
J Intell Robot Syst (2011) 62:329–353
DOI 10.1007/s10846-010-9449-0

A Sensor Placement Algorithm for a Mobile
Robot Inspection Planning

Jan Faigl · Miroslav Kulich · Libor Přeučil

Received: 3 December 2009 / Accepted: 12 July 2010 / Published online: 30 July 2010
© Springer Science+Business Media B.V. 2010

Abstract In this paper, we address the inspection planning problem to “see” the
whole area of the given workspace by a mobile robot. The problem is decoupled
into the sensor placement problem and the multi-goal path planning problem to
visit found sensing locations. However the decoupled approach provides a feasible
solution, its overall quality can be poor, because the sub-problems are solved
independently. We propose a new randomized approach that considers the path
planning problem during solution process of the sensor placement problem. The
proposed algorithm is based on a guiding of the randomization process according
to prior knowledge about the environment. The algorithm is compared with two
algorithms already used in the inspection planning. Performance of the algorithms is
evaluated in several real environments and for a set of visibility ranges. The proposed
algorithm provides better solutions in both evaluated criterions: a number of sensing
locations and a length of the inspection path.

Keywords Sensor placement · Mobile robotics · Inspection path planning ·
Art gallery problem

1 Introduction

The inspection planning, a problem to “see” the workspace W , is a robotic instance
of the Watchman Route Problem (WRP) [1], which deals with finding a shortest path
in a polygon P such that all points of P are visible from at least one point at the path.

The work has been supported by the Ministry of Education of the Czech Republic
under program “National research program II” by the project 2C06005.

J. Faigl (B) · M. Kulich · L. Přeučil
Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Technická 2,
166 27, Prague 6, Czech Republic
e-mail: xfaigl@labe.felk.cvut.cz

330 J Intell Robot Syst (2011) 62:329–353

The problem is NP-hard for a polygon with holes and the first heuristic approach
has been proposed relatively recently in [2]. An alternative approach is based on the
problem decomposition into the set cover problem and the multi-goal path planning
problem. The problems can be formulated as the Art Gallery Problem (AGP) and
the well-known Traveling Salesman Problem (TSP) [3]. The AGP stands to find a
minimal number of guards to cover a polygonal environment. The guard is a point for
which a star-shaped visibility polygon is computed to cover a part of the environment.
Both problems are known to be NP-hard, even in the case of a polygon without
holes [4].

The visibility of real sensors is limited, therefore restricted visibility should be
considered. Two variants of the WRP are studied for a visibility range limited
to a fixed distance d [5]. The d-watchman route problem is a variant to see only
the boundary of the polygon, while the d-sweeper route problem aims to sweep a
polygonal floor using a circular broom of the radius d, such that the total travel
of the broom is minimized [6]. These problems are studied for restricted classes of
polygons in the computational geometry domain, an overview of particular results
can be found in [7, 8].

For the decoupled approach, the authors of [9] considered three visibility con-
straints and called the problem the sensor placement rather than the AGP. In
addition to the basic constraint that a line-of-sight does not intersect the boundary
of the workspace, they considered visibility range and incidence constraints. The
decoupled approach is motivated by the practical sensing limitation, where a cost
of the sensing is greater than a cost of moving, e.g. a high quality measurement needs
a significant amount of time and it cannot be taken during the robot movement.
Therefore the number of sensing locations have to be minimized. Despite the fact
that the decoupled approach provides a feasible solution of the inspection planning,
it was criticized in [10], because even in the case that both sub-problems are solved
optimally, due to its independent solution, the overall performance can be poor.

