
Variable-Speed Traveling Salesman Problem for Vehicles with
Curvature Constrained Trajectories
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Abstract— This paper presents a novel approach to the multi-
goal trajectory planning for vehicles with curvature-constrained
trajectories such as fixed-wing aircraft. In the existing formu-
lation called the Dubins Traveling Salesman Problem (DTSP),
the vehicle speed is assumed to be constant over the whole
trajectory that does not allow adaptation of the turning radius
of the trajectory between the target locations. It does not
support optimization of the overall flight time of the multi-
goal trajectory by exploiting higher speeds for longer turning
radii. Therefore, we propose a novel problem formulation called
the Variable-Speed Traveling Salesman Problem (VS-TSP) that
employs time-efficient trajectories with variable speed based
on a generalization of the Dubins vehicle model, allowing
multiple turning radii and change of the forward speed of
the vehicle. The VS-TSP allows the vehicle to slow down if
high maneuverability is necessary and speed up if high-speed
turns with a large radius are beneficial to the overall tour
cost. Based on the evaluation results for Cessna 172 aircraft
model, the proposed VNS-based algorithm with variable speed
provides up to about 20% faster trajectories than a solution of
the DTSP with a single turning radius.

I. INTRODUCTION

Multi-goal trajectory planning for a vehicle with the
minimum turning radius and fixed forward velocity is known
as the Dubins Traveling Salesman Problem (DTSP) [1] with
several existing approaches such as [2], [3]. The Dubins
vehicle model [4] constrains the vehicle to move forward
at a constant speed, and individual point-to-point shortest
paths can be found analytically. Furthermore, the cost of the
multi-goal tour can be further bounded by the lower bound
estimation of the optimal solution value [5]. However, the
fixed speed prevents the vehicle’s acceleration capabilities
from using the variable speed that directly influences the
minimum turning radius. Therefore, the model is not suffi-
cient for planning time-optimal trajectories for a vehicle that
can change its speed.

In this paper, we propose to generalize the DTSP for
optimizing the vehicle speed to determine faster trajectories
than those with a fixed speed and a minimum turning radius.
The newly introduced problem formulation is called the
Variable-Speed Traveling Salesman Problem (VS-TSP), and
an example of its solution is depicted in Fig. 1.
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Fig. 1. An example of the VS-TSP instance with eight target locations
(small black disks). The variable-speed trajectory (blue) found by the pro-
posed VNS-based algorithm provides superior travel time TVS-TSP = 95 s
compared to fixed minimum (green) and maximum (orange) speed trajec-
tories the with costs Tvmin = 116 s and Tvmax = 100 s, respectively.

The VS-TSP formulation enables determining the optimal
speed according to the mutual distance between the target
locations. The minimum speed allows the vehicle to take
advantage of its maximum possible maneuverability for very
close locations. On the other hand, the maximum speed
reduces the overall travel time on a trajectory between
mutually distant locations.

The introduced VS-TSP formulation allows reducing the
total time needed to travel the whole multi-goal trajectory.
Contrary to the solution of the DTSP, a solution of the VS-
TSP requires determining the speed problem between the
target locations that, however, depends on the sequence of
targets being found as a solution of the underlying TSP.
Similar to the DTSP, the VS-TSP also contains two main
optimization parts. First, a combinatorial part to determine
the optimal sequence of visits to the given set of target
locations. The second is a continuous optimization to find
the fastest trajectory to visit the locations in the sequence.

We propose to solve the VS-TSP by the Variable Neigh-
bourhood Search (VNS) based algorithm [6] initially devel-
oped for the DTSP, which faces the computational challenges
with fast sequence rejection. The extended Dubins vehicle
model [7] with time-efficient trajectories is employed in
the proposed solution of the continuous part of the VS-
TSP. Based on the reported evaluation results, the proposed
combination of the approaches [6] and [7] represents an
efficient solution of the introduced VS-TSP. The method
allows exploiting better capabilities of the vehicle than
the formulation of the DTSP. Hence, more time-efficient
trajectories are determined by the solution of the VS-TSP
than the DTSP.



The paper is organized as follows. Related work is sum-
marized in the following section. The VS-TSP formulation
is introduced in Section III, and the proposed VNS-based
method using time-efficient trajectories is described in Sec-
tion IV. The computational results are reported in Section V.
Conclusion and final remarks are in Section VI.

