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Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague,
121 35 Praha 2, Karlovo náměstı́ 13, Czech Republic
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This article describes a simple monocular navigation system for a mobile robot based on the map-and-replay
technique. The presented method is robust and easy to implement and does not require sensor calibration or
structured environment, and its computational complexity is independent of the environment size. The method
can navigate a robot while sensing only one landmark at a time, making it more robust than other monocular
approaches. The aforementioned properties of the method allow even low-cost robots to effectively act in large
outdoor and indoor environments with natural landmarks only. The basic idea is to utilize a monocular vision
to correct only the robot’s heading, leaving distance measurements to the odometry. The heading correction
itself can suppress the odometric error and prevent the overall position error from diverging. The influence of
a map-based heading estimation and odometric errors on the overall position uncertainty is examined. A claim
is stated that for closed polygonal trajectories, the position error of this type of navigation does not diverge.
The claim is defended mathematically and experimentally. The method has been experimentally tested in a set
of indoor and outdoor experiments, during which the average position errors have been lower than 0.3 m for
paths more than 1 km long. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

The fundamental problem of mobile robotics is to au-
tonomously navigate a mobile robot along a given path.
To fulfill this task efficiently, a robot should maintain some
knowledge about its surrounding environment, especially
its position relative to the path or desired destination. Such
knowledge may be represented in the form of a map, which
can be used to estimate the robot position as well as for mo-
tion planning. The map is either known a priori and the
robot performs localization or is created online and the mo-
bile robot performs so-called simultaneous localization and
mapping (SLAM).

The solid mathematical background of the Kalman
filter (Kalman, 1960) allowed the research community to
establish a sufficient theoretical framework for extended
Kalman filter (EKF)-based SLAM. Proof of EKF conver-
gence (Dissanayake, Newman, Clark, Durrant-Whyte, &
Csorba, 2001) and lower bounds (Gibbens, Dissanayake, &
Durrant-Whyte, 2000) on robot position uncertainty have
been formulated. Upper bounds are discussed in the pa-
per by Mourikis and Roumeliotis (2004), where the au-
thors emphasize the importance of robot heading precision
during the mapping process. To our knowledge, there is
no other paper concerning upper bounds of EKF position
estimation. Unfortunately, optimality of the Kalman filter
is proven only for linear systems and therefore the main
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weakness of EKF methods lies in the linearization. The pa-
pers by Julier and Uhlmann (2001) and Martinelli, Tomatis,
and Siegwart (2005) indicate that due to errors introduced
in linearization, EKF methods might provide inconsistent
results. Although the linearization process poses a signifi-
cant threat to the consistency of the position estimation, it
can be elegantly avoided using the inverse depth represen-
tation (Civera, Davison, & Montiel, 2008; Montiel, Civera,
& Davison, 2006).

1.1. Vision-Based Navigation

The theoretical solutions of bearing-only SLAM have
gained importance as the computational power of today’s
computers allows real-time image processing. The nature
of visual information allows us to build sparse maps from
well-distinguishable landmarks (Lowe, 1999, 2004), which
are relatively easy to register. However, the range informa-
tion is not provided directly by standard cameras. Some
bearing-only methods use stereovision in order to obtain
immediate range information (Kidono, Miura, & Shirai,
2000). Other methods substitute stereovision by motion and
use a single monocular camera (Davison, Reid, Molton, &
Stasse, 2007; Holmes, Klein, & Murray, 2008; Montiel et al.,
2006).

Most monocular approaches are computationally com-
plex and achieve low operational speeds when mapping
large-scale environments. This problem can be solved by
dividing a large global map into smaller maps with mu-
tual position information (Bosse, Newman, Leonard, &
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Teller, 2004; Clemente, Davison, Reid, Neira, & Tardós,
2007; Estrada, Neira, & Tardós, 2005; Williams, Cummins,
Neira, Newman, Reid, et al., 2009).

A different approach is to build an environment
map in advance and then use the map for localization
(Blanc, Mezouar, & Martinet, 2005; Chen & Birchfield, 2009;
Matsumoto, Inaba, & Inoue, 1996; Royer, Lhuillier, Dhome,
& Lavest, 2007; Segvic, Remazeilles, Diosi, & Chaumette,
2007). In Royer et al. (2007), a monocular camera is car-
ried through an environment and a video is recorded. The
recorded video is then processed (in a matter of several
minutes) and subsequently used to guide a mobile robot
along the same trajectory. Chen and Birchfield (2006, 2009)
present an even simpler form of navigation in a learned
map. Their method utilizes a map consisting of salient im-
age features remembered during a teleoperated drive. The
map is divided into several conjoined segments, each asso-
ciated with a set of visual features detected along it and a
milestone image indicating the segment end. When a robot
navigates a segment, its steering commands are calculated
from positions of currently recognized and remembered
features. The robot using this method moves forward with
a constant speed and steers right or left with a constant ve-
locity or does not steer at all. In Chen and Birchfield (2006),
the segment end was detected by means of comparing the
milestone image with the current view. The improved ver-
sion (Chen & Birchfield, 2009) of the qualitative navigation
uses a more sophisticated method to determine the seg-
ment end. The method takes into account the odometry,
the current heading, and the similarity of the current and
the milestone images. Still, the authors mention some prob-
lems with detection of the segment end. We claim that the
segment end can be detected solely by the odometry and
the comparison with the milestone image is not always nec-
essary. Comparison with the milestone image increases ro-
bustness of the navigation method in cases of wheel slip-
page and other odometry errors.

The map-and-replay approach is closely related to vi-
sual servoing, in which the control of a robot is based on vi-
sual measurements (Chaumette & Hutchinson, 2006, 2007).
Control inputs are either computed directly by a compar-
ison of the current and reference images (Remazeilles &
Chaumette, 2007; Segvic, Remazeilles, Diosi, & Chaumette,
2009) or by a computation of camera coordinates in the
world reference frame (DeMenthon & Davis, 1992; Wilson,
Hulls, & Bell, 1996). Normally, the visual servoing relies on
a geometrical approach to calculate relations of map land-
marks to the current image salient points (Segvic et al.,
2009). These relations are used to calculate an interaction
matrix (Chaumette & Hutchinson, 2006), which links obser-
vations to control inputs of the robot. The robot’s control in-
put can be computed from the Jacobian (Burschka & Hager,
2001), which relates world and image points, or from ho-
mography or fundamental matrices (Guerrero, Martinez-
Cantin, & Sagüés, 2005; Remazeilles & Chaumette, 2007),

which relate coordinates between actual and reference im-
ages. A strong reliance on the geometrical representation
requires either camera calibration (Burschka & Hager, 2001;
Remazeilles & Chaumette, 2007; Segvic et al., 2009) or struc-
tured environment (Guerrero et al., 2005; Remazeilles &
Chaumette, 2007). A more detailed overview of visual ser-
voing approaches related to the field of mobile robotics
is presented in Chen and Birchfield (2009) and Segvic
et al. (2009). Contrary to the visual servoing approach, our
method does not require a calibrated camera and does not
rely on the environment structure.

1.2. Motivation

The target of our efforts is to create a system that would be
able to reliably navigate a mobile robot in an unstructured
environment of any size. To achieve this challenging goal,
we have decided that the navigation system should have
the following properties:

• Scalability: Its computational complexity should be in-
dependent of the environment size.

• Simplicity: The method should be as simple as possi-
ble, because complex systems are more likely to contain
errors.

• Swiftness: It has to satisfy real-time constraints.
• Standardness: It should use off-the-shelf equipment.
• Stability: The position uncertainty should not diverge

with time.

The basic idea of the map-and-replay technique is sim-
ilar to that of the industrial practice of programming sta-
tionary robots. One of the basic methods to program a
stationary robot is by means of (tele)operation. A skilled
operator guides the tip of the robot arm in order to perform
a certain task (e.g., painting, welding). The robot records
signals from its built-in receptors—typically incremental
rotation sensors at its joints. During the robot operation,
the recorded sequences serve as inputs for the robot’s con-
trollers. Though well established and efficient, this method
is not applicable to mobile robots in unstructured environ-
ments due to the uncertainty in the robot–environment in-
teraction. A typical example would be the use of odometry
in a mobile robot localization—the uncertainty caused by
wheel slippages tends to accumulate, which does not make
odometry suitable for long-term localization and naviga-
tion. To effectively cope with the uncertainty in the robot’s
position, a mobile robot must use exteroreceptors to sense
the surrounding environment. A mobile robot position and
its heading can be estimated through measurements of the
surrounding environment.

Several authors of SLAM algorithms acknowledge the
fact that the uncertainty of robot heading is a crucial factor
affecting the quality of the map and subsequently the qual-
ity of position estimation in the localization step. The in-
fluence of the heading estimation has been evaluated both
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theoretically and practically (Frese, 2006). We extend the
idea of heading estimation importance and claim that for
long-term mobile robot localization it is sufficient to use ex-
teroceptive sensors for heading estimation and the Carte-
sian coordinate estimation can be based just on propriocep-
tive sensors.

1.3. Paper Overview

A minimalistic approach to monocular localization and
mapping is presented in this paper. We claim that for the
navigation in a known environment, a robot needs a map
just to estimate its heading and can measure its position
by odometry. Formulating this particular instance of the
navigation mathematically, we provide a formal proof of
this claim. Furthermore, several large outdoor experiments
confirm the expected system performance. We think that
the most important contribution of our paper is not the
presented method but the convergence proof presented in
Section 3. The proof would apply to several other methods
(Chen & Birchfield, 2009; Guerrero et al., 2005; Zhang &
Kleeman, 2009) that use vision to correct heading and lat-
eral position errors.