Table 1 Used symbols and notation

Symbol Description

G A set of sensing locations
g ∈ G A sensing location (a guard)
Cfree Free space (all robot configurations not colliding with obstacles)
A ⊕ B Minkowski sum
A � B Minkowski difference
W ⊂ R

2 A robot workspace, represented by the polygonal domain
nv, ng The number of polygon (map) vertices, the number of guards
k The number of vertices of a polygonal representation of a disk
G(V, E) A graph defined by a set of vertices V and a set of edges E
K(v) The relevance measure, see Eq. 1
r A value of minimal allowed relevance
|.| An area of a polygon
visible(W, d, p) A visibility polygon, i.e. a part of W d-visible from the point p
δB Boundary (border of a shrunk free space)
I, E A collection of polygons in the interior, resp. exterior, of W according to δB
m The number of random samples in the RDS algorithm
N (0, σ 2) Two dimensional normal (Gaussian) distribution with zero mean and σ variance

J Intell Robot Syst (2011) 62:329–353 331

The author noted that such decomposition works well if a coverage of considered
views do not overlap or those with large coverage overlap are close to each other.
However the critique makes sense, a systematic study of sensor placement algorithms
according to the related route planning problem has not been found in the literature.
In this paper, a new algorithm for the sensor placement problem is presented and
compared with two algorithms. The performance of the algorithms is evaluated with
respect to the number of found sensing locations and the length of the inspection
path to visit these locations in a set of real environments.

The paper is organized as follows. An overview of related work and applications
of the sensor placement are presented in the next section. The problem is specified
in Section 3 and three examined algorithms are described in Section 4. The experi-
mental results are presented in Section 5. Finally, the presented results are discussed
and further possible extensions are proposed in the conclusion, Section 6. Symbols
and notation used in the rest of the paper are shown in Table 1.

2 Related Work

Randomized sampling based approaches are suitable for consideration of real sensor
limitations as they are able to address different visibility constraints. Two sampling
based algorithms determining a set of sensing locations to cover the workspace
boundary with consideration of the visibility constraints were proposed in [11].
The first algorithm is a greedy approach to find a near-optimal subset of sampled
points to cover the boundary. The second algorithm at first places a point p on
the boundary of the unseen part of the polygon and then selects a point with the
highest coverage from sampled points in the visibility polygon of p. The algorithm is
called Randomized Dual Sampling (RDS) and it has been utilized in the inspection
planning [3] and in the surveillance systems [12].

The surveillance systems are related to the sensor placement problem, because
restricted visibility has to be considered in these systems: cameras are typically
mounted on walls, have limited field of view and limited range for sufficient sharp
focus in an image. A solution of the problem based on a discretization of the envi-
ronment into a two dimensional grid was presented in [13]. The problem formulated
as the Binary Integer Programming (BIP) has been presented in [12]. Authors
compared the performance of the RDS and greedy heuristic with the exact solution.
They reported suitability of heuristic approaches and their good approximation of
the BIP solution. However due to the lack of computational resources only small
problems have been examined. A similar problem was addressed in [14], the problem
is the optimal sensor placement to create a wireless sensor network where each
sensor has three parameters: sensing range, field of view and orientation. A limited
bandwidth of a wireless links was also considered. The problem is formulated as the
Integer Linear Programming (ILP) and solved by CPLEX 10.1 solver. The largest
solved problem had 200 placement sites and 70 control points and was solved in 30
826 seconds on 3 GHz CPU.

A deterministic algorithm based on a decomposition of a polygon with holes into a
set of convex sub-polygons was presented in [15]. Authors considered a panoramatic
camera with 360◦ field of view and restricted visibility range to capture an image
with a sufficient level of details. The algorithm is able to address both variants of

332 J Intell Robot Syst (2011) 62:329–353

the inspection planning: to “see” whole area of the workspace or only its borders.
The authors presented an analysis of the required computational time that increases
proportionality to a number of found guards and reported solved problems up to
eight thousands of guards for the restricted visibility range.

The sensor placement problem is also studied in the so-called View Point Planning
(VPP). A solution of the VPP aims to provide a plan for an automated 3D object
recognition and inspection. To provide a “good” view it is necessary to consider
particular sensing constraints, which depend on a sensing device and recognition
capabilities [16]. Two costs can be considered in the VPP, the sensing cost and travel
cost from one view point to the next view point. The combination of the view and
travel costs is addressed in the formulated Traveling VPP [10], which is defined on a
given set of view points. The solution (probably the first unified approach in robotics)
is based on the ILP formulation and rounding algorithm called Round and Connect.
The watchman route problem is reduced to the Traveling VPP by a finite number
of viewpoints that are found by the proposed sampling algorithm. The number of
viewpoints does not depend on geometric parameters of the polygon (with holes),
the viewpoints are found in O(n12), where n is the number of polygon vertices.