II. RELATED WORK

The most related problem to the proposed Variable-Speed
Traveling Salesman Problem (VS-TSP) is the Dubins TSP
(DTSP) [8]. The DTSP stands to determine the shortest
closed-loop path that visits the given set of target locations
while the minimum turning radius constraint of Dubins
vehicle is met. The turning radius limits the vehicle speed,
and thus a larger radius might allow faster speed at the cost
of a prolonged path. A longer path might not necessarily
result in a longer traveling time because of a higher allowed
speed. Even though the DTSP formulation does not provide a
direct way to optimize the vehicle speed according to variable
turning radius, it provides a way to solve the addressed
problem. Therefore, a brief overview of the DTSP and the
most related approaches are presented here.

A solution of the DTSP consists of combinatorial opti-
mization to select the optimal sequence of visits to the target
locations and continuous optimization to find a curvature-
constrained path for Dubins vehicle [4]. Explicit separation
of these subproblems is utilized in decoupled approaches [8]–
[10], where a sequence of visits is determined before finding
the final Dubins tour. The sequence is determined as a
solution of the Euclidean TSP, which does not consider the
minimum turning radius. Both optimization parts need to
be addressed simultaneously to find a near-optimal solution,
e.g., using genetic algorithm [11], memetic algorithm with
local optimization [12], unsupervised learning [3], or sam-
pling heading angles and transformation to the TSP [2].

The currently best performing DTSP algorithm is based
on the pre-learned surrogate model to estimate the Dubins
tour cost employed in an evolutionary algorithm [13]. The
generalization of the surrogate model to an arbitrarily long
sequence of visits is based on a sliding window scheme that
allows estimating the cost of the final trajectory using short
trajectory segments called windows. Short windows enable
efficient reuse of already computed trajectory segments be-
cause trajectories near the optimum often share some sub-
sequences. The sliding window scheme has been utilized in
the Variable Neighbourhood Search (VNS) based algorithm
for the DTSP [6], where a fast sequence rejection steers the
search towards the optimum by quick sequence assessment.
The VNS is a combinatorial meta-heuristic, which searches
the neighborhood of the current solution using local search
and shaking operators [14].

The optimization of the vehicle speed has been addressed
in finding time-optimal trajectories [15] that provide a list of
all candidates to the optimal solution. However, the approach
allows discontinuities in the vehicle speed. The authors of [7]
address the acceleration limits in Dubins path that is further
generalized using two different radii for the turn ends with

the allowed acceleration/deceleration on the straight part of
Dubins maneuver. Thus, a time-optimized speed profile is
computed, and faster, albeit longer, trajectories than Dubins
path with the minimum turning radius are reported.

Despite multi-goal trajectory planning with variable vehi-
cle speeds have been proposed for multi-rotor drones [16],
[17], there is not (to the best of the authors’ knowledge) an
approach for multi-goal variable-speed trajectory planning
with a minimum turning radius constraint that fit motion
constraints of fixed-wing vehicles. Based on the computa-
tional efficiency of the VNS-based algorithm [6], we propose
to combine it with the time-efficient trajectories [7] in the
solution of the VS-TSP.

III. PROBLEM STATEMENT

The Variable-Speed Traveling Salesman Problem (VS-
TSP) stands to find the fastest curvature-constrained trajec-
tory visiting a given set of target locations. The problem can
be seen as a generalization of the DTSP [8] where a vehicle
with a constraint on the path curvature, such as a fixed-wing
aircraft, has to visit a set of target locations with a constant
speed and limited minimum turning radius. Unlike in the
DTSP, a variable speed in the VS-TSP combines the benefit
of the high maneuverability at low vehicle speed with high-
speed trajectories for mutually distant target locations.

The employed vehicle model originates from the Dubins
vehicle [4] for which a variable speed is allowed. The state
of the vehicle q = (x, y, θ, v) consists of its location (x, y),
the heading angle θ, and speed v, i.e., q ∈ SE(2)×R. The
vehicle motion can be described by the equation

q̇ =


ẋ
ẏ

θ̇
v̇

 =


v cos θ
v sin θ
v κ
a

 , (1)

where κ is a control input representing the current curvature
of the trajectory, and a representing acceleration. The curva-
ture κ can be computed at any given point of the trajectory
as

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

. (2)

The speed of the vehicle is limited by its minimum and
maximum value

v ∈ [vmin, vmax], (3)

and minimum/maximum acceleration

a ∈ [amin, amax]. (4)

