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Abstract: The neurally based gait controllers for multi-
legged robots are designed to reproduce the plasticity ob-
served in animal locomotion. In animals, gaits are regu-
lated by Central Pattern Generator (CPG), a recurrent neu-
ral network producing rhythmical signals prescribing each
leg’s action timing, leading to coordinated motion of mul-
tiple legs. The biomimetic CPG-RBF architecture, where
leg motion timing is encoded by Radial Basis Function
(RBF) neurons coupled with CPG, is used in recent gait
controllers. However, the RBF neurons coupling is usually
parameterized by the supervisor. Therefore, the RBF pa-
rameters get outdated when the CPG signal’s wave-form
changes. We propose self-supervised dynamics for RBF
parameters adapting to a given CPG and producing the
required gait rhythm. The method orders the leg activ-
ity with respect to inter-leg coordination rules and maps
the activity onto CPG states. The proposed dynamics pro-
duce rhythmic control for three different hexapod gaits and
adapts to the CPG parametric changes.

1 Introduction

The biomimetic approach of the gait control is adopted
in multi-legged robotics to imitate robustness and adapt-
ability observed in animal locomotion [1]. The locomo-
tion is driven by a neural network that continually controls
and adapts to the environment during movement. In the
context of the gait control, the essential part of the neu-
ral network is a Central Pattern Generator (CPG) [2], re-
currently connected neurons generating rhythmical signals
that drive the motion. The CPG is thus employed in many
biomimetic multi-legged robot gait controllers [3].

In CPG-based controllers, the CPG drives the repetitive
gait motion. During a regular motion, the gait can be de-
scribed as a repeating sequence of leg movements, where
each movement is performed at a certain motion phase.
The motion phase is a hidden state that can be inferred
from sensory feedback [4], or, as in our case, tracked by
the CPG.

The CPG signal is periodic, and thus the state of the
recurrent neural network representing the CPG creates a
limit cycle, a closed trajectory in the state space. The CPG
state then tracks the hidden motion phase of the gait [5,
6], where each leg movement corresponds to some CPG
state. The method of mapping the leg movements onto the
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Figure 1: On the left: schema of leg motion phase φi
relations. Each vertex represents the motion phase of
the leg of the corresponding color on the corresponding
anatomic position. The black oriented edges indicate re-
pulsive forces maintaining antiphase; the green edges indi-
cate keeping a specified distance from the other phase. The
colors and positioning correspond to the robot schema on
the right. On the right: the robot schema with colored and
labeled legs, corresponding to labeling in Figs. 2 and 3.
The arrow indicates the direction of the robot’s movement.

CPG state is determined by the selected architecture of the
CPG-based controller.

In this paper, we focus on the architecture where the
CPG is coupled with Radial Basis Function (RBF) neu-
rons, where each RBF neuron fires at a particular CPG
state [7, 8]. The RBF neuron activity dependes on the dis-
tance of the input point to the neuron’s parameter point,
i.e., the activity dependes on the radius around the fixed
parameter determining vicinity in which the input point is.
Hence, radial basis function neurons.

In our method, the RBF neurons are parameterized by
the centers placed into the CPG’s state space such that
when the CPG state, representing the input, is near one of
the centers, the corresponding RBF peaks in the activity.
The RBF activations can then be used as motion phase en-
coding, motion primitive trigger, or couple multiple CPGs.

As far as we know, in all current CPG-RBF controllers,
the RBF centers are set up by a supervisor. Such a prior
parametrization assumes that the CPG properties remain
unchanged during the locomotion. Due to the assumption
of static properties, the CPG cannot be optimized (e.g., by
Righetti’s learning rule [9]) nor the entraining waveform
can be changed, which poses a limitation to the adaptabil-
ity of the system.
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In this work, we propose a dynamic rule for RBF cen-
ters self-organization that generates gaits. The proposed
method decomposes the RBF centers organization into two
tasks. First, the organization of leg movements in phase
space that is consistent with Inter-leg Coordination Rules
(ICRs) [10] and given phase offset of consecutive legs’ ac-
tivity [11], providing phase relations within legs actions
(see Fig. 1). The second task is the mapping of the or-
ganized leg movements onto CPG states. Both tasks are
processed continually by the proposed dynamic rules and
organize the RBF centers along the CPG’s limit cycle, so
the resulting rhythm produces a corresponding gait.