A two dimensional sensor placement is also useful for the full 3D environment
reconstruction to provide an initial plan where measurements should be taken [17]
and in the exploration task [18] with the next-best-view navigation strategies [19].

Practical applications of the randomized sampling based algorithm have been
reported by several authors, however the related path planning problem is solved
independently. In this paper, we evaluate three algorithms according to a number of
sensing locations and a length of the path over found set of sensing locations. Two
state-of-the-art algorithms have been selected: the deterministic Convex Polygon
Partitioning (CPP) algorithm [15] and the RDS algorithm [20]. The main advantage
of these two approaches is their simplicity and efficiency, which allows real-time
planning in robotic applications. The third algorithm is a new algorithm called
Boundary Placement (BP), which tries to incorporate the related path planning
problem into the sensor placement part.

3 Problem Statement

An environment is a priori known and it is represented in a form of a geometrical
map as the polygonal domain (polygon with holes). The problem is to find a set
of sensing locations G to cover the environment. A sensing location have to be
reachable by the mobile robot, therefore g ∈ G have to be in the free space of the C-
space, g ∈ Cfree. A rigid body of the robot with a differential nonholonomic drive
can be modeled by a disk that allows representation of the reachable free space
by a shrunk polygon determined by the Minkowski sum operation. The obstacles
are grown according to the Minkowski sum definition A⊕B={x+y | x∈ A, y∈ B}
while the border polygon is shrunk by the Minkowski difference that can be defined
as A � B = A ⊕ (−B) [21]. In such a shrunk free space a point robot can be
assumed and Cfree can be represented by the polygonal domain W denoting the robot
workspace.

The visibility range of the sensor is considered to be limited to the distance d and
two points p and q in a polygon P are called d-visible, if the line segment joining them

J Intell Robot Syst (2011) 62:329–353 333

is contained in P and the segment length is less or equal to d. The visibility restricted
to the range d is modeled by a disk having radius d and consisting of a given number
of vertices. The sensor placement problem can be formulated as follows.

Sensors Placement Problem - For a given workspace W ⊂ R
2 reachable by the

mobile robot, find a set of sensing locations G such that every point of W is d-visible
from at least one point of G.

To follow a notation of the AGP, a sensing location is also called a guard in the
rest of this paper. Once guards are found, the inspection planning is formulated as
the routing problem to find an order to visit the guards such that the total length of
the path is minimized. Shortest paths between guards can be found as the shortest
path roadmap constructed from the visibility graph, e.g. in O((nv + ng)

2) [22], where
nv denotes the number of map vertices and ng is the number of guards. The path
planning problem is formulated as the TSP on a graph G(V, E), where V denotes
guards and E is a set of edges with costs derived from the lengths of the shortest
paths between guards, the TSP can be than solved by a TSP solver. Without loss of
generality G(V, E) is assumed to be complete.

4 Sensor Placement Algorithms

4.1 Convex Polygon Partitioning - CPP

A deterministic sensor placement algorithm based on the decomposition of a polyg-
onal environment representation into a set of convex polygons has been proposed
in [15]. Each convex polygon is covered by one guard and to satisfy the restricted
visibility range constraint, a distance from a guard to vertex of the convex polygon
has to be less than the visibility range d. If a convex polygon is too large, it is divided
into convex sub-polygons until each sub-polygon is not covered by one guard with the
omnidirectional view. The primal convex partition is found by Seidel’s algorithm [23].
The total complexity is linear with the number of found guards [15].

The number of found guards depends on the partition to convex polygons. For
a polygon with very small segments, vertices can cause additional convex polygons,
which have to be covered by additional guards. This issue can be partially addressed
by the polygon filter technique described in Section 4.1.1. Examples of found guards
and particular convex sub-polygons are shown in Fig. 1.