The rest of this paper is organized as follows. The
proposed minimalistic navigation method is described in
the next section. A mathematical model of this naviga-
tion method is outlined and its properties are examined
in Section 3. A theorem that claims that this method pre-
vents position uncertainty divergence is formulated and
proven in the same section. The theoretical analysis is fol-
lowed by a discussion on the practical issues of the navi-
gation method. Experimental results verifying whether the
system retains the expected properties are described in
Section 5. A conclusion briefly discusses the properties
of the proposed navigation method and outlines possible
future improvements.

2. NAVIGATION SYSTEM DESCRIPTION

The proposed navigation procedure is based on the map-
and-replay technique. The idea is simple: a robot is man-
ually driven through an environment and creates a map
of its surrounding environment. After that, the map is
used for autonomous navigation. A similar technique for
autonomous navigation based on computation of a robot
steering from positions of remembered features has been
described in Chen and Birchfield (2006), Royer et al. (2007),
and Zhang and Kleeman (2009). To minimize the robot sen-
sor equipment and to satisfy the “standardness” property
mentioned in Section 1.2, we consider the most available
sensors. The fundamental navigation property of a mobile
vehicle is the traveled distance, which can be estimated by
odometry. The odometric error is cumulative and therefore
can be considered precise only in the short term. Another
standard available sensor that does not require additional
infrastructure is a compass. A fusion of data from the com-

pass and odometry can provide position estimation but is
still unsuitable for long-term navigation, because it lacks
sufficient feedback from the robot’s surrounding environ-
ment. To increase robot ability to sense the environment,
one of the most advantageous sensors is a camera, which
can provide lots of information.

Using these three main sensors, we have proposed the
following simple navigation strategy:

• The robot is navigated along a sequence of straight line
segments.

• At each segment start, the robot is turned to a direction
according to the compass value.

• The steering control along the straight segment is com-
puted from matched visual features providing a so-
called visual compass.

• The end of each segment is recognized according to the
traveled distance, which is measured by odometry.

The crucial component of the proposed navigation proce-
dure is a map, which is created by guiding the robot along
a path consisting of straight-line segments. Each segment
has its own landmark map Li , consisting of salient fea-
tures detected in images captured by the robot’s forward-
looking camera, the initial robot orientation α and the seg-
ment length s. Once the map is created, the robot can travel
autonomously within the mapped environment. During
the navigation along a segment, the robot establishes cor-
respondences of the currently seen and previously mapped
landmarks and computes differences in the expected and
recognized positions for each such correspondence. The
robot steers in a direction that reduces those differences
while moving straight at a constant speed until its odom-
etry indicates that the current segment has been traversed.
At the end of the segment, the robot switches to the next
learned segment, turns to a direction of the initial orienta-
tion of the segment, and traverses the segment while keep-
ing its direction according to matched features.

The next section describes the robot equipment and
image processing. The algorithm for the map creation dur-
ing the learning phase is described in Section 2.2, and the
navigation algorithm is depicted in Section 2.3.

2.1. Robot Equipment

The proposed method has been verified on the P3AT robot
with the Unibrain Fire-i601c camera, the TCM2 compass,
and the HP 8710p laptop; see Figure 1(a). At first, the cam-
era was equipped with a 7-mm objective with an electron-
ically driven iris to prevent sunlight dazzle. The objective
was replaced by a new one with a 4.5-mm focus length
in 2008. At the same time, the electronically driven iris
was substituted by a software exposure control. The lap-
top has Core2 Duo CPU running at 2.00 GHz and 1 GB
of memory. Image processing is computationally demand-
ing, and therefore the additional UPC70 battery had been
used for longer experiments. To increase the robot action
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(a) Robot configuration for experiments

(b) Image captured by robot camera and detected
SURF positions

(c) Robot GUI with navigation phase data

Figure 1. Robot platform, detected features, and navigation graphical user interface (GUI).

radius, the three original batteries (connected in parallel)
were replaced by one high-capacity battery and the robot’s
internal PC was disabled. The navigation system was im-
plemented in C/C++ as a stand-alone Linux application.

The image processing algorithm is a critical compo-
nent of the navigation system. The vision system must pro-
vide enough information to steer the robot in the right
direction. Furthermore, it should be robust to real-world
conditions, i.e., changing illumination, minor environment
changes, and partial occlusions, and of course its perfor-
mance should allow for a real-time response.

We have decided to use the speeded up robust features
(SURF) (Bay, Tuytelaars, & Van Gool, 2006) method to iden-
tify landmarks in the image. The algorithm provides im-
age coordinates of the salient features together with their
descriptions. The SURF method is reported to perform bet-
ter than most SIFT (Lowe, 1999) implementations in terms
of speed and robustness to viewpoint and illumination
changes. To achieve an additional speedup, the CPU imple-
mentation of the algorithm was adjusted to use both proces-
sor cores for parallel image processing. The captured image
is horizontally divided, and the parts are processed in par-
allel. Later, we switched to the GPU (Cornelis & Van Gool,
2008) version of the algorithm. The GPU version has better
real-time performance but is less distinctive than the CPU
implementation (Svab, Krajnik, Faigl, & Preucil, 2009). Nor-

mally, the recognition of a 1,024 × 768 grayscale image pro-
vides descriptors of 150–300 features and takes 100–500 ms.
The outdoor environment is usually richer in detected fea-
tures, and image processing tends to be slower than in-
doors. A typical outdoor processed image with highlighted
feature positions is shown in Figure 1(b).

2.2. Learning Phase

In the learning phase, the robot is manually guided through
an environment in a turn-move manner and creates a map
consisting of several straight segments. Each segment is de-
scribed by its length s, its azimuth α, and a set of detected
landmarks L. A landmark l ∈ L is described by the tuple
(e, k, u, v, f, g), where e is the SURF descriptor and k in-
dicates the number of images in which the landmark was
detected. Vectors u and v denote positions of the landmark
in the captured image at the moment of its first and last de-
tection, and f and g are the distances of the robot from the
segment start in these moments.

The procedure that creates a map of one segment is
shown in Algorithm 1. Before the robot starts to learn a
segment, it reads compass data to establish the segment
azimuth α and resets its odometric counters. After that,
the robot starts to move forward, tracks detected features,
and inserts them to the set L until the operator requests
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Algorithm 1. Learn one segment
Input: α – an initial robot orientation (compass value)
Output: (α, s, L) – the data associated to the segment, where s is the traveled distance and L is a set of landmarks, a landmark is the

tuple (k, e, u, v, f, g), where e is the SURF descriptor, k is a counter of feature detection, u and v are positions of the features
in the image (at the moment of their first, resp. last occurrence), f and g denote distance from the segment start according
to u, resp. v.

L ← ∅ // a set of learned landmarks

T ← ∅ // a set of tracked landmarks

α ← compass value // a robot orientation at the beginning of segment learning

repeat
d ← current distance from the segment start
S ← extracted features with associated image position, (u, e) ∈ S, u position, e feature descriptor
foreach ti = (ei , ki , ui , vi , fi , gi ) ∈ T do

(ua, ea) ← argmin{||ei , e(s)|| |s ∈ S} // select the best matching descriptor from S to ei

(ub, eb) ← argmin{||ei , e(s)|| |s ∈ S \ {(ua, ea)}}// select the next best matching descriptor

if ||(ei , ea)|| � ||(ei , eb)|| then
ti ← (ei , ki + 1, ui , ua, fi , d) // update matched landmark

S ← S \ {(ua, ea)} // remove matched feature from the current set of detected features

else
T ← T \ {ti } // remove ti from the set of tracked landmarks

L ← L ∪ {ti } // add ti to the set of learned landmarks

foreach (u, e) ∈ S do
T ← T ∪ {(e, 1, u, u, d, d)} // add new feature to the set of tracked landmarks

until operator terminates learning mode
s ← d // the total traveled distance along the segment

L ← L ∪ T // add the current tracked landmarks to the set of learned landmarks

to stop. Images are continuously captured and processed
during the movement. For each currently tracked landmark
ti (from the set T ), two of the best matching features from
the set of new features are found. If these two pairs are
distinguishable enough (Bay et al., 2006), the best match-
ing feature is associated to the tracked landmark, which is
updated (values k, v, g). Each new feature is added to the
set of tracked landmarks T , and its u and v are set to the
value of the current distance from the segment start and
the counter of the feature detection k is set to one. The seg-
ment description is saved at the end of the segment, and the
operator can turn the robot to another direction and initiate
mapping of a new segment. The format of the file, which
stores the segment description, is shown in Table I.

2.3. Autonomous Navigation Mode

In the autonomous navigation mode, an operator enters
a sequence of segments and indicates whether the robot
should travel repeatedly. The robot is placed at the start of
the first segment, loads the description of the segment, and
turns itself to the segment azimuth and starts moving for-
ward. The navigation procedure is shown in Algorithm 2.
The relevant landmarks for the current robot position (i.e.,
according to the distance from the segment start) are se-
lected from the set of the learned landmarks L. Correspon-
dences between the mapped and the currently detected

landmarks are established in the same way as in the learn-
ing phase. A difference in horizontal image coordinates of
the features is computed for each such couple. A modus
of those differences is estimated by the histogram voting
method. The modus is converted to a correction value of the
movement direction, which is reported to the robot’s steer-
ing controller. After the robot travels a distance greater than
or equal to the length of the given segment, the next seg-
ment description is loaded and the procedure is repeated.
During the navigation, the robot displays the relevant states
(mapped and recognized landmarks, recognition success
ratio, etc.) on its graphical interface; see Figure 1(c).

