . , σn),
1 ≤ σi ≤ n and σi 6= σj for i 6= j while the continuous
part is to optimize Θ. The DTSP can then be formulated as
the optimization Problem 3.1 to minimize the length of the
closed multi-goal Dubins path (Dubins tour) visiting S.

Problem 3.1 (DTSP):

minimize Σ,Θ

C(Σ,Θ) =

n∑
i=1

L(qσi , qσi+1
)

s.t.
Σ = (σ1, . . . , σn), σi ∈ {1, . . . , n}, σi 6= σj for i 6= j,
Θ = {θ1, . . . , θn},
qi = (si, θi), qi ∈ SE(2), si ∈ S,

(2)
where L(qi, qj) is the length of Dubins path connecting qi
with qj determined optimally using closed-form solution [4].
We define σj , σj−n for j > n to reflect the closed-loop
Dubins tour of the DTSP.

Having a sequence of visits Σ to S, the problem of finding
the shortest Dubins tour is a continuous optimization problem
with n variables to determine the best heading angles Θ.
The problem is called the DTP [7] to distinguish it from
the DTSP, where the sequence of visits is generally not
known. The DTP can be addressed by sampling possible
heading angles of each target location si ∈ S into k discrete
samples Θi = {θ1

i , . . . , θ
k
i }. Thus, it becomes the discretized

DTP with the discretization Hk = {Θ1, . . . ,Θn}. The cost
of Dubins tour defined by the sequence Σ can be then
determined as

CHk(Σ) = min
θj∈Θj , j∈{1,...,n}

n∑
i=1

L(qσi , qσi+1
) (3)

that can be solved optimally in O(nk3) as the shortest path
in the auxiliary search graph shown in Fig. 1b.

Although the complexity of solving the discretized DTP
is polynomial, it is still prohibitively demanding for dense
sampling required for high-quality tours connecting mutually
close locations [7]. The computational burden of solving the
DTP is even more critical in cases where a vast number
of candidate sequences need to be evaluated, such as for
evolutionary IRIS-EA [25] and VNS-based methods [23]. We
address the computational requirements by assessment of the
sequence of visits to the target locations and quickly decide
if a particular sequence would yield an improved Dubins tour
than, e.g., the current best tour. The problem addressed in
this paper is to quickly decide that a particular sequence Σi
would be shorter Dubins tour than a sequence Σj .

We can further assume k fixed heading samples per each
target location s ∈ S, and thus the fixed discretization Hk.
Dubins tour is defined by the sequence Σi to S with the
corresponding headings Θ that can be determined as a
solution of the DTP. Hence, we simplify the notation by

denoting the cost of Dubins tour as L(Σ). Thus, the problem
is to quickly determine the relation between L(Σj) and
L(Σi), i.e., whether CHk(Σj) < CHk(Σi) is true or not.

IV. VNS-BASED SOLUTION TO THE DTSP
The VNS is a combinatorial metaheuristic [26] that con-

sists of two procedures called shake and local search. Both
procedures try to improve the current best incumbent so-
lution Σ by searching predefined Neighborhood structures
N(l1, . . . , lmax), where li is the maximal distance between
two solutions in the neighborhood. The shake procedure
randomly moves Σ to different solution Σ′ within the
neighborhood, and it is intended to leave possible local
optima. The local search procedure systematically searches
the neighborhood of Σ′ to find the best solution within the
neighborhood. A systematical search can be too demanding,
and therefore, the Randomized VNS [27] is used to perform
a random change of Σ′ for a predefined number of iterations.
The VNS-based solution of the DTSP is overviewed in
Alg. 1, which primarily works on sequences Σ, but each
candidate sequence is examined as a solution of the DTP
using the sampled headings Hk to determine the cost of the
corresponding Dubins tours L(Σ).