The method is implemented on a hexapod walking robot
in the simulated environment, where we show that the pro-
posed solution generates multiple gaits consistent with the
ICRs. We also demonstrate the adaptive capabilities dur-
ing change of CPG properties, where the proposed solu-
tion adapts to the changes.

2 Related Work

CPG-based controllers can be found in wearable and
legged robotics. The controllers can consist of two sub-
modules: amplitude control, providing the magnitude of
actuation, and phase control, providing the actuation tim-
ing [12, 13]. The CPG is involved in the phase control,
where the CPG state represents the motion phase. One of
the distinguishing features of the CPG-based controllers is
how the CPG state is mapped into the movement phase.
Three types of CPG-to-motion mapping can be distin-
guished: continuous, binary-phase switch, and its gener-
alization multi-phase switch, characterized as follows.

Continuous mapping reshapes the CPG signal into the
motion command with continuous function. In [14], where
the CPG signal is empirically reshaped into joint angle
command. The authors of [15] interpret the CPG output as
a foot tip position that is transformed into joint angles by
inverse kinematics. In [16], the CPG output is directly fed
as an input of a PD controller that transforms the CPG out-
put into angles of leg joints. Continuous maps depend on
the wave-form of the CPG, which might limit the system
adaptation, as the wave-form changes non-linearly with
changing CPG parameters.

In contrast, using the CPG as a binary switch makes
the system independent of the exact shape of the wave-
form and rather uses the CPG as a timing generator. The
CPG can be used for switching between the stance and
swing leg motion modes, where each mode has its con-
trol rules [12, 17]. The switching approach can be com-
bined with a continuous mapping approach as in [18],
where two different CPG output shapers are defined for
the stance and swing motion modes, respectively. Using
the CPG as a switch between stance and swing leg mo-
tions is straightforward; however, it forces the architecture
to contain at least one CPG per leg as each leg needs its
swing/stance timing. In multi CPG networks, the different

Table 1: Phase offset of consecutive legs for corresponding
gait pattern

gait pattern: tripod transition wave

phase offset ∆φ : π 2π/3 π/3

gaits are implemented by learning the correct connectivity
between CPGs, which might be difficult as the interaction
between CPGs is generally non-linear. The networks of
multiple CPGs can be avoided by generalizing the binary-
phase into a multi-phase approach provided by CPG-RBF
architecture.

The CPG-RBF architecture has been recently proposed
in [19], and it provides a straightforward representation
of the map between CPG states and motion phase using
the RBF layer. The straightforward motion phase repre-
sentation is utilized in [8], where the RBF output is used
to learn the amplitude control with reinforcement learning
mechanisms. The RBF neurons themselves can be trained
to adapt general CPG with the periodic Grossberg rule. It
is presented in [7], where the learning rule is used to cou-
ple two CPG layers specialized in sensory estimation and
motor phase control.

In the context of gait generation, each of the three ap-
proaches has a different way of parameterizing the gait.
While there are already proposed methods for gait learn-
ing for continuous and binary mapping approaches [14,
13, 12, 18], there is none for the CPG-RBF architecture.
The aforementioned CPG-RBF controllers have RBF cen-
ters set by a supervisor, limiting the system to static CPG’s
properties. Since we aim to increase the adaptability capa-
bilities of the CPG-RBF controllers, we propose a self-
organizing method for the RBF centers that generate the
desired gait patterns for the hexapod walking robot.

3 Problem Statement

The gait phase controller provides the timing for each i-
th leg to coordinate the leg movement. We focus on the
movement patterns that are consistent with three inter-leg
coordination rules (ICRs) observed from hexapod insect
gaits [10]: (i) while a leg is lifted-off, suppress the lift-off
of the consecutive leg; (ii) if the leg touches the ground,
initiate the lift-off of the consecutive leg; (iii) do not lift
off the contralateral legs at the same time. The swing du-
ration given by the phase offset ∆φ [11] then determines
the exact motion pattern (see Tab. 1) as it is depicted in
Figs. 2 and 3, where the motion states of the feasible gaits
are visualized with the color labeling as in Fig. 1.