In the addressed problem, a high speed is possible only
when the curvature is low, and therefore, the speed is also
limited by the curvature of the trajectory κ

v ≤

√
Kv

|κ|
, (5)

where Kv is a constant determining turning capability of
the specific vehicle. Alternatively, the constraint might be



seen such that the curvature is influenced by the speed. For
fixed-wing vehicles, such as Cessna 172, the constant can
be determined based on the maximum bang angle ϕmax and
gravitational acceleration g,

Kv = g tanϕmax. (6)

Having the model of the vehicle and constraints on the
vehicle trajectory, the VS-TSP can formally be defined as a
problem to find cost-efficient tour visiting a given set of n tar-
get locations P = {p1, . . . ,pn}, pi ∈ R2. It is an optimiza-
tion problem to find the fastest trajectory Γ consisting of n
trajectory segments 〈Γ1, . . . ,Γn〉, Γi : [0, Ti]→ SE(2)×R,
where Ti is the travel time of the i-th segment. The trajectory
segments are connected into a closed-loop. Each connection
between two consecutive trajectory segments is located at
the one target location, i.e., each trajectory starts (ends) at
one target location. The sequence of target locations visits
is denoted Σ = 〈σ1, . . . , σn〉 and the visiting configurations
to the target locations are denoted Q = 〈q1, . . . , qn〉. The
VS-TSP thus stands to determine the optimal sequence of
visiting the targets Σ, individual visiting configurations Q,
and trajectory Γ with the minimum total travel time cost T .
The problem is formally defined as Problem 1.

Problem 1 (Variable-Speed TSP (VS-TSP)):

min
Σ,Q,Γ

T =

n∑
i=1

Ti, (7)

s.t.
Γ = 〈Γ1, . . . ,Γn〉, (8)
Γi : [0, Ti]→ SE(2)× R, (9)
Γi(0) = qi, Γi(Ti) = qi+1, (10)
qi = (pσi

, θi, vi) (11)
Constraints (1)− (5) are met, (12)

where qn+1
def
= q1 to close the trajectory into a loop.

IV. PROPOSED SOLUTION TO THE VS-TSP

The proposed method for solving the newly introduced
Variable-Speed TSP (VS-TSP) is based on the VNS [18] for
the DTSP [6] where time-efficient trajectories [7] reduce the
travel time to visit the targets by selecting an appropriate
turning radius separately for each turn in comparison to a
single fixed radius of the DTSP. The method is summarized
in Algorithm 1, and it works as follows.

First, individual trajectories connecting the n target loca-
tions are determined for discretized vehicle states at each
target location. Let have k heading angles and l speeds for
each target location; then, there are nkl samples in the total.
For a target location pσi

, the samples are denoted by the spe-
cific heading angle θai and speed vbi , where a ∈ {1, . . . , k},
b ∈ {1, . . . , l}. The mutual connections between samples are
determined in computeTrajectories(P) as the cost-
efficient trajectories [7]. The trajectories are computed by
the closed-form solution of the generalized Dubins vehicle

Algorithm 1: Proposed VNS-based solver to the VS-TSP
Input: P – A set of target locations.
Parameters: k – The number of heading samples,

l – The number of speed samples.
Output: Γ – The final trajectory with sequence Σ.

1 G← computeTrajectories(P)
2 Σ← initialization(G)
3 while t < tmax do
4 Σ′ ← shake(Σ, l)
5 Σ′′ ← localSearch(Σ′, l)
6 if T (Σ′′) ≤ T (Σ) then
7 Σ← Σ′′

8 end
9 end

10 Γ← retrieveTrajectory(Σ)

model with different turning radii at the initial and final
endpoint of the particular trajectory segment, allowing two
different speeds, the initial vI and terminal speed vF, see
Fig. 2. In the total, Θ(n2k2l2) connections are possible.
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Fig. 2. Speed profiles (bottom) with different initial and terminal speed
for the corresponding trajectories with different turning radius at the initial
and terminal endpoint of the trajectory segment (top).

The maximum curvature (or the minimum turning radius)
can be determined based on the actual speed using (5).
The vehicle speed is increased for the straight segment, if
possible, to reduce the final travel time. An example of
sampling for the VS-TSP is depicted in Fig. 3.

q1

q2

q3

Fig. 3. An example of sampling possible vehicle states in the VS-TSP
with k = 8 heading samples and l = 3 speed samples for each target
location. Computed candidate trajectories are represented by blue curves
for a single selected heading angle. The dotted circles represent turning
radii corresponding to the examined speeds.