Algorithm 1: VNS-based Solver for the DTSP
Input: S – Set of the target locations to be visited
Output: Σ – Found sequence of visits to locations S

1 Σ← Initial sequence found by cheapest insertion
2 while terminal condition is not met do
3 Σ′ ← shake(Σ, l)
4 Σ′′ ← localSearch(Σ′, l)
5 if L(Σ′′) ≤ L(Σ) then
6 Σ← Σ′′

The VNS-based solver itself can be tuned, and various
Neighborhood structures can be utilized; however, we con-
sider such tuning to be out of this paper’s scope. Therefore,
we consider a straightforward implementation with a single
Neighborhood structure. Thus, the shake procedure uses path
move and path exchange operators that exchange or move a
part of the sequence Σ to create a new sequence Σ′. The path
move operator selects a part of Σ and moves it to a randomly
selected position. The path exchange operator exchanges two
random non-overlapping parts of the sequence. Similarly, two
operators are considered for local search, which search the
neighborhood of Σ′ for a local optimum in one point move
and open point exchange that randomly moves one target
in Σ′ and exchange two randomly selected targets in Σ′,
respectively. The particular number of generated sequences
(examinations of possible improvements) in a single local
search call is n2, as suggested for TSP-like routing problems.

Regarding the search process of the VNS-based algorithm,
it might be observed that it is very intensive in the exami-
nation of possible sequences, including repeated queries to
the same sequences. Hence, the proposed rejection procedure
based on the sliding window can provide huge computational
benefits in solving instances of the DTSP with tens of targets.



V. ASSESSMENT OF SEQUENCES FOR COMPARISON OF
DUBINS TOURS BASED ON WINDOWING TECHNIQUE

Two principled ways on how to decrease the computational
burden of computing L(Σ) can be considered for a solution
of the discretized DTP. The first is reducing the heading
sample count, which is, however, not desirable because dense
sampling might be needed for a high-quality solution. The
second way is to relax the requirement on the closed Dubins
tour and compute the so-called open DTP, which reduces
O(nk3) to O(nk2) at the cost of the approximated tour cost,
which would be a lower bound of the closed Dubins tour.

In addition, we can further think about the sequence
generation in a combinatorial search, where an improvement
of the sequence can be based on the local exchange of
short subsequence. In contrast, other parts of the sequence
would remain the same. Besides, a comparison can be mostly
expected between some best sequence found so far and a
candidate sequence being its slight modification. Such a
behavior has been empirically observed for combinatorial
metaheuristics and evolutionary algorithms, where many
parts of the sequences remain identical. Hence, we aim to
find a computational schema allowing us to reuse already
examined subsequences and thus reduce computational re-
quirements.

L1,n L1,1 L1,2 L1,3 L1,4 L1,5

qσn qσ1 qσ2 qσ3 qσ4 qσ5 qσ6

L2,n L2,1 L2,2 L2,3 L2,4

qσn qσ1
qσ2

qσ3
qσ4

qσ5
qσ6
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qσn qσ1 qσ2 qσ3 qσ4 qσ5 qσ6

Fig. 3. Example of the sliding window for estimating the cost of Dubins
tour using subtours with the window of the size w ∈ {1, 2, 4}.

Motivated by repeatable computations of subtours among
several Dubins tours during the examination of possible
sequences of visits to S, we propose to evaluate a cost of
Dubins tour using a sliding window of the limited size w,
see Fig. 3. The cost of Dubins tour for a sequence Σ is
estimated using costs of subtours having w links (connecting
w + 1 targets) for each target location in the sequence. The
individual cost from the i-th location and window size w can
be expressed as

L(w,i)(Σ,Hk) = min
Hk

i+w−1∑
j=i

L(qσj , qσj+1
), (4)

where we consider σj , σj−n for j > n to partially reflect
the closed-loop Dubins tour of the DTSP and also to have the
same window size for each location. The cost of Dubins path

connecting locations qσi , . . . qσi+w−1 is computed using the
sampling schema Hk such that the individual heading angles
are selected from the samples θi ∈ Θi. Since the subsequence
is (w + 1) targets long, the cost of opened Dubins subtour
defined by the window w can be computed in O(wk2).