For the CPG-RBF phase controller, we encode the coor-
dinated timing by coupling RBF neurons to a single CPG,
where each i-th RBF neuron drives the corresponding i-th
leg. Generally, the CPG state evolution, yyy(t) ∈ RD, can
be modeled by the differential equation ẏyy = f (yyy(t),c(t)),
where the dot notation represents differential with respect
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Figure 2: Visualization of legs’ activity during the repeat-
ing phase for the desired gait patterns. The color bar rep-
resents the duration of the corresponding leg’s swing ac-
tion. Note that the ordering and relative distance (phase
offset) of actions are important, not their particular posi-
tion within the phase. The gaits have more valid ordering
options, and the figure represents only one of the possible
orderings.
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Figure 3: Example visualization of motion phases φi (col-
orful dots) correctly ordered within the phase (black circle)
to produce the desired gait patterns. The interval [0,2π)
representing phase is depicted as a unit circle using cos(φ)
for the horizontal axis and sin(φ) for the vertical axis for
φ ∈ [0,2π). Note that the ordering and relative distance
(phase offset) of actions are important, not their particu-
lar position within the phase. The gaits have more valid
ordering options and the figure represents only one of the
possible orderings. The motion phases for simultaneously
activated legs in tripod gait are overlapping.

to time, and the system f contains a limit cycle attrac-
tor, yyy0 ⊂ RD: a looped trajectory to which all neighboring
states converge. Thus, after the convergence, the CPG is
T -periodic, yyy(t) = yyy(t +T ), and the CPG generates a peri-
odic signal. The CPG state is an input for the RBF neuron
activation ϕ(yyy;www) = exp

(
−ψ ‖yyy−www‖2

2

)
, where the cen-

ter www ∈ RD and hyperparameter ψ determines the timing
and duration of activation, respectively. The RBF neu-
ron peaks when the CPG state is close to the RBF center,
yyy(t) ≈ www(t), generating periodic peaks. For each i-th leg,
there is a corresponding RBF neuron with center wwwi, which
peaks trigger the lift-off.

For a general CPG, the centers wwwi cannot be placed a pri-
ory, as the shape of the limit cycle yyy0 is not known. More-

over, the limit cycle can change its shape dynamically with
changing parametrization of CPG dynamics f (·) or differ-
ent CPG input c(t). Thus the centers wwwi of RBF neurons
need to be dynamically adjusted to drive the locomotion
according to the coordination rules and given phase offset
∆φ .

4 Method

We propose dynamic rules that form feasible gait patterns
by organizing the RBF centers wwwi on the CPG’s limit cycle
yyy0 while respecting the ICRs and maintaining the given
phase offset ∆φ . The task is decoupled into two subtasks:
(i) order the lift-offs of each i-th leg into a sequence and
(ii) map the sequence onto the CPG limit cycle.

The i-th RBF center dynamics are given by the periodic
Grossberg rule [7]

ẇwwi = (yyy(t)−wwwi(t)) pi(t), (1)

that pushes the center wwwi towards the states yyy(t) at which
the target signal pi(t) ∈ [0,1] is nonzero. In the previous
work [7], the target signal is given by a supervisor. We
introduce a new method for forming the target signal

pi(t) = ϕ
(
φ̂(t);φi(t)

)
(2)

where φi ∈ [0,2π) is the phase of the i-th leg lift-off that
determines the sequence of lift-offs, and φ̂ ∈ [0,2π) that
maps the [0,2π) phases onto the limit cycle yyy0. As the
phase is within the circular space S1, we define the circle
metric as ||φ −φ ′|| = min(|φ −φ ′|,2π −|φ −φ ′|), which
gives the closest distance between two phases. For both
variables, φi and φ̂ , we present their dynamics in the fol-
lowing sections.

4.1 Organizing Phase of Legs Activity

The motion start phases φi of each i-th leg must be ordered
within the interval [0,2π), where the ordering has to be
consistent with the ICRs, and phase offset ∆φ . Both con-
straints can be defined as distances between phases φi: (i)
front (hind) leg i is shifted by ∆φ with respect to ipsilateral
middle leg j, ||φi−φ j|| = ∆φ ; (ii) contralateral legs i and
j are in anti-phase ||φi−φ j||= π , see Fig. 1.