An important aspect of this navigation algorithm is the
fact that it does not need to explicitly localize the robot or
to create a three-dimensional map of detected landmarks.
It should also be noted that the proposed method is able
to work in real time. Even though the camera readings are
utilized only to correct the robot direction and the distance
is measured by the imprecise odometry, the position un-
certainty does not accumulate if the robot changes direc-
tion often enough. The stability of the proposed navigation
method is discussed in the next section.

3. STABILITY OF BEARING-ONLY NAVIGATION

First, we describe in an informal way how the robot po-
sition uncertainty is changed as the robot travels a closed
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Table I. A part of a segment map in a text file.

Record Value Meaning

Initial azimuth and length 2.13, 7.03 α, s

Landmark 0
First position 760.74, 163.29 ul0

Last position 894.58, 54.44 vl0

Max visibility 128 kl0

First and last visible distance 0.00, 4.25 fl0 , gl0

Descriptor 1, 0.116727, −0.000254, 0.000499, 0.000352, . . . el0

Landmark 1
First position 593.32, 381.17 ul1

Last position 689.89, 377.23 vl1

Max visibility 125 kl1

First and last visible distance 0.00, 6.73 fl1 , gl1

Descriptor −1, 0.070294, −0.006383, 0.012498, 0.006383, . . . el1

Algorithm 2. Traverse one segment
Input: (α, s, L) – the data associated to the segment, where α is an initial angle of the robot orientation at the segment start, s is the

traveled distance and L is a set of landmarks, a landmark is the tuple (e, k, u, v, f, g), where e is a SURF descriptor, k is a
counter of feature detection, u and v are positions of feature in the image (at the moment of the first, resp. last, occurrence),
f and g denote distances from the segment start according to u, resp. v.

Output: ω – a steering speed

turn(α) // turn robot in the direction α

d ← current distance from the segment start
while d < s do

T ← ∅ // a set of current tracked landmarks

H ← ∅ // a set of differences (horizontal position in the image) of matched features

d ← current distance from the segment start
S ← extracted features with associated image position, (u, e) ∈ S, u position, e feature descriptor
foreach li = (ei , ki , ui , vi , fi , gi ) ∈ L do

if fi ≥ d ≥ gi then
T ← T ∪ {li } // add landmark to the tracked landmarks according to the traveled distance

while |T | > 0 do
(ei , ki , ui , vi , fi , gi ) ← argmaxt∈T

k(t) // get landmark with maximal number of occurrences k

(ua, ea) ← argmin{||ei , e(s)|| |s ∈ S} // select the best matching descriptor from S to ei

(ub, eb) ← argmin{||ei , e(s)|| |s ∈ S \ {(ua, ea)}} // select the next best matching descriptor

if ||(ei , ea)|| � ||(ei , eb)|| then
p ← (vi − ui) (d − fi )/(gi − fi) + ui − ua // estimate angle to the matched landmark

H ← H ∪ {px} // add horizontal difference to set of differences

T ← T \ {(ei , ki , ui , vi , fi , gi )} // discard used landmark

ω ← modus(H ) // determine new robot steering velocity

report ω to steering controller

path. This should help to interpret the mathematical for-
malism describing the robot position uncertainty in geo-
metrical terms and make the rest of this section more com-
prehensible. After that, we lay down a formal description
of the proposed navigation method and analyze its stabil-
ity. We outline a model of the robot movement and depict

equations allowing the computation of the robot position
uncertainty. Next, we use these equations to compute the
robot position uncertainty for a closed path. Finally, we ex-
amine the properties of the proposed model and establish
conditions ensuring that the robot position error does not
diverge.
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3.1. Geometrical Interpretation

Suppose that the learned path is a square and the robot has
to travel it repeatedly. The robot is placed at a random [two-
dimensional (2D) Gaussian distribution with zero mean]
position near the first segment start; see Figure 2. The ini-
tial position uncertainty can therefore be displayed as a cir-
cle in which the robot is found with 90% probability. The
navigation procedure is executed, and the robot starts to
move along the first segment. Because it senses landmarks
along the segment and corrects its heading, its lateral po-
sition deviation is decreased. However, owing to the odo-
metric error, the longitudinal position error increases. At
the end of the segment, the circle denoting position uncer-
tainty becomes an ellipse, with a shorter axis perpendicular
to the segment. Heading corrections are dependent on the
value of the lateral deviation (see Section 3.2): the greater
the deviation, the stronger the effect of heading corrections
and therefore the lateral error decreases by a factor h for
every traversed segment. The odometry error is indepen-
dent of the current position deviation and is affected only
by the length of the traversed segment, and therefore it can
be modeled as an additive error o.

After the segment is traversed, the robot turns by
90 deg and starts to move along the next segment. The
uncertainty changes again, but because of the direction
change, the longer ellipse axis shrinks and the shorter is
elongated due to the odometry error. This repeats for every
traversed segment; the size of the uncertainty ellipse con-
verges to a finite value. Because this particular trajectory
is symmetric, axis lengths a, b of the “final” ellipse can be

Learned path

Initial position uncertainty

Position uncertainty

Robot trajectory example

Figure 2. Position uncertainty evolution for a simple symmet-
ric path.

easily computed by the equations

a = hb,

(1)
b = a + o,

where h is the coefficient of the lateral error reduction and
o is the odometric error. The position error for o = 1 and
h = 0.25 is shown in Figure 2. Though simple, this particu-
lar symmetric case gives us a basic insight into the problem.
Now we will derive a broader mathematical model of the
navigation, examine its properties, and show that the un-
certainty does not diverge for nonsymmetrical trajectories
as well.

3.2. Navigation

The proposed navigation method is based on the following
assumptions:

• The robot moves in a plane.
• The map already exists in the form of a sequence of con-

joined linear segments with landmark description.
• At least two segments of the mapped path are not

collinear.
• The robot can recognize and associate a nonempty sub-

set of mapped landmarks and determine their bearing.
• The robot can (imprecisely) measure the traveled dis-

tance by odometry.
• The camera is aimed forward, i.e., in the direction of the

robot movement.

The path P consists of a sequence of linear segments pi . The
robot moves in a plane, i.e., its state vector is (x, y, ϕ). The
robot we consider has a differential, nonholonomic drive,
and therefore ẋ = v cos(ϕ) and ẏ = v sin(ϕ). For each seg-
ment pi , there exists a nonempty subset of landmarks and a
mapping between the robot position and the expected bear-
ing of each landmark is established. At the start of each
segment, the robot resets its odometry counter and turns
approximately toward the segment end to sense at least
one of the segment landmarks. The robot establishes corre-
spondences of seen and mapped landmarks and computes
differences in expected and recognized bearings. The robot
steers in a direction that reduces these differences while
moving forward until its odometry indicates that the cur-
rent segment has been traversed.

Definition 1 (Closed-path stability property). Assume
that a robot navigates a closed path several times. Furthermore the
robot is using an environment map only for heading corrections
and measuring the distance by odometry. Then a path for which
the robot position uncertainty does not diverge has the closed-
path stability property.

Theorem 1. A path consisting of several conjoined segments
retains the closed-path stability property if the assumptions in
Section 3.2 are satisfied.
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3.3. Movement along One Segment

First, let us examine how a robot moves along one segment.
We will focus on the position before and after traversing
one segment and establish mapping from the robot position
error at the segment start to the robot position error at the
segment end.

To keep the model simple, we assume that the robot
as well as the landmarks are positioned in a plane. We will
consider having a map consisting of a single segment of
length s with d landmarks, with positions represented as
vectors ui. Because the robot is equipped with a forward-
heading camera, learned landmark positions ui are not
assumed to be distributed uniformly along the path but
rather shifted in the direction of the robot movement by a
distance ρ. We can assume that ρ ≈ 1

d

∑d−1
i=0 uxi, where d

is the number of mapped landmarks. Let us place the seg-
ment start at the coordinate origin and the segment end at
the position [s, 0]T . We designate the robot position prior to
the segment traversal as a = [ax, ay ]T and the final robot
position as b = [bx, by ]T ; see Figure 3. Let us assume that at
every moment during the segment traversal, the robot rec-
ognizes a nonempty subset W of previously learned land-
marks and the robot heads in a direction that minimizes the
horizontal deviation of expected and recognized landmark
positions. We denote the intersection of the robot heading
with the learned segment axis as w. At the beginning of
the segment traversal, this position equals approximately
[ρ, 0]T (i.e., w ≈ [ρ, 0]T ). As the robot traverses the seg-
ment, it loses sight of nearby landmarks and recognizes
new ones. As new, more distant landmarks appear in the
robot field of view and nearby landmarks disappear, the
set W changes and the point w moves along the segment.
It can be assumed that the point w moves approximately at
the speed of the robot and therefore it is always ahead of
the robot by the distance ρ.

Based on these premises, the robot position [x, y]T in
terms of y = f (x) can be established. The robot movement
can be characterized by the following differential equation:

dx

dy
= ρ

−y
. (2)

m
L

b

x

ay

x

sw

a
x

b
s

Figure 3. Robot movement model for a single path segment.

Solving Eq. (2) gives us a trajectory along which the robot
moves:

y = ce−x/ρ .

Considering a boundary condition ay = f (ax ), the constant
c equals

c = ay

e−ax/ρ
.

Considering that the range of the robot’s sensor is higher
than the robot position uncertainty and that the segment
length is higher than the robot lateral distance from the seg-
ment start (i.e., ρ 
 ax , s 
 |ay |), the constant c equals ap-
proximately ay and the traveled distance is approximately
equal to the segment length. Therefore, we can estimate the
robot position after traveling a segment of length s by the
following equations:

bx = ax + s,

(3)
by = aye

−s/ρ .