The cost of the whole sequence Σ is then estimated as an
aggregated cost of the individual subtours

Lw(Σ,Hk) =
1

w

n∑
i=1

L(w,i)(Σ,Hk). (5)

For the given discretized schema Hk, the aggregated cost
is a lower bound of the discretized DTP that can be solved
optimally in O(nk3) using graph search (see Fig. 1b). It is
the lower bound because of the relaxed closed path, and the
individual subtours for the limited sized window w can take
advantage of freely selected arbitrary heading angles for the
subtour endpoints. The minimal cost of the subtour is always
lower or equal to the corresponding part of the final closed
tour among all targets and thus Lw(Σ,Hk) ≤ CHk(Σ).

The overlapping windows allow us to consider a single-
window size regardless of the current number of targets in the
sequence. It also allows us to store the result for a particular
subtour and reuse it for a repeated query on the same subtour.
In particular, we can implement result storage as a hash map,
where the key is defined by the labels of the target locations
in the sequence, and the cost is the length of the Dubins
subtour.

Furthermore, we can exploit the symmetry of the subtour
because of free endpoints, and thus the key always starts with
the label of lower value. Therefore, we revert the subtour
sequence labels if it starts with the target location of a higher
label value than it ends. Based on empirical observations,
the overlapping windows have a negligible impact on real
computational requirements because of the great benefits of
storing and reusing results for small subtours.

The computational complexity to evaluate (5) can be
bounded by O(nwk2) that immediately indicates that the
possible theoretical speedup can be achieved for w � k.
Thus, a quick rejection of the sequence Σ′′ in comparison to
sequence Σ′ can be based on an incremental increase of the
window size wj and a comparison of the estimated cost of Σ′′

using wj with Σ′ and its lower bound estimation computed
for the window size wi.

Moreover, during the solution of the sequencing part of the
DTSP, we can further assume there is a current best sequence,
Σ∗ found so far. Hence, it does not make sense to use a
long window size once the lower bound estimation of Σ′

(using short window wi) is above the cost of Dubins tour Σ∗

computed by the full solution of the closed DTP, CHk(Σ∗).
Thus, for Lwi(Σ′,Hk) > CHk(Σ∗), we can consider Σ′′ be
more promising than Σ′ if its cost estimation Lwj (Σ′′,Hk)
does not exceed Lwi(Σ′,Hk) up to the window size wi, i.e.,
wj ≤ wi.

On the other hand, if wi reaches the maximum window
size wm and Σ′′ is still cheaper for wm than Σ′ using
lower bound estimates, we cannot be sure which sequence is
supposed to be better. Therefore, we can ensure selection



between Σ′′ and Σ′ by comparing the optimal solutions
CHk(Σ′′) and CHk(Σ′), respectively, which can be however,
computationally demanding. Hence, we can approximate the
comparison of Dubins tours, and consider Σ′′ is better than
Σ′, because once the candidate sequence is selected as Σ∗,
its cost is determined by the full DTP as CHk(Σ∗). Thus,
in randomized searching such as in the VNS, the sequence
Σ′ might be eventually determined multiple times. Based on
the early evaluation, we found the approximation improves
computational performance without significantly impacting
the solution quality. Therefore, the approximate comparison
is considered for the reported results, but full examination is
listed in the proposed procedure for completeness.

The proposed rejection procedure with a sequence of
window sizes W = {w1, . . . , wm}, such that w1 < . . . <
wm, is summarized in Algorithm 2. The determination of
wi at Lines 2–5 can be saved between the function calls by
explicit usage of the variable wi. The part of the algorithm
is listed to make the description self-contained. Similarly,
the test at Line 7 can be omitted within the context of the
employed VNS-based solution of the DTSP. It is because
it examines randomly generated sequences, and promising
sequences would be selected as Σ∗ for which the cost of the
optimal DTP solution is always determined.

Regarding the computational complexity, depending on
the value of wm, the proposed comparison of sequences
using tour cost estimation can be, in the worst case, even
more demanding than the optimal solution of the DTP using

Algorithm 2: Examination of the candidate sequence
Input: Σ′′ – The candidate sequence under

examination, Σ′ – The sequence to which Σ′′

is compared to, Σ∗ – The current best
sequence found so far.

Parameters: m – the number of window sizes
W = {w1, . . . , wm} with wi = 2i−1 for
i ∈ {1, . . .m}; Sampling schema Hk
used in the sequence cost evaluation.