We present the following dynamics to order randomly
initialized phases φi

φ̇i(t) =
6

∑
j

αi j (∆i j + sign(φi−φ j) ||φi−φ j||) , (3)

where ∆i j ∈ [−π,π] parameterize the target offset between
φi and φ j, and αi j ∈ IR+ weighs the relation influence. The
relationships between contralateral legs are parameterized
as ∆2,1 = ∆4,3 = ∆6,5 = −π and ∆1,2 = ∆3,4 = ∆5,6 = π .
The relation between ipsilateral legs are ∆2,6 = ∆1,5 = ∆φ

and ∆4,6 = ∆3,5 =−∆φ . The above-defined relations have
set αi j = 1 while the rest is turned off by α j′i′ = 0. The
variable φi serves as a parameter of the target signal (2),
the next input is the phase estimation.



4.2 Mapping the Legs Activity onto the Limit Cycle
Using Phase Estimation

The target signal (2) should have the same periodicity as
the CPG; however, the periodicity of a general CPG nor
its frequency cannot be obtained analytically. However,
the frequency is needed to modulate the phase of the target
signal φ̂(t), and thus the frequency must be learned. We
propose to dynamically learn the CPG frequency by cou-
pling the CPG with the pivot RBF neuron and measuring
the RBF activity period to determine the CPG’s frequency.

First, the randomly initialized pivot RBF center wwwsig ∈
IRD must get close to the limit cycle. The pivot center
wwwsig(t) is attracted to the CPG state yyy(t) if the CPG state is
within ε-neighborhood of the center

ẇwwsig =
(

1−
∥∥yyy(t)−wwwsig

∥∥2
ε
−2
)(

yyy(t)−wwwsig
)

µ(t) (4)

µ(t) =

{
1
∥∥yyy(t)−wwwsig

∥∥< ε

0 otherwise
. (5)

The neighborhood radius ε itself is dynamic, making the
ε-neighborhood expand when the CPG state is outside and
contract when the CPG state is closer than half the radius:

ε̇ =
(
clip

(∥∥yyy(t)−wwwsig
∥∥ε
−1)−0.5

)3
γ(t) (6)

γ(t) =

{
σ1 clip

(∥∥yyy(t)−wwwsig
∥∥ε−1

)
< 0.5

σ2ε2 otherwise
, (7)

where clip(x) = min(1,max(0,x)) and hyperparameters
σ1 = 80,σ2 = 2 are set empirically. As the pivot center
wwwsig(t) converges to the limit cycle, the pivot RBF activa-
tion psig = ϕ(yyy(t);wwwsig) produces T -periodic pulses.

From the pivot RBF activation psig, we extract the fre-
quency of the CPG by adjusting descend of the variable

ṡ =

{
(1− s)ξ psig(t)≈ 1
−a(t) otherwise

, (8)

where ξ is large enough to reset s to 1 when the pivot
activation peaks (psig(t)≈ 1), and a ∈ IR+ determines the
slope of the descend. If the slope of a has such a value
that descends from s(t1) = 1 to s(t1 +T ) = 0, then a is the
CPG frequency. Thus slope a is adjusted as follows

a(t+) :=

{
a(t−)+κs(t−) psig(t)≈ 1
a(t−) otherwise,

(9)

which increases the frequency if s(t1 + T ) > 0 and de-
creases the frequency if s(t1+T )< 0. The hyperparameter
κ is empirically set to 0.02. The obtained CPG frequency
is used to estimate the CPG phase

φ̂(t) = 2π (1− s(t)) . (10)

After the convergence of the CPG estimation φ̂(t) and
lift-off ordering φi, the variables pi(t) of (2) produce the
target signal that orders the RBF centers of each i-th leg
to produce the gait pattern; which is demonstrated in the
following section.

5 Results

The feasibility of the proposed method has been vali-
dated by experimental deployment in several scenarios to
demonstrate the adaptability of the developed solution. We
used Euler’s method to run the dynamic system consist-
ing of the proposed equations, running for 20000 itera-
tions with the step size 0.01. The correctness of the gener-
ated rhythm for different gaits is demonstrated using mod-
ified signals, obtained from the RBF neuron activations
ϕ(yyy,wwwi), to trigger the predefined swing movement, fol-
lowed by a predefined stance movement for the robot’s
legs in CoppeliaSim1 simulator. The methods have been
implemented in Python 3 and a hexapod model Phan-
tomX MK-III has been used to run the simulations. The
system’s adaptability has been evaluated for two different
CPG models.

