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Abstract— Personal air transportation on short distances, so-
called Urban Air Mobility (UAM), is a trend in modern aviation
that raises new challenges as flying in urban areas at low
altitudes induces an additional risk to people and properties
on the ground. Risk-aware trajectory planning can mitigate the
risk by detouring and flying over less populated and thus less
risky areas. Existing risk-aware trajectory planning approaches
are computationally demanding single-query methods that are
impractical for online usage. Moreover, coordinated planning
for multiple aircraft is prohibitively expensive. Therefore, we
propose to reduce computational demands by determining low-
risk areas called safe corridors and creating a roadmap of safe
corridors based on multiple least risky trajectories. The created
roadmap can be used in graph-based multi-agent planning
methods for coordinated trajectory planning. The proposed
method has been evaluated in a realistic urban scenario,
suggesting a significant computational burden reduction and
less risky trajectories than the current state-of-the-art methods.

I. INTRODUCTION

The Urban Air Mobility (UAM) is an emerging trend in
the aerospace industry [1]. The UAM aims to fill the current
lack of affordable aerial transportation on short distances,
mainly in urban areas, and serve as a personal air taxi. An
increasing number of small aircraft flying within urban areas
can be expected [2] that can consequently increase the risk
of an accident within urban areas. Any accident threatens the
aircraft, passengers, and people on the ground. Due to the
high population density in urban areas, any such accident
could have immense consequences, such as the number of
casualties and caused material damage.

As proposed in [3], risk-aware trajectory planning is a
possible approach to minimize the risks in the case of a
malfunction. An aircraft trajectory can be planned such that
the induced risk in the case of a malfunction is minimized.
However, such an approach can be computationally demand-
ing, and a motion planning roadmap created during planning
may be hardly reusable, not to mention the support of multi-
aircraft planning. On the other hand, the least risky trajecto-
ries tend to be located over less risky areas such as rivers or
brownfields [4]. Such low-risk segments of the trajectories,
called safe corridors, are commonly used in the least risky
paths. Thus, a roadmap of safe corridors can be created.
Then, standard graph-based path planning techniques can be
employed to plan risk-aware trajectories quickly. Expected
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Fig. 1. Least risky trajectories pass through low-risk areas such as above
a river, forest, or brownfield. Such commonly low-risk areas called safe
corridors are likely to be used if flying through nearby areas. Hence, a
roadmap of safe corridors (in yellow) can be created to plan the least risky
trajectory instead of extensive planning of a new trajectory.

start and goal configurations can be inserted in the pre-
computed roadmap, and the least risky trajectory through
the graph can also be found for multiple aircraft.

In this paper, we present a method to create a roadmap
of safe corridors based on the analysis of the least risky tra-
jectories. The method identifies safe corridors and creates a
roadmap for efficient risk-aware path planning. The approach
is based on computing risk-aware trajectories that minimize
possible risk in the case of a failure and extracting the safe
corridors that cover areas with dense, safe trajectories that
would be most likely above less populated areas. The idea
of the corridors is visualized in Fig. 1.

The rest of the paper is organized as follows. An overview
of the related work is provided in the following section.
The formal definition of the studied problem is given in
Section III. The proposed method is introduced in Section IV.
Results of the performed empirical evaluation of the pro-
posed solution are presented in Section V, and the conclusion
and final remarks are in Section VI.

II. RELATED WORK

A possible approach to increase the safety of the UAM
is risk-aware trajectory planning can be to provide the least
risky trajectories. The existing risk-aware trajectory planning
methods are based on single-query randomized motion plan-
ning methods that consider risk aspects and possible failures
of the aircraft. The most related methods are overviewed in
this section to provide background on risk-aware trajectory
planning inherently needed in the proposed generation of
safe corridors.

First, an aircraft model is required to satisfy vehicle
motion constraints. The Dubins airplane [5] is a simplified
model of an aircraft based on the Dubins vehicle model [6].