We can transform Eqs. (3) to the matrix form(
bx

by

)
=

(
1 0

0 e−s/ρ

) (
ax

ay

)
+

(
s

0

)
. (4)

Equation (4) is valid for an error-free odometry. If the
odometry error is modeled as a multiplicative uncertainty,
the equation changes to(

bx

by

)
=

(
1 0

0 e−s/ρ

)(
ax

ay

)
+ s

(
1 + υ

0

)
, (5)

where υ is a random variable drawn from the Gaussian dis-
tribution with the zero mean and the variance ε. Account-
ing for the heading sensor noise, Eq. (5) changes to(

bx

by

)
=

(
1 0

0 e−s/ρ

) (
ax

ay

)
+

(
s + sυ

ξ

)
, (6)

where ξ is a random variable of the Gaussian distribu-
tion with the zero mean and the variance τ . Consolidating
Eq. (6), we can state

b = Ma + s.

The aforementioned movement model holds for a segment
aligned with the x axis. For a segment with an arbitrary
orientation α, the movement model becomes

b = RTMRa + RTs, (7)

where

R =
(

cos α sin α

− sin α cos α

)
, M =

(
1 0

0 e−s/ρ

)
=

(
1 0

0 m

)
.

Equation (7) corresponds to aligning the segment with the
x axis, applying M, adding the odometric and the sensor
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noise, and rotating the segment back to the direction α.
In the following text, we use N = RTMR, which shortens
Eq. (7) to

b = Na + RTs. (8)

All the aforementioned assumptions about the surrounding
environment (landmark shift equal to ρ, ρ 
 ax , etc.) can be
relaxed as long as m < 1 for s > 0.

3.4. Position Uncertainty

Now, the dependence of the robot position uncertainty at
the segment end to its uncertainty at the segment start can
be examined. Consider that the robot position a before the
segment traversal is a random variable drawn from a 2D
normal distribution with the mean â and the covariance
matrix A. To compute the robot position uncertainty after
the segment traversal, we apply Eq. (8) to a. Because the
robot movement model in Eq. (8) has only linear and ab-
solute terms, the robot position uncertainty after the seg-
ment traversal will constitute a normal distribution with
the mean b̂ and the covariance matrix B.

We denote a = â + ã, where â is the mean of a and ã
is a random variable of a normal distribution with the zero
mean and the covariance A. Similarly, we can denote b =
b̂ + b̃. Thus, we can rewrite Eq. (7) as follows:

b̃ = RTMRã + RTs̃.

We can claim that

b̃b̃T = (RTMRã + RTs̃)(RTMRã + RTs̃)T.

Because s̃ and ã are independent and do not correlate,

b̃b̃T = RTMRããTRTMTR + RTs̃s̃TR,

which rewritten in terms of covariance matrices is

B = RTMRARTMTR + RTSR, (9)

where

S =
(

s2ε2 0
0 τ 2

)
.

Equation (9) allows us to compute the robot position uncer-
tainty after traversing one segment.

3.5. Traversing Multiple Segments

Let us consider a path consisting of n chained segments de-
noted by i ∈ {0, . . . , n − 1} with the end of the last segment
equal to the start of the first segment, i.e., the considered
path is closed. We denote length and orientation of the ith
segment as si and αi . The robot position before and after
traversing the ith segment is noted as ai and bi. Because the
robot position at the end of the ith segment equals its start
position at the segment i + 1, we can state that ai+1 = bi.

The movement model (9) for the ith traveled segment
is

Ai+1 = Bi = RT
i MiRiAiRT

i MT
i Ri + RT

i SiRi. (10)

Considering Ni = RT
i MiRi and defining Ti = RT

i SiRi, we
can rewrite Eq. (10) as

Ai+1 = NiAiNT
i + Ti.

One can compute the robot position uncertainty in terms
of the covariance matrix after traversing i path segments in
the following terms:

Ai =
⎛
⎝ 0∏

j=i−1

Nj

⎞
⎠ A0

⎛
⎝i−1∏

j=0

NT
j

⎞
⎠

+
i−1∑
j=0

⎡
⎣

⎛
⎝ j∏

k=i−1

Nk

⎞
⎠ N−1

j Tj

(
NT

j

)−1
⎛
⎝i−1∏

k=j

NT
k

⎞
⎠

⎤
⎦.

(11)

To examine how the robot position uncertainty changes af-
ter the robot travels the entire learned path i times, we de-
fine Ci = Ain (e.g., C1 = An). Moreover, we denote

N̆ =
0∏

j=n−1

Nj

and

T̆ =
n−1∑
j=0

⎡
⎣

⎛
⎝ j∏

k=n−1

Nk

⎞
⎠ N−1

j Tj

(
NT

j

)−1
⎛
⎝n−1∏

k=j

NT
k

⎞
⎠

⎤
⎦ (12)

and rewrite Eq. (11) as

Ci+1 = N̆CiN̆T + T̆. (13)

By proving that Ci converges to a finite matrix as i grows
to infinity, we prove Theorem 1.

3.6. Convergence Conditions

Expression (13) is the Lyapunov discrete equation
(Lyapunov, 1992). If all eigenvalues of N̆ lie within a
unit circle and T̆ is symmetric, then limi→∞ Ci is finite
and equal to C∞, which can be obtained by solution of the
algebraic equation

C∞ = N̆C∞N̆T + T̆. (14)

Because the matrix Si is symmetric, Ti = RT
i SiRi is also

symmetric. The product XTiXT is symmetric for any X and
therefore all addends in Eq. (12) are symmetric. Addition
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preserves symmetry and therefore the matrix

T̆ =
n−1∑
j=0

⎡
⎣

⎛
⎝ j∏

k=n−1

Nk

⎞
⎠ N−1

j Tj

(
NT

j

)−1
⎛
⎝n−1∏

k=j

NT
k

⎞
⎠

⎤
⎦

is symmetric.
To prove that the eigenvalues of N̆ lie within a unit

circle, we exploit the positiveness of the matrices Mi and
Ri. Because Mi is positive, Ni = RT

i MiRi is also positive.
Moreover, as every Ni equals RT

i MiRi, its eigenvalues are
the same as those of Mi and eigenvectors are columns of
Ri. The eigenvalues of Ni therefore correspond to one and
e−si /ρi . Because the product XY of a positive definite matrix
X and a symmetric positive definite matrix Y is positive def-
inite, the matrix N̆ is positive definite as well. Moreover, the
dominant (maximal) eigenvalue of the product XY is lower
than or equal to xy, where x and y are dominant eigenval-
ues of X and Y. Because the dominant eigenvalue of every
Ni is one, all eigenvalues of N̆ are smaller than or equal
to one. The dominant eigenvalue of N̆ is equal to one if
and only if the dominant eigenvalue of the product Ni+1Ni
equals 1 for all i. Conditions satisfying that the eigenval-
ues of a product Ni+1Ni are lower than one ensure the ex-
istence of a finite solution of Eq. (14). Therefore, we have
to find those conditions to support the closed-path stability
property.

3.7. Convergence Proof

We will exploit the fact that a product of matrix eigenvalues
equals the matrix determinant and the sum of eigenvalues
equals matrix trace. Let us denote eigenvalues of the matrix
product Ni+1Ni as λ0,1 and the smaller eigenvalue of Ni as
ni (ni = e−si/ρi ). For our convenience, we denote j = i + 1.
Therefore

det
(
NjNi

) = det Nj det Ni = λ0λ1 = ninj . (15)

If λ0,1 ∈ 〈0, 1〉, we can state that

(1 − λ0)(1 − λ1) ≥ 0, (16)

and therefore

λ0λ1 − λ0 − λ1 + 1 ≥ 0. (17)

Combining Eq. (15) and inequality (17), we obtain

1 + ninj ≥ λ0 + λ1.

Considering that the sum of eigenvalues equals matrix
trace, we get

trace
(

RT
j MjRjRT

i MiRi

)
≤ 1 + ninj . (18)

Because trace(AB) is equal to trace(BA), we can rewrite in-
equality (18) as

trace
(
Mj

(
RiRT

j
)TMiRiRT

j
) ≤ 1 + ninj . (19)

Both matrices Ri and Rj represent rotations. The matrix Ri
denotes rotation by the angle αi , and Rj denotes rotation
by the angle αj . Their product RiRT

j denotes rotation by

αi − αj . If we denote β = αi − αj and Rβ = RiRT
j , inequal-

ity (19) is changed to

trace
(

MjRT
β MiRβ

)
≤ 1 + ninj . (20)

By expanding matrices MjRT
β , we obtain

MjRT
β =

(
cos β −nj sin β

sin β nj cos β

)

and

MiRβ =
(

cos β ni sin β

− sin β ni cos β

)
.

Inequality (20) can be rewritten to

(1 + ninj ) cos2 β + (ni + nj ) sin2 β ≤ 1 + ninj

and further reduced to

1 + ninj − (1 − ni − nj + ninj ) sin2 β ≤ 1 + ninj .

Finally, we get

(1 − ni )(1 − nj ) sin2 β ≥ 0. (21)

Because ni = e−si /ρi , ni ∈ (0, 1) and nj ∈ (0, 1), and inequal-
ity (21) is strict for sin β �= 0. This fact implies that inequal-
ity (16) is strict as well, which means that both λ0 and λ1
are lower than one. Therefore both eigenvalues of the ma-
trix product (NiNj) are smaller than one if β �= nπ |n ∈ N .
The matrix N̆ has both eigenvalues smaller than one if and
only if at least two conjoined segments of the path form an
angle different from 0 or π .

Because all eigenvalues of N̆ lie within a unit circle
and T̆ is symmetric, the covariance matrix C∞ denoting the
robot position uncertainty at the start of the first path seg-
ment is finite and obtainable by a solution of the algebraic
equation

C∞ = N̆C∞N̆T + T̆.