The first CPG model is Matsuoka oscillator given by

τ1v̇1 = h(u1)− v1, (11)

τ1v̇2 = h(u2)− v2, (12)

τ2u̇1 =−u1−h(u2)β1− v1β2 +1, (13)

τ2u̇2 =−u2−h(u1)β1− v2β2 +1, (14)

h(x) := max(x,0), (15)

where the hyperparameters are set to τ1 = 0.5;τ2 =
0.25;β1 = β2 = 2.5, and the function h(x) represents the
rectifier (i.e., ReLU function). For the Matsuoka oscillator
the CPG’s state is yyy = (u1,u2,v1,v2) ∈ IR4.

The second CPG is Van der Pol’s oscillator (VdP), given
by

u̇ = v, (16)

v̇ = ζ
(
1−u2)v−u, (17)

where, ζ is a parameter indicating the strength of damping
and the CPG’s state is yyy = (u,v) ∈ IR2.

5.1 Adaptability Experiments

The system’s adaptability to different limit cycle shapes is
demonstrated by learning the transition gait in four differ-
ent scenarios.

1. Using unperturbed Matsuoka oscillator as the CPG
model.

2. Using Matsuoka oscillator synchronized with four
other coupled Matsuoka oscillators to demonstrate
the method’s adaptability to small perturbations.

3. Using the VdP with ζ = 3 to demonstrate the usage
on a different oscillator.

4. Using the VdP with the changed parameter ζ = 1 to
show the adaptability to change of the oscillator pa-
rameter.

1https://www.coppeliarobotics.com

https://www.coppeliarobotics.com


In scenario 2. the motion phases φi, their respective
RBF centers wwwi, and the parameter a are initialized to
the transition gait values, which were previously success-
fully learned with the unperturbed CPG. The RBF neurons
provide the rhythmical input, producing the signal psig(t)
based on the position of the center wwwsig with the dynamic
vicinity.

Figure 4: Plot of wwwsig RBF center’s dynamics based on
its dynamic vicinity given by the dynamic radius ε . The
upper plots show the center’s movement (cyan path from
green cross to red cross) in the CPG’s state space towards
the CPG’s limit cycle (black closed shape). The lower
plots show the progression of the center’s respective ε .
The unperturbed Matsuoka oscillator is shown on the left,
and the VdP is on the right. A darker shade of the cyan
and black colors signalizes that more time is spent at the
corresponding place.

The CPG’s phase is estimated as φ̂(t) to map the cen-
ters wwwi ∈ IRD on the CPG’s limit cycle, by learning the
frequency a, (9), and pivot center wwwsig, (4). A showcase
of wwwsig center’s attraction to the CPG’s limit cycle together
with the progress of its dynamic vicinity radius ε , (6), is
shown in Fig. 4 for both types of the oscillators with dif-
fering limit cycle shapes of a prior unknown shape.

The frequency a is learned based on the signal generated
by the RBF neuron corresponding to the center wwwsig. The
learning process of a is shown in Fig. 5. In Fig. 6, we pro-
vide a learning process of a for Matsuoka oscillator with
differently initialized a. In all the cases, the frequency a
successfully converges. The progression and convergence
of s(t), estimating the CPG’s phase growth, and the modu-
lated learning signal psig(t) are presented in Fig. 7, where
the fact that a converges can be seen in convergence to
zero of local minimum values, marked by the orange line.
As mentioned in Section 4, if learned correctly, the value
of s(t) declines from one to zero during each period, i.e.,
at the psig(t) signal pulse occurs, s(t) equals zero and it is
reset to one.

Based on the estimated phase, the centers are organized
around the CPGs’ limit cycles, as demonstrated by the
transition gait for Matsuoka and VdP oscillators shown in
Fig. 8, where centers are organized around the CPGs limit

0 5000 10000 15000 20000
iteration

−0.4

−0.2

a

a Mats.
a Mats. perturbed

a VdP.; ζ = 3
a VdP.; ζ = 1

Figure 5: The progression of the learned frequency a for
perturbed (green) and unperturbed (magenta) Matsuoka
oscillator, and the VdP oscillator with the parameter ζ = 3
(yellow) and ζ = 1 (cyan). The initialization value of a is
−0.4 for the VdP and unperturbed Matsuoka oscillators.
For the perturbed Matsuoka oscillator, a is initialized as
the final value of a of the unperturbed one (i.e., the value
of the magenta line at the 20000-th iteration is the initial
value of the green line). All the cases converge to a stable
value. The values s(t) dependent on a are visualized in
Fig. 7.