Output: true if Σ′′ is rejected; otherwise false.
1 Function Reject(Σ′′, Σ′, Σ∗):
2 i← 1
3 for i to m by 1 do
4 if Lwi(Σ′,Hk) > CHk(Σ∗) then
5 break // Do not use a large wi

for not promising sequence

6 for j ← 1 to i by 1 do
7 if EXACT_COMPARISON and j == m then
8 return CHk(Σ′′) > CHk(Σ′) // Decide

based on true costs

9 if Lwj (Σ′′,Hk) > Lwi(Σ′,Hk) then
10 return true // Σ′′ is unlikely to

be cheaper than Σ′

11 return false // Σ′′ might be shorter

than Σ′

discretization Hk. The main expected computational benefits
are not in a single comparison of two sequences but in quick
rejections of many candidate sequences examined in combi-
natorial heuristics or evolutionary algorithms. It is expected
that a vast majority of comparison would be resolved using
w = 1 with the theoretical complexity O(nk2).

Moreover, the query results for short subtours can be
stored (e.g., in a hash map data structure) and reuse that
can practically further reduce the computational burden up
to O(n) with the average access to the hash map with
O(1). Such storing and reusing would not be effective for a
sequence as a whole, as it is unlikely the case to examine the
same sequence multiple times. Small subsequences enable
to reuse queries as most of the sequence will remain the
same while generating new candidate sequences using a
local exchange of the targets in the sequence. The practical
impact of the proposed windowing-based rejection to the real
computational time and solution quality has been empirically
evaluated in the solution of the DTSP, and the achieved
results are reported in the following section.

VI. EMPIRICAL EVALUATION

The proposed sequence rejection is motivated to quickly
assess Dubins tours determined as a permutation of the target
locations S. The rejection is intended to be employed in
the improvement search for a new best sequence in combi-
natorial meta-heuristics such as VNS-based or evolutionary
algorithms. Since the rejection will unlikely to provide the
desired real-time speedup as a single procedure, we deploy
the rejection within the VNS-based solver to the DTSP
described in Section IV. Besides, we further demonstrate the
benefit of the windowing technique with surrogate approx-
imator [25], learned for four-point Dubins tours (w = 3).
For all the presented results using the proposed sequence
rejection, EXACT_COMPARISON is set to false, and thus
only approximated sequence costs are used in Alg 2.

The computational benefits of the rejection have been
studied for instances of the DTSP with relatively dense target
locations that require dense sampling of the headings and
also an explicit solution of the sequencing part because
the ETSP would provide a weak solution in decoupled
approaches [7]. The examined instances are defined by the
number of target locations n and density d for which the
target locations are drawn from the uniform distribution to
fill a squared area with the side length

√
n/d. The used

evaluation instances are therefore created for n = 50 and
d = 0.1. The number of heading samples for each target
location is k = 16, which is uniformly sampled. Based on
the early evaluation, six sizes (m = 6) of the sliding window
W = {1, 2, 4, 8, 16, 32} are considered in the rejection
procedure to provide a suitable trade-off between the solution
quality and computational requirements.

The proposed rejection procedure (Alg. 2) has been em-
ployed in the VNS-based solver for the DTSP (Alg. 1)
both prototyped in Julia 1.3.1 [28], and the computational
times have been obtained using a single core of the Intel
Xeon Gold 6146 running at 3.2 GHz. The solution quality



TABLE I
COMPUTATIONAL REQUIREMENTS OF EXAMINING Ns = 100 000

SEQUENCES DURING VNS-BASED SOLUTION OF THE DTSP INSTANCE

WITH n = 50, k = 16, d = 0.1

DTP VNSbase

# calls T [s] Ta [µs]

Full 100k 659 6 590

Average - 659 6 590

DTP
VNSwin′ VNSwin

# calls T Ta # calls T Ta
[s] [µs] [s] [µs]

w = 1 100k 65.2 651 100k 0.3 3
w = 2 13.1k 15.5 1 180 13.4k 0.5 36
w = 4 4.39k 9.9 2 250 4.33k 0.5 105
w = 8 998 4.5 4 510 1.12k 0.5 411
w = 16 352 3.1 8 930 410 0.4 844
w = 32 167 2.8 17 000 234 0.4 1 700

Average - 101 1 010 - 2.6 26

is reported as the normalized cost of the particular DTSP
instance found as the DTP with the resolution of the heading
samples 1024 for the sequence found as the optimal solution
of the corresponding ETSP provided by Concorde [29]. The
instances and reference values are adopted from [25].