4.1.1 Polygon Filtering

However a geometric representation is memory efficient in comparison to a grid
based representation, the number of vertices can be still unnecessarily high. The
number of map vertices affects the performance of the used algorithm. For example
if two vertices of a non-convex polygon are very close, removing one of them can
lead to a convex polygon, which can be easily covered by one guard placed at any
position inside the polygon. These reasons lead to reduce a number of unnecessary
vertices by a pre-processing of the polygonal representation of the free space, while
the polygon shape is preserved.

334 J Intell Robot Syst (2011) 62:329–353

(a) (b)

Fig. 1 Found guards by the CPP algorithm

A polygon filter technique based on the relevance measure [24] is one of the
suitable algorithms to remove unnecessary vertices. It is depicted in Algorithm 1.

The K(v) is a relevance measure based on the Euclidean distance [25]

K(vi) = |vi−1, vi| + |vi, vi+1| − |vi−1, vi+1|, (1)

where vi−1 and vi+1 are neighbouring vertices of the vertex vi in the polygon P.
The polygonal representation W consists of a border polygon and a collection of

hole polygons. Because of each polygon is filtered independently, the consistence
of the filtered polygon with holes has to be validated. To ensure consistence of the
resulting polygon, the final polygon with holes can be constructed by the Boolean
operations, i.e. all filtered holes are subtracted from the filtered border polygon.

4.2 Randomized Dual Sampling Schema—RDS

The idea of the RDS algorithm to find a minimal set of guards is based on sampling
the constraints of the problem (the points to be covered) instead of its domain [20].

J Intell Robot Syst (2011) 62:329–353 335

The algorithm has been proposed to find a set of guards to cover the boundary of the
free space, therefore it needs to be modified to address covering of the workspace
interior. The extension is straightforward, instead of the total length of the uncovered
boundary an area of the uncovered part of the free space is considered. The sampling
procedure is summarized in Algorithm 2, where |.| denotes an area of the particular
polygonal part of the workspace W . The algorithm performs in two steps. At first, the
boundary is sampled by a point and its visibility polygon is computed. After that, the
polygon is sampled m times and a point with the highest coverage, i.e. the largest area
of the visibility polygon, is denoted as a new guard. The visibility polygon of the new
guard is subtracted from the uncovered free space and the process is repeated until
the whole free space is covered. The algorithm is complete and it is terminated after
a finite number of iterations, because at each iteration a random point is generated
at the border of U and the visibility polygon of the new guard is subtracted from U.
An example of the algorithm performance is shown in Fig. 2.

The complexity of the algorithm depends on the computation of the visibility
polygon that can be done in O(nv log nv), where nv denotes the number of vertices

(a) (b) (c)

Fig. 2 An example of the RDS performance, small disks denote random points; a an initial random
point pb (in blue) at the border of uncovered free space S, its restricted visibility polygon V and a
set of random points, b the reduced uncovered free space S after the first guard has been found, c
a covered free space by several found guards

336 J Intell Robot Syst (2011) 62:329–353

of W . The restricted visibility is computed as an intersection of the visibility polygon
and a disk. The disk is formed from k edges and its radius is the visibility range
d. Newly covered portion of the free space is subtracted from U that can increase
a number of vertices up to knvng, where ng is the number of found guards. The
overall complexity can be bounded by O(mnvng log(nvng)), where m is the number
of random samples.

It should be noted that the RDS algorithm has been developed to consider two
types of constraints, the visibility range and the incident constraint for the laser
rangefinder sensing beam. The incident constraint models a situation when a laser
beam is not reflected from the surface, because the incident angle of the beam with
the surface normal is too wide. The constraint cannot be applied for covering the
whole free space and it is not considered, however it can be used for the boundary
cover.

4.3 Boundary Placement—BP

The BP algorithm tries to consider a length of the inspection path during the
sensor placement that is based on the randomization process of the RDS algorithm.
The randomized sampling is guided by a priori knowledge about the environment
structure and positions of already found guards. The main idea follows greedy
principle and suggestion to do not place guards unnecessary far from each other.
Such a procedure can potentially lead to a higher number of guards, but the guards
should be placed close to each other and the total traveled path to visit all guards is
expected to be shorter. Let us review the ideas behind the algorithm design.