�

3.8. Convergence Proof Overview

We have established Eqs. (7) describing the movement of
a robot using a navigation method, which is described in
Section 2. Equation (10) allowed us to examine the robot
position uncertainty evolution as the robot travels through
a known environment. Modifying Eq. (10) to closed trajec-
tories, we could rewrite it as Eq. (13). By examining the con-
ditions under which Eq. (13) has a finite solution, we have
proven Theorem 1 for closed paths that have at least two
noncollinear segments. The existence of a finite solution of
Eq. (13) means that if a mobile robot traverses repeatedly a
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closed polygonal path using our method, its position error
at every point of the traversed trajectory will stabilize at a
certain value.

4. PRACTICAL ISSUES

The theoretical proof of convergence stands on several as-
sumptions, which might not always be met. In this section,
we will outline possible issues that might arise from incor-
rect assumptions and discuss their impact on navigation
stability and accuracy. Moreover, we will discuss method
requirements in terms of computational power, memory,
and disk storage.

4.1. Convergence Proof from an Engineer’s
Point of View

Though elegant and useful, mathematical models and for-
mal proofs are often based on a simplification of reality. A
good mathematical model picks out the essence of the mod-
eled problem and concentrates on an examination of the
model properties. Some properties of the real system are
not included in the model and therefore are not considered.
An experienced engineer must be aware of these properties
and realize the difference between math and reality. This
applies to the proof presented in Section 3 as well.

In practice, extremely elongated (imagine a rectangle
with sides 1,000 and 0.001 m long) paths will not retain the
closed-path stability property because the movement along
the shorter side will not compensate odometry errors ac-
cumulated over the long side. Moreover, the model does
not cover the probability that the robot will not establish
enough correct correspondences because its position error
would grow too high. This might easily happen in case the
robot has to avoid large obstacles as well as for paths with
very long segments.

Moreover, the fact that the position error does not di-
verge might not be really useful in real robotic systems. In
practice, the real precision is more important. The precision
can be estimated using Eq. (13) if the learned path shape,
landmark distribution ρ, camera noise τ , and odometry
noise ε are known. Using ρ = 20 (i.e., most of the sensed
landmarks are 20 m in front of the robot), the sensor noise
τ = 0.1, and the odometry noise ε = 0.0005 for a square, 1-
km-long path, the predicted navigation repeatability (i.e.,
computed from eigenvalues of C∞) is 0.15 m. This value is
in good accordance with the experimental results presented
in Section 5, where the measured repeatability in outdoor
scenarios was 0.14 m.

4.2. Reliance on Odometry

Odometry is regarded as unsuitable for long-term local-
ization due to cumulative errors. Its error model is usu-
ally multiplicative with a precision around 1%. The error
of the odometric pose estimation is caused mainly by the

fact that the robot heading cannot be properly determined.
On the other side, odometry can be very precise for trav-
eled distance measurements. Moreover, an odometric error
is usually systematic, which can be solved by precise cali-
bration. Our experience with the P3AT robot shows that re-
peatability of its odometric measurements of the traveled
distance on paved roads is better than 0.1%. This means
that in the case of precise heading estimation, the robot
would be able to travel 1 km with a position error lower
than 1 m.

Our approach relies on the fact that the robot changes
direction often enough. If the robot would travel in a
straight direction for a long distance, its position error
might grow beyond an acceptable level. This might be
avoided either by forcing the robot to change directions
during the learning phase or by complementing the dis-
tance measurement by methods without a long-term drift.
An example of such a method might be global positioning
system or a vision-based localization used in methods in
Chen and Birchfield (2009), Royer et al. (2007), and Zhang
and Kleeman (2009).

4.3. False Correspondences

The most troublesome issue is that correct correspondences
might not be established. However, our algorithm works
even in cases of a large number of outliers. Consider a situ-
ation in which the system is navigating and all of its estab-
lished correspondences are false. The horizontal position
deviation of detected and mapped features would be basi-
cally a random variable. Therefore a histogram H , which is
built in order to establish the robot turning speed, will have
its bins (approximately) equally filled. The robot turning
speed will therefore be random. Now consider that there
are a few correctly established correspondences. Each cor-
rectly established correspondence increases the value of the
bin, which corresponds to the robot’s true heading devi-
ation. Therefore the probability that the correct bin has a
maximal value increases with each correct correspondence.

This is different from the work presented in Chen and
Birchfield (2009) and Segvic et al. (2007), where the au-
thors choose a mean of horizontal differences instead of the
modus. The modus is more invariant to the incorrect corre-
spondences than the mean, which makes our method more
precise and robust.

In reality, we get 80%–90% correctly established corre-
spondences if the navigation phase follows mapping im-
mediately. As the map gets older, the ratio of correct cor-
respondences tends to drop. The rate of “map decay”
depends on the environment and is caused mainly by two
factors: short-term lighting changes caused by a change in
the position of the sun and the current weather conditions
and long-term environment changes caused by seasonal
factors. Both illumination and long-term changes are not so
significant in indoor environments, because lighting is typ-
ically artificial and seasonal changes do not happen. So it
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is expected that illuminations and seasonal changes would
play an important role in outdoor environments.

To evaluate the system robustness to lighting changes,
we made an all-day experiment in which the robot tra-
versed a 1-km-long path in an outdoor environment; see
Section 5.5. To evaluate our system robustness to seasonal
environment changes, we mapped a 50-m-long path in a
park. The path was autonomously navigated and then re-
learned one month later. This was done in five consecutive
months; see Section 5.4. The results of both experiments
show that the system is robust to both long-term and short-
term environment changes.

Dynamic objects and occlusions cause only a tempo-
rary and slight decrease in the ratio of correctly established
correspondences. During the experiments, we did not no-
tice any problems with moving objects in the robot field of
view.

4.4. Obstacle Avoidance

The proposed navigation method itself does not include
obstacle avoidance. However, it can be complemented by
a collision avoidance module, which takes control of the
robot whenever an obstacle in the robot’s course is de-
tected. Such a module guides the robot around the obsta-
cle until the area between the robot and its path is clear
again. After that, the visual-based navigation takes control
and guides the robot by Algorithm 2.

Because obstacles have finite dimensions, the robot po-
sition error will grow by a finite value every time it passes
an obstacle. From the theoretical point of view, random ob-
stacles in the robot path can be modeled by the addition
of a random vector with a zero mean to s in Eq. (8). Al-
though the addition will increase the matrix S in Eq. (9), the
symmetry of S will be preserved. Obstacles would there-
fore increase the matrix T̆ in Eqs. (13) and (14), but because
T̆ remains symmetric, Eq. (14) will have a unique solu-
tion. However, the robot position uncertainty, represented
by the matrix C∞, will increase. Therefore, obstacle avoid-
ance would decrease the precision of the robot navigation,
but it should remain stable. This assumption is experimen-
tally verified in Section 5.3.

It is clear that there exists a size of obstacles for which
the algorithm will fail, because after circumnavigating the
obstacle, the robot will not find previously mapped fea-
tures.

4.5. Systematic Errors

Because the navigation algorithm relies on two sensors,
there are two sources of systematic errors in our algorithm:
the odometry and the camera.

The systematic error of the odometry means that if the
robot traverses the distance d , it will report that the trav-
eled distance is d(1 + η). Let us consider that the robot has
900% odometric error, i.e., η = 9. During mapping phases,

the error will cause the segment lengths s and landmark
data f and g to be 10 times higher in the map than in real-
ity. However, in the navigation phases, the odometry error
will give 10 times higher values of the robot distance from
the segment start, and therefore errors in the map and robot
position error will suppress each other.

The systematic error of the camera might be caused by
the misalignment of the camera optical axis and the robot
body. This causes the positions of landmarks u, v in the
map to be different from a case with an ideal camera. How-
ever, when the robot encounters the same location, detected
landmark positions will be shifted the same way as in the
learning phase. The systematic error will therefore cancel
out as in the previous case.

A different case would be a change of the odometric
error η or the camera angle θ between the learning and
navigation phases. From a theoretical point of view, this
would cause a change of the vector s. Unlike in the pre-
vious case, the vector s will not be modified by a random
vector but a fixed one. This means that s̃ will remain the
same and matrix T̆ will preserve symmetricity. Systematic
errors would cause the robot to traverse a trajectory slightly
different from the learned one but should not affect naviga-
tion stability. However, the algorithm will fail to establish
correct correspondences between the mapped and detected
features if the systematic errors are too high.

The experimental evaluation of the influence of sys-
tematic errors on the navigation stability is described in
Section 5.2. Even though the systematic errors were set to
high values during the experimental evaluation, the navi-
gation stability was preserved.

4.6. Necessity of a Compass

Relying on only a compass for heading estimation was
shown to be a weak point during experiments performed in
2008 and 2009. During learning phases, the compass noise
caused an incorrect azimuth estimation of some segments.

Therefore, we considered replacing the absolute az-
imuth measurements by relative ones. So, instead of record-
ing αi for the ith segment in the learning phase, the az-
imuth relative to the previous segment (i.e., �i = αi − αi−1)
is recorded in the map. The relative azimuth �i can be es-
timated either by odometry or by tracking of the features
during transitions to the next segment. This approach is
applicable in cases in which a robot is taught a path that
is supposed to be traversed later. However, sometimes it
is necessary to create a more complex, graph-like map; see
Section 5.7.