A. Sequence Rejection in the Solution of the DTSP

Computational benefits of the proposed rejection have
been studied for the VNS-based DTSP algorithm considered
in three variants denoted as VNSbase, VNSwin′ , VNSwin

algorithms. VNSbase uses the full solution of the DTP [7],
the windowing technique is employed in VNSwin′ without
the storing and reusing subtours results, while VNSwin repre-
sents the enhanced implementation with reusing query results
via the hash map. The number of calls and the corresponding
computational times per particular window size is depicted
in Table I for Ns = 105 queries on different sequences of the
VNS-based solution of the DTSP, where T and Ta denote the
total and average computational time per query, respectively.
The evolution of the solution quality with the number of
examined sequences and computational time is reported in
Fig. 4, where quicker comparison enables more examinations
of sequences and thus a better solution.
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Fig. 4. Solution quality evolution with the number of examined sequences
(left) and real computational times (right) reported as median values among
ten instances of the discretized DTSP with n = 50, k = 16, d = 0.1
accompanied with 80% non-parametric confidence intervals.

The results indicate that the solution quality is similar
for all algorithm variants, and thus the proposed heuristic
estimation of the Dubins tour cost is sufficient. VNSbase is
computationally demanding (see Table I), and the proposed
rejection procedure decreases the computational burden, al-
beit Ta for w = 16 and w = 32 is more demanding than the
optimal solution of the full DTP in VNSbase. It is, however,
the expected behavior as the theoretical speedup holds only
for w � k. On the other hand, the number of queries for
w = 16 and w = 32 is significantly lower than that for small
window sizes, and the overall computational requirements of
VNSwin′ are about 6.5 times lower than for VNSbase.
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Fig. 5. Evolution of the number of sequence examinations using the
window size w relative to the total number of queries on sequence cost.
Notice, both axes are in the logarithmic scale.

The evolution of how many times the estimation of the
sequence cost is called for the individual window size is
depicted in Fig. 5 as the relative ratio to the number of
queried sequences. Each sequence is examined with w = 1
but less than 20 % of sequences are examined using w = 2.
The number of examinations quickly decreases with each
additional enlargement of the window size, and only about
0.1 % of queried sequences are examined for w = 32.
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Fig. 6. Evolution of the mean required computational time to examine a
single sequence query during VNS-based solution of ten instances of the
DTSP instance with n = 10, k = 16, and d = 0.1. The VNS-based
solver is terminated after 3600 s, and therefore, much more sequences are
examined by the proposed VNSwin.

The computational benefit of the windowing technique is
fully seen for VNSwin with reusing of individual subtours
queries, and the overall achieved speedup is about two orders
of magnitude; see also Table I. The hash map is being filled
with the increasing number of examined sequences, and thus



it is utilized more and more often as it can be seen in Fig. 6.
The impact of the windowing technique on the solution

quality of the DTSP has been further studied, and the
performance of the proposed VNSwin algorithm has been
compared to the existing algorithms. The results are reported
in the following section.

B. Solution of the Dense Instances of the DTSP

The proposed sequence rejection employed in the VNS-
based solution of the DTSP has been compared with two
state-of-the-art DTSP solvers1. In this evaluation, we exploit
the benefit of the windowing technique to learn surrogate
approximator using short Dubins tours employed in an evo-
lutionary algorithm denoted as iWiSM-EA [25]. Besides, the
proposed VNSwin algorithm is also compared with a regular
sampling-based approach [13] with k = 16 that is trans-
formed into an instance of the GATSP further transformed
to the Asymmetric TSP solved heuristically by LKH [30]
because the optimal solution would be too computationally
demanding. The sampling-based transformation approach is
denoted GATSPLKH.
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Fig. 7. Evolution of the median solution quality with 80 % non-parametric
confidence interval computed from solutions of ten trials for each of ten
random instances with n target locations, k = 16, and d = 0.1.