The computed costs of the trajectories between the sam-
pled states are stored in a graph G, and a solution of the
VS-TSP is found by searching for the best sequence of
visits to the target locations among possible sequences. For a
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Fig. 4. Search graph structure to determine the fastest trajectory with cost
T (Σ) for the utilized discretization of heading angles and vehicle speeds.

selected sequence Σ, the fastest trajectory is determined us-
ing dynamic programming that takes O(nk3l3) time because
the trajectory is closed-loop. The structure of the search is
depicted in Fig. 4.

The initial sequence Σ is determined using the best
insertion method [19] in initialization() (Line 2,
Algorithm 1). It randomly inserts the first three locations into
the sequence. The remaining locations are gradually inserted
into the best possible place to minimize the cost.

The initial solution is then improved by the VNS-based
algorithm using the shake and local search procedures. For
each iteration, the current sequence Σ is randomly changed
to Σ′ in shake to try to escape from a local minimum. Then,
the local search procedure improves Σ′ via searching the
sequence neighborhood. A systematic search would be too
expensive, and therefore, a randomized VNS [20] is utilized
that examines n2 randomly selected changes in Σ′, and
applies each change that is found to be beneficial. The same
neighborhood operators as in [6] are used.

The local search procedure is the most demanding part
of the algorithm because, at each iteration, n2 candidate
sequences are examined to test if such a sequence is better
than the current sequence Σ′. The computational burden
is reduced by applying the fast rejection scheme [6]. It
takes advantage of two principles to assess sequence quality
using results of the short subtours quickly. First, determining
the fastest trajectory for an open-loop subtour takes only
O(wk2l2) where w is the length of the subtour. Secondly,
there is an increased probability that a specific subtour
is queried repetitively, and thus the already computed re-
sults are saved and reused later, which provides significant
speedup, see [6] for further details.

V. COMPUTATIONAL RESULTS

The introduced VS-TSP formulation of the multi-goal
trajectory planning is expected to reduce the travel time
compared to the DTSP with a fixed speed that has been
empirically evaluated in several test scenarios. The perfor-
mance of the employed VNS-based algorithm is compared in
generating both the constant and variable speed trajectories.
Then, the scalability of the proposed approach in terms of
density of the target locations ρ, the number of locations n,

and the number of heading samples k is reported. Finally, the
effect of the fast sequence rejection scheme [6] is examined.

All the test instances are based on the model of the
Cessna 172 aircraft to evaluate the VS-TSP formulation
in realistic scenarios. The vehicle speed is limited to
vmin = 30 m s−1, vmax = 67 m s−1, and based on the
maximum banking angle ϕmax = π

3 , the minimum and max-
imum turning radii are rmin = 65.7 m and rmax = 264.2 m,
respectively. The acceleration limits are amin = −3 m s−2

and amax = 2 m s−2.
The test instances have been randomly generated, and n

target locations are distributed randomly in a square area
with the side D according to the density ρ as

D = rmin

√
n

ρ
. (13)

For each testing scenario defined by ρ, n, and k, twenty
random instances have been generated, and the median value
is reported with its 60 % non-parametric confidence interval.

All the optimization methods have been implemented in
Julia v1.5 and executed on a single core of the Intel Xeon
Gold 6146 running at 3.2 GHz. The computational time for
solving each interval by a partial algorithm has been limited
to tmax = 3600 s. The speed is sampled into l discrete
values from the range [vmin, vmax], and both speed limits
are always part of the speed set for l > 2. The heading
angles are sampled into k values uniformly from [0, 2π). If
not specified, k = 10.

A. Influence of Variable-Speed Trajectories

The effect of variable-speed trajectories on the solution
cost is examined for five different speed settings. Using only
fixed speed vmin or vmax might be seen as the solution of
the DTSP, but acceleration/deceleration is allowed during
straight segments for the vmin case. The variable-speed vari-
ant is computed for l ∈ {3, 5, 10} speed samples.
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Fig. 5. Evolution of the solution cost with increasing computational time
for various speed samples for n = 30, ρ = 0.05, and k = 10. The bold
curves represent median over twenty random instances, the semi-transparent
area represent 60 % confidence interval around the median.
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Fig. 6. Best found trajectories (top) for the VS-TSP instances with n = 30, ρ = 0.05, and k = 10. The trajectories are accompanied with corresponding
speed profiles (bottom) from which the solution cost T is computed together with the trajectory length L.