The Dubins airplane model is modeled as a vehicle with
a constant forward velocity, limited turning radius, and
pitch angle. Although the Dubins maneuver is proven to
be the shortest unambiguous connection of two points with
prescribed heading angles in 2D for Dubins vehicle, such
a maneuver cannot be found in the 3D space for Dubins
airplane model due to the limited pitch angles. Thus, several
trajectory planning methods have been proposed for finding
the shortest 3D Dubins maneuver in [7], [8], [9] that can be
employed in risk-aware trajectory planning.

The least risky trajectory might not necessarily be the
shortest but minimizes possible casualties in the case of
aircraft failure. According to the safety report [10], the loss
of thrust is the most likely failure type with a significantly
higher probability than a failure of the aircraft followed by
an uncontrolled fall. The risk-aware planning approaches
presented in [3], [11], [12] allow risk mitigation for aircraft
flying at a fixed altitude, but the possibility of an emergency
landing after loss of thrust is not considered at all. In [13],
[14], the authors addressed trajectory planning with the
guaranteed possibility of an emergency landing in the case of
the loss of thrust. In [15], a risk-aware trajectory planning is
proposed that eliminates the risk induced by the loss of thrust
by guaranteeing the possibility of an emergency landing
while minimizing the risk induced by the total failure of
the aircraft. However, the methods are too computationally
demanding for quick on-demand queries.

The aforementioned risk-aware trajectory planning meth-
ods are single-query methods providing a solution for a
single planning scenario. In contrast, multi-query methods,
such as the PRM* [16], can re-use the already determined
roadmap for multiple planning instances and become more
efficient. However, these methods may not always be usable.
For example, numerical optimization-based path planning as
in [17] or neural network-based path planning as in [18]
are purely single-query, and utilizing multi-query approaches
would be difficult. Hence, learning the topology of least-risky
trajectories that we can call corridors is desirable.

To the best of the authors’ knowledge, there is no method
for creating such a roadmap of safe corridors from some
existing safe trajectories. Therefore, we present the most
related work that can be extended to generate safe corridors
in the rest of this section.

A flight path based on pre-determined flyable areas is
presented in [19] using the skeletonization of a flyable area
to determine candidate points interlaced by the B-splines to
assure the feasibility of the path. The work could be extended
to extract safe corridors by assuming known paths are the
flyable area and performing the skeletonization. However,
spatial information defines the flyable area only, and heading
is not considered. Thus, the method is not capable of creating
directional corridors.

The desired roadmap of safe corridors can be built by
clustering trajectories into corridors. Clustering [20] allows
dividing objects into groups with a high similarity among
objects in the same group. Therefore, known trajectories can
be clustered, creating edges in the safe corridor roadmap.

Based on the presented literature review, we consider the
Dubins airplane model and existing risk-aware trajectory
planning for determining safe trajectories. We propose to em-
ploy the general idea of clustering trajectories to determine
a roadmap of safe corridors. The studied problem with the
considered constraints and assumptions is formally defined
in the following section.

III. PROBLEM STATEMENT

The addressed problem is determining a roadmap of the
least risky trajectories to speed up the planning process. At
the same time, the quality of the solution should be affected
as little as possible. The risk-aware trajectory planning
problem stands to find the least risky trajectory from an
initial to a final configuration, and its formal definition can
be found in [15]. However, the necessary background on
the considered motion constraints and assumptions is briefly
introduced here to make the paper self-contained.

A fixed-wing aircraft is modeled as the Dubins airplane
model [5]. The vehicle configuration q consists of its position
(x, y, z) ∈ R3, heading angle θ ∈ S, and pitch angle ψ ∈ S,
i.e., q = (x, y, z, θ, ψ), that define the configuration space
C = R3 × S2. The Dubins Airplane moves as

ẋ
ẏ
ż

θ̇

 = v


cos θ cosψ
sin θ cosψ

sinψ
uθρ

−1

 , (1)

where the vehicle forward velocity is v, the control input
uθ ∈ [−1, 1] changes the heading angle θ, and ρ denotes the
minimum turning radius. The pitch angle ψ is considered to
change significantly faster than the heading angle θ in the
Dubins airplane model. Thus, abrupt changes in the pitch
angle are allowed, but the pitch angle must be within the
given limits ψ ∈ [ψmin, ψmax]. The environment can contain
obstacles O, and therefore, the vehicle trajectory is planned
in the collision-free part of the configuration space Cfree.