In more complex cases, the robot creates a map of the
large environment in several mapping runs and traverses
the given sequence of segments in an order different from
the mapped sequence. In this case, sole knowledge of the
relative segment azimuths is not sufficient, because angles
between nonconsecutive segments are not known to us. Of
course an angle between the ith and (i + j )th segments can
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be estimated by summing all relative angles between seg-
ments i and i + j , but because every �i contains a small
error, the error of the sum is too large for high j .

To deal with these more complex cases, we have im-
plemented a simple Kalman filter, which fuses data from
odometry and compass. The filter suppresses the compass
noise and causes the absolute heading measurements to be
more reliable. However, the filter was implemented at the
end of 2009, so in the previous experiments the compass
noise caused trouble.

4.7. Computational and Storage Requirements

To estimate computational and storage requirements,
we have used data from the experiment described in
Section 5.5.

We evaluated the computational requirements in terms
of required computational time spent in various stages of
the algorithm. The most computationally intensive stage of
the algorithm is the feature extraction, which takes 260 ms
on average. About 30 ms is taken by establishing proper
correspondences. The histogram voting time is less than
1 ms. During experiments, the camera image and addi-
tional parameters of the algorithm were displayed for de-
bugging purposes. Drawing these data on a computer
screen takes about 60 ms. Thus, the entire control loop takes
about 350 ms.

The average landmark density is about 140 landmarks
per meter of the path. The map is stored on the hard drive
in a text format (see Table I), and one landmark occupies
about 800 bytes. Therefore, the disk storage needed for 1 km
of path is about 112 MB. Once loaded to the computer mem-
ory, a landmark is represented in binary and occupies less
than 300 bytes. Thus, a segment 1 km long would take
42 MB of computer memory.

5. EXPERIMENTS

The assumptions formed in Sections 3 and 4 were verified
in several real-world experiments. The experimental eval-
uation was performed in seven different scenarios examin-
ing the following:

1. Convergence for two types of paths–with and without
the closed-path stability property

2. The impact of systematic errors to the navigation preci-
sion

3. Feasibility of complementing the method by the colli-
sion avoidance module

4. Robustness to environment changes and variable light-
ing conditions

5. Performance in environments with landmark deficiency
6. Navigation efficiency for long paths in an outdoor envi-

ronment with diverse terrain
7. Real deployment of the navigation procedure in Robo-

Tour 2008 and RoboTour 2009 contests (Iša & Dlouhý,
2010)

During these scenarios, the robot autonomously traversed
more than 3 km of indoor and more than 25 km of outdoor
paths. The P3AT platform with the configuration described
in Section 2 was used in all testing scenarios.

The robot learned different closed paths and was re-
quested to navigate these paths several times in the first six
scenarios. The relative position ci of the robot to the path
start was measured every time the robot completed the ith
path loop. To evaluate the quality of the navigation algo-
rithm, accuracy and repeatability values as in Chen and
Birchfield (2009) were used. The accuracy εacc and the re-
peatability εrep are computed as the rms of the Euclidean
distance or the standard deviation of the robot’s final posi-
tions from the path start:

εacc =
√√√√ 1

n − j

n∑
i=j

‖ci‖2, εrep =
√√√√ 1

n − j

n∑
i=j

‖ci − μ‖2,

(22)

where ci is the robot position relative to the path start
after completing the ith loop and μ = ∑n

i=j ci/(n − j ). In
most scenarios, the initial robot position was intentionally
changed to be 1.5 m apart from the learned path start. In
these cases, we do not set j to 1 but wait five loops until
the initial position error diminishes. Thus, the repeatability
and the accuracy are computed for j = 5, n = 20 in the first
four scenarios.

5.1. Stability of Robot Position for Different
Types of Paths

The scenario examines Theorem 1 for paths with and
without the closed-path stability property. The conclusions
made in Section 3 indicate that paths with all collinear
segments do not retain the closed-path stability property,
whereas other paths do. The following paths have been
considered: a path with only two collinear segments (i.e.,
a “back and forth” line path) and a square path. At first,
the robot was taught these closed paths in an indoor hall.
After that, the robot was placed either directly at the path
start or 1.5 m away and requested to navigate along the
learned path 20 times. The robot position ci was measured
after each completed loop.

The first (degenerate) path was formed of two
collinear, 5-m-long, segments. The square path was com-
posed of four segments, each 5 m long, with the end of the
last segment identical to the segment at the start of the path.
The distance of the robot from the path start after each loop
(i.e., ‖ci‖) is shown in Figure 4.

The values indicate that for square trajectories, the
robot was able to correct the position error that was in-
troduced at the beginning of navigation along the learned
path. Only was the error in the y coordinate (i.e., the co-
ordinate axis normal to path segments) partially corrected
for collinear trajectories, while the x coordinate remained
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(a) The position error for line (degenerate) path
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(b) The position error for square (normal) path

Figure 4. The position error for paths without and with the stability property.
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Figure 5. Systematic errors effect: the position error for different types of systematic errors.

uncorrected. These experimental results confirm the the-
oretical assumptions described in Section 3.8, stating that
the navigation is unstable for paths with only collinear seg-
ments.

The robot traversed more than 1.8 km in this scenario.
Both the accuracy and the repeatability for the 20-m-long
square paths were 0.10 m.

5.2. Effect of Systematic Errors

The effect of the systematic errors on navigation precision
was evaluated in this scenario. Two sources of systematic
errors were considered: the camera and the odometry. An
error of the camera can be caused by its optical axis devi-
ation, and an odometric error can be caused by a tire pres-
sure change. To show the effect of the parameter change, it
is necessary to modify these parameters between the learn-
ing and the navigation phases; otherwise a path is learned

with the systematic errors, and therefore the errors do not
have an effect.

The following experiments were performed to verify
that small-scale systematic errors do not affect navigation
stability. At first, the robot camera was panned by 10 deg,
and the robot was requested to traverse the square path
learned during scenario 5.1 20 times. Then, a 10% sys-
tematic odometry error was introduced.1 Finally, the robot
was requested to traverse the path 20 times with both 10%
odometry and 10-deg camera bias. As in the previous cases,
the robot position ci was measured each time the robot
reached the learned path start. The measured distances
from the path start are shown in Figure 5.

1This was done in software—a distance of the robot from the seg-
ment start measured by odometry was multiplied by a factor of 1.1
before it was passed to the navigation algorithm.
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Figure 6. Obstacle avoidance experiment: the position errors with and without obstacles.

The results show that the odometric and the camera
biases cause errors in robot positioning but the error does
not diverge. After a few loops, the position error does
not grow anymore and the system reaches a steady state.
The overall accuracy is lower than without the system-
atic errors, but repeatability remains similar to the previous
scenarios.

The robot traversed more than 1.2 km in this scenario.
The average accuracy with the camera bias was 0.58 m, and
the odometry bias caused the accuracy to change to 0.34 m.
When both the odometry and the camera were biased, the
accuracy was 0.55 m. The average repeatability was lower
than in the previous scenario, i.e., 0.06 m.

5.3. Obstacle Avoidance

A simple collision avoidance module (based on the robot
sonars) was activated in this scenario. The collision avoid-
ance is based on the Tangent Bug algorithm with a finite
range sensor (Choset, Lynch, Hutchinson, Kantor, Burgard,
et al., 2005). When the robot detects an obstacle on its
course, the visual-based navigation is suppressed and the
robot starts to circumnavigate the detected obstacle. Dur-
ing the circumnavigation, odometry is used to determine
the robot position and the sonar data are used to estimate
the obstacle position. The visual navigation algorithm is re-
sumed when the path between the robot and the end of the
current segment is clear.

The robot was taught a square path similar to the one
used in scenario 5.1. After that, one obstacle2 was placed
on each path segment, and the robot navigated the path 20
times. The robot autonomously navigated approximately
0.4 km with an accuracy of 0.16 m and a repeatability

2Obstacle dimensions were approximately half of the robot size.

of 0.08 m. It is clear that the position precision was affected
but did not diverge. See Figure 6.

5.4. Environment and Lighting Changes

The effects of variable lighting conditions and long-term
environment changes were examined in this scenario. At
first, the robot was taught a closed, 50-m-long path consist-
ing of five segments in the Stromovka park located in the
city of Prague. One month later, the robot was placed 1.5 m
away from the path start and was requested to navigate the
path 20 times. This procedure was repeated five times, i.e.,
the test was done every month from November 2009 un-
til April 2010. In each experiment, the robot used a map
created in a previous month. The measured distances are
shown in Figure 7.

Not only did the lighting conditions differ every time
but also the environment went through seasonal changes.
To document these changes, a picture from the onboard
camera was stored every time the mapping was initiated;
see Figure 8. There were considerably fewer correct corre-
spondences between recognized and learned features. With
a map created just before the navigation, the robot usually
correctly recognizes 70%–90% of learned landmarks. Using
a 1-month-old map, the ratio of the correctly recognized
landmarks drops to 10%–40%. Nevertheless, the robot was
able to correct its initial position error and was able to tra-
verse the path faultlessly in all cases.

The robot autonomously navigated more than 6 km
with an average accuracy of 0.24 m in this scenario. Un-
like in previous scenarios, we did not measure the robot
position ci after completion of each loop; we recorded the
robot distance only from the path start, i.e., ‖ci‖. Therefore,
the repeatability cannot be calculated by Eqs. (22). Except
for winter months, pedestrians regularly crossed the robot
path and moved into the robot’s field of view.
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(a) October 2009

(b) January 2010

(c) November 2009

(d) February 2010

(e) December 2009

(f) March 2010

Figure 8. Long-term experiment: the view from the robot’s camera at the path start in different months.