0 5000 10000 15000 20000 25000
iteration
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−1

a

init a = −0.1
init a = −0.4

init a = −0.7
init a = −1

Figure 6: The progression of the learned frequency a for
unperturbed Matsuoka oscillator for four different initial-
ization values of a. The plot shows that the frequency a
correctly converges to the same value in all the cases.

cycles of various a prior unknown shapes.

5.2 Different Gait Patterns Experiment

The ability to generate different gait patterns is demon-
strated using Matsuoka neural oscillator. The motion
phases φi ∈ [0,2π) interact with each other according to
the given phase offset ∆φ of two consecutive leg’s actions,
and to ICRs, as shown in Fig. 9 for all three gait patterns.
The correctness of the process can be observed by compar-
ing the results with schema,2 describing the gait patterns in
Fig. 3. The process of ordering the motion phases within
the phase is independent of the used CPG model.

The successful mapping of the RBF centers’ for three
different gait patterns with the use of Matsuoka oscillator
is shown in Fig. 10. The signals produced via the centers’

2Note that important are the relative positions, i.e., ordering of the
motion phases with correct distance (phase offset) between them.
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Figure 7: Results of learning s(t) (blue), estimating the
phase growth by the proposed relation (10). If learned
correctly, s(t) equals to zero at the moment of psig(t) sig-
nal’s (gray line) pulse occurrence, which resets the value
of s(t) to one. Hence, the minimum of s(t) in each period
should equal to zero, if learned correctly. The plot shows
that the values of the periods’ minimums (orange line) are
correctly converging to zero. The plots correspond to Mat-
suoka unperturbed and perturbed oscillator and to the VdP
with ζ = 3 and ζ = 1 from top to down, respectively. The
decline of s(t) depends on the value of the frequency a(t)
shown in Fig. 5. The signal psig(t) is modulated for im-
proved visibility.

Figure 8: The final state of the RBF centers (colorful dots)
placed onto the limit cycles (closed black curve) of unper-
turbed (upper left) and perturbed (upper right) Matsuoka
oscillator and the VdP with parameter ζ = 3 (lower left)
and ζ = 1 (lower right).
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Figure 9: On the left: the first 300 iterations of φi self-
organizing motion phases, where the vertical axis repre-
sents the value of the motion phase at each iteration given
by the horizontal axis. On the right: the final positions at
the 20000-th iteration of the organized motion phases, de-
picted as a unit circle using cos(φ) for horizontal axis and
sin(φ) for vertical axis for φ ∈ [0,2π) (compare with de-
sired patterns in Fig. 2). The plots correspond to the tripod,
transition, and wave gaits from top to down, respectively.
Note that motion phases for simultaneously activated legs
in the tripod gait are overlapping.

RBF neurons producing gait pattern rhythm are visualized
in Fig. 11.

The RBF signals are used in the CoppeliaSim simulator
to make the hexapod robot walking, as shown by snap-
shots of one gait cycle for each of the given gait patterns
in Fig. 12.

The experiments demonstrated that the proposed mech-
anism successfully produced rhythm for the desired gait
patterns on both the CPG models with different dimen-
sionality and different shape of their limit cycles.

5.3 Discussion

The current CPG-RBF controllers require setting the gait-
pattern-determining RBF neurons parameters by a super-
visor, assuming that the CPG produces a signal of un-
changing wave-form and frequency. However, this as-
sumption limits the architecture’s ability to adapt to chang-
ing CPG parameters, enabling higher frequency (thus
faster movement) or adaptation after a change of the syn-
chronizing signal. Our method enables the change of the
CPG parameters, and therefore improves the adaptability
to evolving conditions for the CPG-RBF architectures.