A risk r to people on the ground induced by a point-
to-point trajectory Γ : [0, TΓ] → Cfree from qi ∈ Cfree to
qf ∈ Cfree at the end time TΓ is given as

r(Γ) =

TΓ∫
0

M (Γ(t)) dt , (2)

where M is an aircraft-dependent risk map, and M(q)
denotes a risk associated with a configuration q. The risk-
aware trajectory planning problem of finding the least risky
trajectory can be formally defined as determining a trajectory
with minimal trajectory-induced risk r. The optimal path Γ∗

for the given endpoints is defined as

Γ∗ = argmin
Γ
r(Γ) , (3)

s.t. Γ∗(0) = qi, Γ∗(TΓ∗) = qf , (4)

and the corresponding risk induced by such a trajectory is

r∗(qi, qf ) = r (Γ∗) . (5)



Fig. 2. An example of the roadmap G with vertices V (orange) and edges
E (black/blue). The high-quality/optimal path Γ∗ between the selected
configurations qi and qf (red) is depicted in green. The least risky trajectory
ΓG obtained from the roadmap G is depicted in blue, connections of qi
and qf with the roadmap are denoted by dashed lines. Because ΓG is only
an approximation of Γ∗, its overall risk rG can be higher than the risk r∗

of the individually determined (high-quality/optimal) trajectory Γ∗.

The herein studied problem is to find a roadmap G with
vertices V and edges E usable in multi-query planning of
the least risky trajectories. The roadmap G can be considered
an approximation of the optimal risk-aware trajectories, and
a trajectory ΓG determined in G approximates the optimal
trajectory Γ∗, which is visualized in Fig. 2. Thus, we aim to
find an approximation that would minimize the relative risk
of the roadmap trajectories compared to the optimal ones.

Let ΓG be the least risky trajectory in G between config-
urations qi and qf . The trajectory goes through intermediate
configurations vi ∈ V . The indices of such vertices can be
expressed as Σ = {σ1, . . . , σ|Σ|}. The risk rG of ΓG from
qi to qf in the roadmap G can be then expressed as

rG(qi, qf ) = min
Σ

[
r(qi, vσ1

) +

|Σ|−1∑
l=1

r(vσl
, vσl+1

)+

+r(vσ|Σ| , qf )

]
.

(6)

Now, we can express the creation of safe corridors as
determination of the roadmap G with k vertices using h
trajectories that would cover the operational area such that
the mean relative risk induced by the trajectories from G is
minimized. The optimization can be formally expressed as

Problem 3.1 (Determining Safe Corridors Roadmap G)

minimize
G

1

h

h∑
j=1

rG(qji , q
j
f )

r∗(qji , q
j
f )
. (7)

In theory, we can consider an infinite number of trajecto-
ries that would cover the whole Cfree by optimal trajectories
with the minimal risk r∗ and consider the limit in (7)
for h→∞. In practice, we are limited by the available
computational time; therefore, only a limited number of
trajectories can be utilized. Besides, the optimal trajectories
found by the asymptotically optimal motion planner, such as
RRT*-based [15], would provide trajectories whose quality
depends on the provided computational time. However, for
a particular set of the least risky trajectories Γi, we aim to

determine G that would be sufficiently sparse to support a
quick determination of trajectories ΓG

i with a similar risk as
it would have for Γi.

IV. PROPOSED METHOD

The proposed method creates a roadmap of safe corridors
based on processing a huge number of trajectories of the
point-to-point risk-aware planning instances. Therefore, the
first phase of the method is a solution to point-to-point
planning instances. Then, the determined trajectories are
processed into a roadmap of safe corridors. The presented
method is focused on generating the corridors from tra-
jectories that can be determined by an existing risk-aware
trajectory planning method. Thus, only a brief overview of
the point-to-point planning is presented. Finally, the whole
proposed method is summarized in Algorithm 1 that is
further described in detail in the following parts.