The surrogate approximator is learned by high-quality
solutions (with up to k = 1024 heading samples) of the
DTP instances with w = 3 found by the informed sampling

1See [25] for a comparison of the iWiSM-EA and GATSPLKH with more
existing approaches.

VNSwin, k = 16 VNSwin, k = 32 VNSwin, k = 64

(a) n = 50, L16 = 141.2,
L32 = 137.8, L64 = 135.0

(b) n = 100, L16 = 300.2,
L32 = 292.0, L64 = 285.2

Fig. 8. Example of found solutions for n = 50 (left) and n = 100 (right)
with k ∈ {16, 32, 64} after one hour of computation. The path length is
reported as Lk where the subscript denotes the number of heading samples
per each target.

algorithm IRIS [7]. The approximator is a multi-layer per-
ceptron [31] with three hidden layers, each with 256 rectified
linear units, trained by Adam [32]. The learned approximator
is employed in a generic evolutionary algorithm for the TSP
with simple inversion mutation [33] and OX1 crossover [34].
The initial population is created using a solution of the ETSP
found by Concorde [29], see [25] for further details.

The solution quality is measured as the relative tour length
to the reference solution of the DTP with 1024 samples for
the sequence found as the ETSP [25] and the evolution of the
normalized cost is depicted in Fig. 7. For VNSwin, motivated
by low computational requirements, we further increase the
number of heading samples up to k = 64 and we report
performance of VNSwin for k ∈ {8, 16, 32, 64}. Selected
found solutions are depicted in Fig. 8.

The reported results indicate that the windowing technique
positively influences computational requirements and sup-
ports finding better solutions in lower computational time.
The iWiSM-EA algorithm is the fastest among the evaluation
methods because it takes the benefits of learned surrogate
approximator. Although the reported times are for a single
core deployment, iWiSM-EA can further exploit multi-core
(or massively parallel graphics card) computations. However,
the approximator learned for w = 3 is not sufficient to
improve the solution that stucks in a local extreme. On
the other hand, the VNS-based algorithm enabled by the
proposed rejection schema can take advantage of many head-
ing samples k = 64, which allows improving the solution
quality. Finally, the transformation method GATSPLKH can
provide similar solutions to the iWiSM-EA and VNSwin

with wm = 32, but it is significantly more demanding.
Furthermore, both iWiSM-EA and VNSwin provide the first
solutions very quickly, while GATSPLKH needs to solve the
problem as a whole.

Note that iWiSM-EA does not need to compute Dubins
path between all target locations for all sampled headings,
and it only needs to find the initial sequence by the solution
of the ETSP. That is why plots for VNSwin and GATSPLKH



start from about ten seconds in Fig. 7. Hence, a further com-
bination of the iWiSM-EA based initialization of VNSwin

with the lazy evaluation of Dubins paths between the target
locations can provide additional computational benefits.

VII. CONCLUSION

In this paper, we present an estimation of the Dubins
tour assessment in the solution of the DTSP based on
the windowing technique utilized in the quick rejection of
possible candidate sequences of visits to the target locations.
The windowing technique improves real computation re-
quirements by rejecting sequences based on small sizes of the
windows. However, it mostly supports organizations of the
computation using short Dubins subtours that can be stored
and reused. Although theoretical complexity is not improved,
the real computational requirements are about two orders of
magnitude lower. Thus, the proposed fast sequence rejec-
tion enables to employ a relatively demanding VNS-based
metaheuristic to the solution of the DTSP. The windowing-
enabled algorithms provide better solutions than the trans-
formation method, which thus seems to be surpassed by the
proposed and recent iWiSM-EA algorithms in both criteria,
the computational requirements, and the solution quality.
Therefore, we can conclude that the proposed windowing-
based sequence rejection for routing with Dubins vehicle can
improve the scalability of algorithms for large instances of
curvature-constrained multi-goal planning problems.
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