5.5. One-Day Outdoor Experiment

The system performance for long paths was evaluated in
a realistic outdoor environment. The experiment was per-
formed around the Proboštov pond3 in Proboštov, Czech
Republic, at the end of March 2010. The robot was taught a
1-km-long path around the pond in the morning. The path
went through a variable nonflat terrain with asphalt paths,
dirt roads, footpaths, and grass terrain in an approximately
equal ratio (see Figure 9). After the path was taught, the

350◦39′58.716′′N, 13◦50′18.35′′E.

robot was placed 1.5 m away from the path start and re-
quested to traverse it repeatedly. Every time it reached the
path start, its position was measured and its batteries re-
placed (the robot was not moved during the battery ex-
change). It took approximately 1 h for the robot to tra-
verse the learned path, and the battery replacement took
15 min. The weather changed from cloudy/light rain to
partly cloudy/sunny during the experiment. In the after-
noon, a lot of pedestrians showed up and either entered the
robot’s field of view or crossed its path.

Nevertheless, the robot was able to complete the
learned path six times before nightfall. The robot traversed
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Figure 9. One-day experiment: the path around Proboštov pond and the dirt road terrain example.

 0

 50

 100

 150

 200

 0  1  2  3  4  5  6

P
o

si
ti

o
n

 e
rr

o
r 

[c
m

]

One day old map
One week old map

Figure 10. The position errors of the one-day experiment.

6 km with an accuracy4 of 0.26 m and a repeatability
of 0.14 m. The experiment was repeated (without the learn-
ing phase) 1 week later, and the robot traversed the path
six times with an accuracy of 0.31 m and a repeatability
of 0.20 m. The measured distances are shown in Figure 10.

5.6. Landmark Deficiency Experiment

We have claimed that the system is able to operate in an
environment that contains a low number of landmarks. To
verify this assumption, we taught the robot an outdoor
path during night and let it navigate using only street-
lamp lights. The robot was taught a 0.3-km-long path on
paved roads in a residential area. The onboard camera iris
was fully opened, and the camera exposure time was set
to 0.37 s. The path was taught at midnight, so more than

4In this case, εacc and εrep were computed with j = 3 and n = 6 in
Eqs. (22).

90% of the mapped landmarks were streetlamps and illu-
minated windows.

After the path was learned, the robot was placed 1.5 m
from the path start and requested to traverse it 10 times. As
opposed to in the daytime experiments, in which the robot
detected typically 150–300 landmarks, during the night-
time, the typical number of landmarks was 3. The robot tra-
versed 3 km with an accuracy5 of 0.32 m and a repeatability
of 0.16 m. See Figure 11.

5.7. The RoboTour Outdoor Delivery Challenge

The RoboTour contest (Dlouhy & Winkler, 2009; Iša &
Dlouhý, 2010) is an international autonomous robot deliv-
ery challenge organized by robotika.cz. The participating

5In this case, εacc and εrep were computed with j = 3 and n = 10 in
Eqs. (22).
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Figure 11. The position errors of the landmark deficiency (night) experiment.

Figure 12. RoboTour 2008/2009 pathway maps.

teams are mostly from Czech and Slovak universities. The
competition is a perfect event for an independent verifica-
tion of system functions and comparison with other naviga-
tion methods. However, not only are the navigation meth-
ods evaluated, but also the complete systems including all
hardware parts are tested.

Fully autonomous robots have to travel a random path
in a park, stay on the pavements, and detect randomly
placed obstacles in this challenge. A map of the park with
its pathways (designated by letters) is given to the teams in
advance. The competition consists of several rounds, each
with a different path. Thirty minutes before each round, ref-
erees choose a random closed path and announce it as a se-
quence of letters. Competing teams place their robots at the
starting positions and execute their autonomous navigation
algorithms. Robots must travel without leaving the path-

way and without colliding with any random obstacles. The
robot score is determined according to its traveled distance.
In 2008, the competition was held in Stromovka park6 in
Prague, Czech Republic. One year later, the contest moved
to park Lužánky7 in Brno, Czech Republic.

The Stromovka park pathways were mapped 2 days
prior to the competition. The competition had five rounds
with different pathways; see Table II and Figure 12(a). The
robot completed the required path four times of these five
attempts. During two of these attempts, the robot did not
leave the pathway at all, and during two others, the robot
had partially left (i.e., with two side wheels) the pathway. In

650◦6’18.778”N, 14◦25′33.395′′E.
749◦12′25.516′′N, 16◦36′29.81′′E.
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Table II. RoboTour 2008 and 2009 paths.

Pathway sequence length (m)

RoboTour 2008 RoboTour 2009

ABCW 250 ALK0JIR 800
ORQPMKJIH 850 BESQDGHJ0Y 1,050
ABCHGFDCW 500 34PWTMLA 750
HGFEAWOUVW 600 0YR34SFHJ 600
UTSROCDEBCW 700
Total 2,900 Total 2,200

cases when the robot left the pathway partially, it was left to
continue moving (without additional scores) and reached
the goal area. One failed attempt was caused by a battery
failure.

The competition in Lužánky park was performed in
a larger part of the environment; hence the mapping took
3 days. The total length of the mapped pathways was 8 km;
the map consisted of approximately one million landmarks,
which took 834 MB of disk space. The competition had four
rounds; see Table II and Figure 12(b). The robot was able to
complete the required paths two times. One attempt failed
due to a wrong compass reading during the path learning,
but after a manual correction of the robot heading, the robot
caught up and reached the goal area. The other failed at-
tempt was caused by a human factor.

Although the performance was not perfect, the robot
was able to travel the required trajectory, and our team
reached the first rank for both events in 2008 and 2009.

5.8. Experiment Summary

The results of the aforementioned experiments not only
confirm theoretical assumptions stated in Section 3, but
they also show that our method is feasible for use in real-
world conditions. The proposed method is able to cope
with diverse terrain, dynamic objects, obstacles, systematic
errors, variable lighting conditions, and seasonal environ-
ment changes. The summary of experiments in Table III
indicates that the localization precision of our method is

slightly worse than in closely related methods presented in
Royer et al. (2007) and Zhang and Kleeman (2009). Lower
precision is probably caused by heavy reliance on odome-
try and suboptimal use of visual information.

Compared to the similar method presented in Chen
and Birchfield (2009), our method accuracy and repeata-
bility is better in outdoor environments. A probable rea-
son for this is that we used a modus to determine robot
heading. Chen and Birchfield (2009) use a mean of hori-
zontal deviations, which is less robust to data association
errors.

6. CONCLUSION

A simple navigation method based on bearing-only sensors
and odometry was presented. In this method, a robot navi-
gating a known environment uses a map of the environ-
ment and a camera input to establish its heading, while
measuring the traveled distance by odometry. We claim
that this kind of navigation is sufficient to keep the robot
position error limited. This claim is formulated as a closed-
path stability property and proved for polygonal paths
with at least two noncollinear segments. The property al-
lows us to estimate the robot position uncertainty based on
the landmark density, robot odometry precision, and path
shape.

The proposed method was experimentally verified by
a mobile robot with a monocular camera. The robot builds
a SURF-based (Bay et al., 2006; Cornelis & Van Gool, 2008)
landmark map in a guided tour. After that, it uses the
aforementioned method to autonomously navigate in the
mapped environment.

We conducted experiments indicating that theoretical
results and assumed conditions are sound.

The proposed navigation method has surprising prop-
erties different from the properties of other navigation and
localization methods, mainly the following:

• The robot can perform 2D localization by heading esti-
mation, which is a one-degree-of-freedom method.

• If the robot travels between two points, it is better to use
a “zigzag” trajectory rather than a straight one.

• Traveling a closed trajectory might reduce the robot po-
sition uncertainty.

Table III. Proposed method accuracy and repeatability in various scenarios.

Indoor Outdoor

Clear Obstacles Long term 1 day Night

Accuracy (m) 0.10 0.16 0.24 0.25 0.32
Repeatability (m) 0.10 0.08 N/A 0.14 0.16
Loop length (m) 20 20 50 1,040 330
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We believe that the convergence proof does not apply only
to our system but is valid for many other algorithms. The
proof suggests that any algorithm that decreases the lateral
position error of a robot is stable for closed polygonal tra-
jectories. This might be the case for even simpler and faster
methods, such as the one presented in Zhang and Kleeman
(2009). However, this is merely a hypothesis, which needs
to be thoroughly examined.

The fundamental limitation of our method is its re-
liance on odometric measurements. Other visual-based
navigation methods use odometry only as an auxiliary
measurement or do not require odometry at all. There-
fore, these methods would perform better in scenarios
in which wheel slippages have to be taken into account.
Although our method is limited in application and its
precision is lower compared to methods presented in
Royer et al. (2007) and Zhang and Kleeman (2009), we
believe that it is interesting from an academic point of
view.

In the future, we would like to test our algorithm
with robots that have only imprecise odometry or inac-
curate dead reckoning. The preliminary tests conducted
with the AR-Drone quadrotor helicopter, which esti-
mates the traveled distance by accelerometers, seem to be
promising.

7. APPENDIX A: INDEX TO MULTIMEDIA
EXTENSIONS

The video is available as Supporting Information in the on-
line version of this article.

Extension Media type Description

1 Video Algorithm 1 implemented on a UAV

8. APPENDIX B

This Appendix presents values measured during experi-
ments.

8.1. Stability of Robot Position for Different Types
of Paths

Table B.I contains data measured during the first experi-
mental scenario presented in Section 5.1. It shows the mea-
sured positions for the paths that do and do not retain the
stability property. Note that line (degenerate) paths do not
correct the longitudal position deviation, which is in accor-
dance with the convergence proof presented in Section 3.

Table B.I. Convergence for degenerate and normal paths: indoors.