Algorithm 1: Safe Corridors Roadmap Creation
Input: M – Risk map.
Parameter: A – Aircraft model.
Parameter: k – Number of clusters.
Parameter: n – Number of scenarios.
Output: G – Roadmap of safe corridors.

1 Function CreateCorridors(M):
2 Q ← ∅
3 for j ← 1 to n do
4 (qi, qf ) = GenerateScenario()
5 Γj ← PlanTrajectory(qi, qf ,M)

6 {qj1, q
j
2, ..., q

j
mj
} ← SamplePath(Γj , δ)

7 Q ← Q∪ {qj1, q
j
2, ..., q

j
mj
}

8 C ← Cluster(Q, k)
9 G← {V ← C,E ← ∅}

10 for i← 1 to n do
11 for j ← 1 to mi − 1 do
12 v′ ← NearestCenter

(
qij ,V

)
// Eq. 12

13 v′′ ← NearestCenter
(
qij+1,V

)
// Eq. 12

14 if v′ ̸= v′′ then
15 E ← E ∪ {(v′, v′′)}

16 return G

A. Generation of Trajectories and Input Samples

The roadmap is created from the solution of the point-to-
point planning instances that are generated randomly such
that the pairs of start and goal configurations uniformly cover
the whole given map of the operational area. Once a planning
scenario is generated by the method GenerateScenario

(Algorithm 1, Line 4), it is solved by the PlanTrajectory

routine using the RRT*-based risk-aware trajectory plan-
ning [15] that provides the least risky trajectory Γj for
the given scenario. The obtained trajectory consists of
consequent Dubins maneuvers with various radii adopted
from [21]. The trajectory is sampled by the SamplePath with



(a) Trajectories over the city map (b) Centers of the clusters (c) Population density

Fig. 3. A heatmap of the least risky trajectories obtained by [15] and results of their clustering: (a) 3 678 trajectories, and the city map; (b) resulting
cluster centers (orange); (c) population density layer of the map. The darker the area is, the more trajectories are passing through it. A strong network
of highly used areas can be noticed; however, trajectory direction is omitted, and only a 2D projection is shown. The trajectories have been sampled and
clustered into k = 500 clusters. Notice that the cluster centers are located along the most commonly used areas by the least risky trajectories.

the sampling step δ (Algorithm 1, Line 6), and mj obtained
samples are added into the set of all samples Q. The process
is repeated until the desired number of scenarios is solved.

B. Generation of Safe Corridors Roadmap

Once the determined trajectories are sampled, the samples
are clustered by the Cluster routine providing the centers
of clusters (Algorithm 1, Line 8). The goal is to substitute
all near samples with a single vertex in the roadmap. The
used clustering is based on k-means algorithm [22] modified
for SE(2) by the distance function between two samples q1
and q2 as

dist(q1, q2) = max

(∥∥q2D
1 − q2D

2

∥∥ , dmax

∆θ
max

∣∣∠(qθ1 , qθ2)∣∣) , (8)

where
∥∥q2D

1 − q2D
2

∥∥ is the Euclidean distance between the
samples, ∠(qθ1 , q

θ
2) is the angular difference between their

headings, and ∆θ
max and dmax are the maximum heading

difference and Euclidean distance between two samples to
be considered as near, respectively. The mean configuration
cj = (xj , yj , zj , θj , ψj) from a set of configurations Ωj

belonging to the j-th cluster is determined as

(xj , yj , zj) =
1

|Ωj |
∑
q∈Ωj

(q.x, q.y, q.z) , (9)

θj = atan2

∑
q∈Ωj

(sin (q.θ) , cos (q.θ))

 , (10)

ψj = atan2

∑
q∈Ωj

(sin (q.ψ) , cos (q.ψ))

 . (11)

Once the samples are clustered, the obtained centers of the
clusters C form vertices V of the safe corridors roadmap G
(Algorithm 1, Line 9). The edges can be created between all
vertices within some neighborhoods, similar to the PRM*.
However, it would result in unnecessary connections never
used in the least risky trajectory. Besides, the complexity
of graph-based planning algorithms depends on the number

of edges. Thus, connecting all vertices would unnecessarily
increase the overall computational demands. Therefore, the
edges E of the roadmap G are determined based on the
original samples’ connections as follows.