The gait pattern rhythm is generated by correctly or-
dered RBF centers wwwi ∈ IRD (see Figs. 8 and 10), corre-



Figure 10: The plot shows the progress and final state
of the RBF centers organizing along the limit cycle (black
closed shape) of Matsuoka oscillator to produce the de-
sired gait patterns. The centers’ movement (colorful paths
from green crosses to red crosses) in the CPG’s state space
are shown on the left-hand side. A darker shade of the col-
ors signalizes more time spend in that place. The centers’
final states (the colorful dots) are shown on the CPG’s limit
cycle on the right-hand side. The gait patterns are tripod,
transition, and wave gaits from top to down, respectively.
The rhythm invoked by the centers’ respective RBF neu-
rons producing the gaits is presented in Fig. 11. Note that
the centers for simultaneously activated legs in the tripod
gait are overlapping.
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Figure 11: The rhythm invoked by the RBF neurons cor-
responding to the RBF centers from Fig. 10 at the end of
the learning process. The plots show one period of the pro-
duced tripod, transition, and wave gaits, from left to right,
respectively, using unperturbed Matsuoka oscillator. Note
that signals for simultaneously activated legs in tripod gait
are overlapping. The snapshot of the signals’ use in the
simulation is shown in Fig. 12.

Figure 12: The showcase of one gait cycle of each of
the three gait patterns (tripod, transition, and wave) sim-
ulated in CoppeliaSim simulator. The robot moves from
left to right. The timestamps on the gray background are
in format seconds:frames, where each second represents
25 frames. The time 00:00 marks the start of the gait cy-
cle, beginning with the hind right leg’s swing.

sponding to legs actions, around the CPG’s limit cycle.
The centers wwwi produce signals via their respective RBF
neurons if the CPG’s state is close enough to the corre-
sponding center. The produced signal provides a rhythm
for the required gait pattern if the centers’ ordering along
the limit cycle respects ICRs and the given phase offset ∆φ

of consecutive legs, determining the required gait pattern.
As shown in Fig. 12, we successfully produced three de-
sired gait patterns for the hexapod walking robot, tripod,
transition, and wave gaits, described in Figs. 2 and 3.

The model learns parameters which have real-wolrd
meaning. The phases φi represent the respective leg’s
swing phase start within the walking cycle. The placing
of the centers wwwi around the limit cycle represents the re-
spective leg’s swing phase start within the repeating walk-
ing cycle. Slope a represents the frequency of the used
CPG. The pivot center wwwsig marks the start of the walking
cycle on the CPG limit cycle. Hence, the learning process
is explainable, which is an advantage in comparison with
black-box approaches.

The current method does not enable the generation of
gait rhythm for different numbers of legs than six without
further modifications. In our future work, we would like to
explore the ICRs possibilities in automatically generating
gait patterns for any number of legs. Robots with differing
numbers of legs exist and malfunctions of the robot are
also possible, requiring to learn to walk with damaged or
missing limbs while deployed on a mission.

6 Conclusion

In this work, we propose and test self-supervised dynam-
ics for organizing the RBF centers producing rhythm for
required gait patterns. The method improves CPG-RBF
controllers’ gait-generating adaptability towards a change



of CPG properties. The method decouples the gait rhythm
generating problem into two tasks, the legs activity order-
ing, and the CPG phase estimation, leading to mapping
the legs’ activity ordering onto CPG’s states. The ordering
of legs’ activity within the phase is driven by biomimetic
inter-leg coordination rules and given phase offset of con-
secutive legs’ activity, determining the required gait pat-
tern. The phase estimation is based on estimating the
phase growth (phase angular velocity) from the signal with
the period equal to the CPG’s period. Combining the pro-
posed mechanisms enables mapping the RBF centers, cor-
responding to ordered actions, onto CPG’s limit cycle. The
phase controller produces the rhythm for three desired gait
patterns, tripod, transition, and wave gaits.

We demonstrate the correct functionality of the pro-
posed method, including showcase from CoppeliaSim
simulator, where the generated gait pattern rhythms are
used to invoke the movement of the simulated hexapod
walking robot. The results are demonstrated for two dif-
ferent CPG models, Matsuoka neural oscillator with/with-
out a rhythmical input from other coupled CPGs, and Van
der Pol’s oscillator with two different parameter settings.

In our future work, we aim to extend the model to gener-
ate gait patterns for robots with differing numbers of legs.
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