Evolution of the solution cost with increasing computa-
tional time tmax for n = 30 with the density ρ = 0.05 is
depicted in Fig. 5. The results indicate that a single-speed
does not need a significant time to pre-compute all possible
trajectories. However, once the trajectories are computed,
the variable speed benefits from faster trajectories, and the
overall solution cost is significantly better than for the
solution of the DTSP with the fixed speed vmin or vmax.

An example of the best-found solutions together with the
corresponding speed profiles are depicted in Fig. 6. Although
the minimum-speed trajectory v = vmin is the shortest one
L = 8065 m, it requires the longest time to travel T = 224 s.
For the maximum-speed trajectory v = vmax, the travel time
is only slightly lower T = 213 s because the trajectory is
almost twice longer than for v = vmin. On the other hand,
the variable-speed model provides significantly better results
even for l = 3 because it can utilize slower and faster speeds
in one multi-goal trajectory.

B. Influence of Heading Angles Sampling

The influence of the number of heading samples k is
studied for k ∈ {4, 6, 8, 10, 12, 16, 20} and l = 5 in twenty
random instances with n = 30, ρ = 0.05. The computational
time has been limited to tmax = 10 000 s, and the solution
cost for the selected time stamps of the execution time is
depicted in Fig. 7. The results suggest that increasing number
of heading samples improves the solution quality. A small
improvement in the solution cost can be seen from k = 16
to k = 20 compared to k = 4 and k = 6, because more
samples are more computationally demanding.

C. Influence of the Target Density

An influence of the target density ρ is shown in Fig. 8. In
all scenarios, the variable-speed approach yields better results
than using a single speed. For sparse instances, vmax leads
to better solutions than vmin, which is reverted for denser
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Fig. 7. Solution cost over 20 random instances with n = 30, ρ = 0.05,
l = 5, and increasing number of heading samples k. A solution is not
found within the given time limit for k = 20 and tmax = 100 s, which is
represented by the unbounded bar.
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Fig. 8. Solution cost in 20 random instances with n = 30 for increasing
target density ρ.

instances. For ρ = 0.05, the solution cost of the both vmin
and vmax is almost identical, which explains the results for
vmin and vmax presented in Fig. 5.

D. Scalability with the Number of Targets

Results on the scalability of the proposed VNS-based
solver to the VS-TSP are depicted in Fig. 9 for n ∈
{10, 20, 30, 40} targets. The improvement in the solution cost



by exploiting variable speed is noticeable for all test cases.
It is expected behavior because even for a small number
of targets, the mutual distances between locations vary, and
there is a potential for improvement when using multiple
speeds, i.e., multiple turning radii. Therefore, the results can
be generalized for instances with different n.
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Fig. 9. Scalability of the proposed VS-TSP solver with an increasing
number of targets n. The results are summarized from 20 random instances.

E. Iterations Over Time

The effect of fast sequence rejection [6] on average
computational time per a single comparison between the
best solution found so far and newly examined solution
is depicted in Fig. 10. The comparison is less demanding
with increasing runtime because more results on short subse-
quences are reused. Hence, the computational time is spent in
examining more sequences and thus finding a better solution.
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Fig. 10. Average time per single comparison of two candidate sequences.

VI. CONCLUSION

In the paper, a novel problem formulation called the
Variable-Speed Traveling Salesman Problem (VS-TSP) is
introduced as a generalization of the existing DTSP to utilize
variable vehicle speed and thus determine faster trajectories
by an efficient selection of turning radius according to the
density of target locations. The proposed VNS-based method
utilizes discretization of the possible vehicle speed utilized
in the multi-radius extension of the Dubins vehicle model
to find time-efficient trajectories. Based on the presented
computational results, a relatively high number of speed
samples are needed to significantly improve the solution

of the herein addressed multi-goal trajectory planning with
curvature-constrained trajectories. However, the employed
fast sequence rejection method based on the sliding window
scheme reduces the computational load. It thus enables
searching a larger search space than for a single-vehicle
speed of the regular DTSP. Overall, the proposed VS-TSP-
based method produces up to about 20 % faster trajectories
compared to the utilization of a single constant speed.
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[16] J. Faigl, P. Váňa, and R. Pěnička, “Multi-vehicle close enough orien-
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[18] N. Mladenović and P. Hansen, “Variable neighborhood search,” Com-
puters & Operations Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[19] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, “An analysis of
several heuristics for the traveling salesman problem,” SIAM journal
on computing, vol. 6, no. 3, pp. 563–581, 1977.
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