The nearest cluster center is found by

NearestCenter(q,V ) = argmin
v∈V

dist(q, v) (12)

for two consecutive samples qij and qij+1 of the same trajec-
tory Γi (Algorithm 1, Lines 12 and 13). If the samples are
from different clusters, an edge between the centers of these
clusters, denoted as v′ and v′′, is created in the roadmap G.

V. RESULTS

The proposed safe corridors roadmap determination
method has been evaluated in a realistic urban scenario to
demonstrate its performance and behavior. The assumed ur-
ban area is 5 km×5 km large, based on the Prague city center.
The aircraft model utilized in the evaluation is Cessna 172,
adopted from [13], with a minimum turning radius of 65.7 m.

First, 3 678 pairs of the start and goal configurations
have been generated such that these pairs uniformly cover
the whole map. Then, the least risky trajectory has been
found for each generated planning instance using [15], which
represents the reference method. Based on therein reported
results, the planning time for each instance has been set to
750 s. The resulting trajectories are visualized in Fig. 3a.
Finally, the found trajectories have been sampled, and the
samples have been clustered using k-means clustering with
the proposed distance function (8). The maximum angular
difference ∆θ

max = 30° and Euclidean distance dmax =
250m have been used in (8). Various numbers of the clusters
k ∈ {25, 50, 100, 250, 500, 1500} have been examined to
evaluate their influence on the roadmap quality. Note that
k defines the number of vertices in the created roadmap G.
An example of found roadmap vertices (cluster centers) for
k = 500 is depicted in Fig. 3b. A risk associated with the
found connections in the safe corridors roadmap has been
evaluated by a risk function adopted from [15].



(a) All scenarios (b) Scenarios where ∥q2Di − q2Df ∥ > 2000m

Fig. 4. Influence of the number of vertices in the roadmap G on the relative risk and relative length (normalized with respect to the reference method):
(a) results from all solved scenarios; (b) results only from scenarios in which start qi and goal qf configurations are distant. Medians (white dots) and
90% non-parametric confidence intervals (thick vertical lines) are shown. The relative risk decreases with an increasing number of vertices as denser
roadmaps are obtained. Once the area is sufficiently covered (|V | = 250), a further increase in the number of vertices does not improve the roadmap
quality. However, for too many vertices (|V | = 1500), the roadmap quality decreases slightly as the clusters used for vertex generation become too small.

The proposed method has been implemented in Ju-
lia ver. 1.6.2 [23] and executed on a single core of the
Intel® Core™ i7-9750H CPU. The generated scenarios have
been solved using the found roadmap; the overall trajectory
risk has been compared to the original risk-aware planning
results to evaluate the quality of the found roadmap as fol-
lows. The start and goal configurations are inserted into the
roadmap, and the planning instance is solved by Dijkstra’s
algorithm [24], a graph-based planning algorithm.

TABLE I
SUCCESS RATE OF THE PROPOSED METHOD ON 3 678 SCENARIOS

No. of vertices k 25 50 100 250 500 1500

Success rate [%] 99.27 99.54 99.46 99.73 99.95 99.97

Based on the success rate depicted in Table I, only a few
scenarios have not been solved. It is because the start and
goal configurations are inserted into the roadmap by a single
Dubins maneuver. Therefore, a feasible insertion may not be
possible in cases where all the possible connections violate
no-flight zones. A more complex maneuver would be needed,
which is considered out of the paper’s scope.

Evaluation results on the induced risk and trajectory length
of paths obtained by the proposed safe corridors roadmap
compared to the reference method [15] are depicted in Fig. 4.
The induced risk generally decreases with the increasing
number of vertices as the safe corridors are better covered.
For sufficient corridor coverage, the roadmap quality does
not increase with the number of vertices. However, the risk
starts to slightly increase from a certain number of vertices,
suggesting the clusters become too small, which is supported
by the increasing length of the obtained solutions.