Position relative to start (m)

Line (degenerate) path Square (normal) path

Loop d0,0 d0,1.5 d1.5,0 d0,0 d0,1.5 d1.5,0

00 0.00, 0.00 0.00, 1.50 1.50, 0.00 0.00, 0.00 0.00, 1.50 1.50, 0.00
01 −0.02, 0.00 0.05, 0.55 1.46, −0.24 0.08, −0.02 0.12, 0.58 0.32, −0.06
02 −0.03, −0.04 −0.03, 0.27 1.49, −0.30 0.02, 0.04 0.02, 0.23 0.05, −0.02
03 −0.03, −0.02 −0.06, 0.14 1.53, −0.32 −0.02, 0.11 0.04, 0.06 0.10, 0.12
04 −0.05, 0.03 −0.03, 0.13 1.53, −0.25 0.10, 0.07 −0.07, −0.03 0.05, 0.15
05 −0.05, 0.00 −0.03, 0.10 1.56, −0.27 0.10, 0.11 −0.01, 0.00 0.05, 0.09
06 −0.04, 0.03 −0.03, 0.10 1.55, −0.25 0.08, 0.00 −0.02, 0.02 0.00, −0.16
07 −0.05, 0.04 −0.05, 0.16 1.53, −0.22 0.01, 0.07 0.04, −0.12 −0.03, 0.00
08 −0.05, 0.06 −0.05, 0.00 1.54, −0.25 0.00, −0.01 0.05, 0.11 0.07, 0.04
09 −0.04, 0.05 −0.06, 0.02 1.53, −0.15 −0.01, 0.02 0.05, −0.05 0.07, 0.06
10 −0.04, 0.08 −0.05, 0.13 1.53, −0.21 0.00, −0.04 −0.08, −0.16 0.09, 0.13
11 −0.06, −0.09 −0.04, 0.16 1.54, −0.25 −0.04, −0.14 0.02, −0.11 0.12, 0.02
12 −0.05, 0.01 −0.04, −0.07 1.54, −0.31 0.02, −0.02 0.05, 0.02 0.02, −0.11
13 −0.05, 0.04 −0.08, 0.06 1.55, −0.27 0.03, −0.06 0.00, 0.06 −0.01, −0.12
14 −0.04, 0.05 −0.06, 0.02 1.53, −0.31 0.06, 0.04 −0.09, −0.10 0.02, −0.09
15 −0.05, −0.04 −0.06, 0.06 1.55, −0.21 −0.01, −0.15 −0.01, 0.09 0.01, 0.00
16 −0.04, 0.00 −0.05, −0.03 1.54, −0.24 −0.02, −0.12 −0.05, 0.01 0.01, 0.05
17 −0.03, 0.10 −0.07, 0.02 1.52, −0.21 −0.03, −0.19 0.07, 0.08 0.05, −0.06
18 −0.04, 0.04 −0.09, −0.05 1.55, −0.24 0.02, −0.22 0.09, 0.05 0.01, 0.03
19 −0.03, 0.09 −0.11, 0.05 1.56, −0.10 −0.02, −0.10 0.08, 0.04 0.07, 0.09
20 −0.04, 0.08 −0.07, 0.02 1.54, −0.07 0.01, −0.15 0.02, 0.07 0.04, −0.11
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Table B.II. Effect of systematic errors on navigation
convergence.

Position relative to start (m)
Systematic error (bias)

Loop None Camera Odom. Both

00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
01 0.08, −0.02 −0.30, 0.37 0.08, 0.09 −0.16, 0.28
02 0.02, 0.04 −0.28, 0.39 0.09, 0.13 −0.15, 0.38
03 −0.02, 0.11 −0.35, 0.44 0.13, 0.24 −0.16, 0.46
04 0.10, 0.07 −0.29, 0.38 0.15, 0.30 −0.15, 0.50
05 0.10, 0.11 −0.31, 0.50 0.17, 0.35 −0.03, 0.53
06 0.08, 0.00 −0.33, 0.52 0.13, 0.32 −0.24, 0.49
07 0.01, 0.07 −0.34, 0.49 0.19, 0.30 −0.14, 0.52
08 0.00, −0.01 −0.32, 0.46 0.13, 0.31 −0.18, 0.49
09 −0.01, 0.02 −0.33, 0.49 0.12, 0.30 −0.13, 0.50
10 0.00, −0.04 −0.36, 0.49 0.10, 0.26 −0.14, 0.49
11 −0.04, −0.14 −0.35, 0.50 0.13, 0.39 −0.33, 0.47
12 0.02, −0.02 −0.32, 0.50 0.18, 0.44 −0.39, 0.49
13 0.03, −0.06 −0.35, 0.45 0.13, 0.31 −0.38, 0.48
14 0.06, 0.04 −0.33, 0.49 0.14, 0.34 −0.18, 0.49
15 −0.01, −0.15 −0.32, 0.45 0.14, 0.29 −0.13, 0.50
16 −0.02, −0.12 −0.31, 0.40 0.11, 0.25 −0.12, 0.49
17 −0.03, −0.19 −0.36, 0.44 0.11, 0.29 −0.16, 0.51
18 0.02, −0.22 −0.31, 0.46 0.11, 0.24 −0.15, 0.54
19 −0.02, −0.10 −0.35, 0.42 0.12, 0.26 −0.21, 0.53
20 0.01, −0.15 −0.32, 0.44 0.13, 0.27 −0.12, 0.53

8.2. Effect of Systematic Errors

Table B.II contains data from the experimental scenario in
Section 5.2, in which effects of the camera and the odometry
bias were measured.

8.3. Obstacle Avoidance

Table B.III contains data from the experiment scenario de-
scribed in Section 5.3, in which we verified the methods
ability to deal with obstacles.

8.4. Environment and Lighting Changes

Table B.IV contains data from the experiment scenario de-
scribed in Section 5.4, in which the algorithm was tested
in an outdoor environment with long-term environment
changes.

8.5. One-Day Outdoor Experiment

Table B.V contains data from experiment scenario 5.5, in
which the algorithm was tested in an outdoor environment
with variable terrain.

Table B.III. Positioning errors with and without obstacles.

Position relative to start (m)

Loop Clear path Obstacles

00 0.00, 0.00 0.00, 0.00
01 0.08, −0.02 0.24, 0.22
02 0.02, 0.04 0.12, 0.06
03 −0.02, 0.11 0.17, 0.08
04 0.10, 0.07 0.11, −0.08
05 0.10, 0.11 0.15, −0.08
06 0.08, 0.00 −0.05, −0.07
07 0.01, 0.07 0.14, −0.12
08 0.00, −0.01 0.15, −0.12
09 −0.01, 0.02 0.02, −0.12
10 0.00, −0.04 0.14, −0.07
11 −0.04, −0.14 0.17, −0.13
12 0.02, −0.02 0.20, −0.04
13 0.03, −0.06 0.08, −0.06
14 0.06, 0.04 0.19, −0.03
15 −0.01, −0.15 0.14, −0.03
16 −0.02, −0.12 0.13, 0.04
17 −0.03, −0.19 0.15, −0.03
18 0.02, −0.22 0.02, −0.13
19 −0.02, −0.10 0.17, −0.06
20 0.01, −0.15 0.14, −0.01

Table B.IV. Long-term algorithm reliability.

Distance to path start (m)

Loop Nov Dec Jan Feb Mar Apr

00 1.50 1.50 1.50 1.50 1.50 1.50
01 0.70 0.92 0.90 0.87 0.83 1.15
02 0.30 0.55 0.60 0.50 0.62 0.83
03 0.13 0.38 0.45 0.22 0.28 0.41
04 0.12 0.33 0.38 0.12 0.15 0.39
05 0.03 0.27 0.28 0.18 0.14 0.33
06 0.18 0.20 0.27 0.21 0.09 0.12
07 0.06 0.28 0.22 0.23 0.19 0.07
08 0.09 0.24 0.26 0.24 0.28 0.26
09 0.10 0.29 0.24 0.22 0.23 0.40
10 0.02 0.27 0.28 0.21 0.26 0.38
11 0.23 0.20 0.24 0.22 0.29 0.32
12 0.08 0.20 0.20 0.23 0.23 0.37
13 0.22 0.28 0.20 0.29 0.27 0.27
14 0.14 0.29 0.25 0.27 0.26 0.29
15 0.24 0.29 0.21 0.27 0.11 0.46
16 0.40 0.27 0.24 0.27 0.31 0.28
17 0.42 0.22 0.24 0.22 0.23 0.23
18 0.43 0.23 0.27 0.23 0.15 0.29
19 0.48 0.23 0.23 0.28 0.19 0.35
20 0.45 0.20 0.21 0.28 0.24 0.36
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Table B.V. One-day outdoor experiments.

Position relative to start (m)
by map age

Loop Up to date 1 week

00 0.00, 1.50 0.00, 1.50
01 −0.07, 0.03 0.63, 0.15
02 −0.21, 0.18 0.59, 0.11
03 −0.34, 0.15 0.53, 0.17
04 −0.05, −0.14 0.32, 0.19
05 0.34, 0.05 −0.09, 0.22
06 −0.25, 0.06 0.15, 0.20

Table B.VI. Landmark deficiency experiment.

Loop Position relative to start (m)

00 0.00, 1.50
01 −0.13, −0.29
02 0.21, −0.43
03 −0.09, −0.34
04 −0.32, −0.20
05 0.12, −0.14
06 −0.08, −0.32
07 −0.05, −0.13
08 −0.29, −0.24
09 −0.09, −0.33
10 −0.10, −0.36

8.6. Landmark Deficiency Experiment

Table B.VI contains data from the experiment scenario de-
scribed in Section 5.6, in which the algorithm was tested
during night in low-visibility conditions.
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