Surprisingly, the proposed method provides better results
than the reference in many cases. The reference method
is asymptotically complete, meaning that the quality of its
solution increases with increasing planning time. Although
the planning time 750 s seemed sufficient, the provided

TABLE II
ROADMAP QUALITY BASED ON 3 678 TRAJECTORIES

No. of vertices k 25 50 100 250 500 1500

Roadmap quality [-] 1.33 1.16 1.11 1.00 1.00 1.02

results are still only close to optimum. The proposed method
creates safe corridors from a huge number of close-to-
optimum trajectories by the reference method; safe corridors
closer to the optimum can be built. The risk reduction would
most likely be less significant for longer planning times.
The roadmap quality as defined in (7) based on h = 3678
trajectories is depicted in Table II. Based on the results,
k = 500 vertices in the roadmap have been selected for
further detailed analysis as a suitable trade-off between the
computational demands and the roadmap quality.

A. Detail Performance Analysis

For k = 500 vertices, the median of risk reduction is 6 %
compared to the reference method with 90 % non-parametric
confidence interval [0.76, 1.25] of the relative risk. The me-
dian of the length reduction is 5 %, and 90 % non-parametric
confidence interval of relative length is [0.73, 1.51]. On the
contrary, the trajectory risk and length increase significantly
in some cases. As it can be seen in Fig. 5, it is only the
case for instances where the start and goal configurations
are close to each other; hence, connecting to the roadmap
from the start configuration and from the roadmap to the goal
configuration significantly increases the path length, and thus
its risk. We argue that such short flights are very unlikely in
real life; hence, the practical impact would be minimal.

In addition to reducing trajectory risk and length, the
proposed method significantly reduces the computational
demand for solving a single query, see computational times
depicted in Table III. Although the time to create the
roadmap increases with the number of roadmap vertices, the
average time of single query decreases. It is because a dense
roadmap allows shorter insertion maneuvers of the start and



Fig. 5. The relative risk (normalized by the reference method) depends
heavily on the distance between the start and goal configurations. The closer
they are, the more significant role of the extra connection from the start to
the roadmap and from the roadmap to the goal is. However, the very short
flights are very unlikely in a real-life scenario.

TABLE III
COMPUTATIONAL DEMANDS OF THE PROPOSED METHOD

No. of vertices k 25 50 100 250 500 1500

Pre-generation of Q 28.5 CPU days

Clustering time [s] 24 71 77 264 480 954
Roadmap creation [s] 451 416 551 488 573 782

Avg. query time [s] 2.9 1.9 1.9 1.1 1.1 0.8

goal configurations, and the used risk evaluation method [15]
scales with the length of the maneuvers. The average time of
the single query decreases with shorter insertion maneuvers
and thus with the increased number of roadmap vertices.

The safe corridor roadmap is determined in several min-
utes for the utilized computational environment with a single
core CPU. However, a solution query is obtained in the order
of units of seconds on average compared to 750 s of the
single-query reference method [15].

VI. CONCLUSION

In this paper, we address a generation of safe corridors
roadmap for risk-aware trajectory planning in UAM sce-
narios. The addressed problem is motivated by decreasing
computational demands of the existing single-query risk-
aware trajectory planning methods. A single-query approach
is relatively computationally demanding and can only pro-
vide the least risky trajectory for a given scenario. The
proposed method determines commonly used areas called
safe corridors among the least risky trajectories determined
for various scenarios. The created roadmap of safe corridors
can be utilized in multi-query risk-aware trajectory planning
using quick graph-based search algorithms that provide the
trajectory within a few seconds compared to hundreds of
seconds needed by the single-query approach. Furthermore,
the proposed method finds less risky trajectories than the
reference method. It is because the single-query approach
determines a single trajectory while the proposed method
aggregates a huge number of trajectories, each determined
for the same planning time. Once the roadmap is created,
the proposed approach provides better risk-aware trajectories
with significantly lower computational requirements than the
previous approach.
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