From the path planning point of view, it is not necessary to move the robot closer
to walls (or obstacles) than in a perimeter of the visibility range. This consideration
leads to place guards firstly in a pre-specified distance from the obstacles and then
place additional guards to cover the rest of the uncovered free space. The primal
guards positions are at the boundary of a shrunk free space by the distance b , which is
close to the visibility range. The boundary represents prior knowledge how to sample
the free space. The main idea is demonstrated in Fig. 3a. The boundary is represented
by inscribed line segments, its distance to the obstacle is very close to the restricted
visibility range. After placing guards at the boundary (notice the guards positions also
satisfy possible incident constraint) the uncovered free space is divided into two sets
of regions. The first set contains polygons inside the boundary, therefore it is called

exterior

guards on the boundary

obstacle

boundary

interior

(a)
obstacle

boundary

new guard
exterior

interior

(b)

Fig. 3 Principle of the boundary placement algorithm

J Intell Robot Syst (2011) 62:329–353 337

g

(a)

2d g

c

(b)

g

c

new guard

(c)

Fig. 4 Large region cover strategy

interior, the set is represented by dark polygons. The important property of these
polygons is that they are not in contact with obstacles. Regions outside the boundary
represent the second set called exterior. To cover a part of the exterior a new guard
can be placed in a certain distance from an already placed guard, so the new guard is
placed close to the guard. A path connecting found guards is mainly affected by the
guards at the boundary, while added guards do not lead to significant change of the
path direction. This idealized case demonstrates the main idea behind the algorithm
design.

The Boundary Placement algorithm consists of four parts. The first three parts
correspond to covering the boundary, interior and exterior sets. The fourth part is
a post-processing procedure to adjust the number of found guards by replacing two
very close guards by one guard with the same coverage.

The sensor placement procedure follows the randomized schema of the RDS
algorithm, but the second sampling is replaced by two heuristic strategies.

The large region cover strategy firstly selects a random point g at the border of the
uncovered region, which is not a part of an obstacle, see Fig. 4a. Then the midpoint
c of the longest part of the circle (with the radius 2d, where d is the visibility range)
lying inside the uncovered region is determined, Fig. 4b. Finally a new guard is placed
in the middle of the segment (g, c), see Fig. 4c.

The small region cover strategy also starts with a random sample point p at the
border, which is not a part of an obstacle, see Fig. 5a. Then the closest already found
guard g, which is directly visible from p, is determined. If such a guard is not found,
the point p is used as a new guard. Otherwise a new guard is placed at the segment

g

pnot covered exterior

obstacle

(a)

p

g

obstacle

not covered exterior

(b)

g

pnot covered

obstacle

new guard

exterior

(c)

Fig. 5 Small region cover strategy

338 J Intell Robot Syst (2011) 62:329–353

(g, p) close to g as much as possible, like in Fig. 5c. The new guard should cover same
portion of the uncovered free space as the point p. To be precise, p lies at a border
of one of the region that is a part of the set of regions. Only this particular region is
considered to be covered, i.e. only its area covered by p is considered.

The BP algorithm is summarized in Algorithm 3. The second and third parts of
the algorithm are identical, except the set of uncovered free space I, resp. E. It
is expected that the covering interior will also cover a part of the exterior, that is
why the covering interior precedes the covering exterior. The symbol δ denotes a
border of the polygon. The polygon is an open set, thus the border is a difference
between the closure of the polygon and the polygon. Both the interior and exterior
are collections of polygons, hence a particular polygon from the collection is denoted
as I p ∈ I, resp. Ep ∈ E.

The cover strategy is the large region cover strategy or small region cover strategy.
It is selected according to the area of the particular polygon I p, resp. Ep,

|I p| ≥
{

μIπd2 large region cover strategy,
otherwise small region cover strategy.

(2)

The parameter μI , resp. μE, represents multiplication of the visibility disk area
and it is used to estimate size of the particular uncovered region I p, resp. Ep.

The first three parts of the algorithm are similar to the randomized approach of the
RDS algorithm, which uses a set of random points to select the best random point
as a new guard. In these three parts, the same RDS schema of the random point

J Intell Robot Syst (2011) 62:329–353 339

selection can be used in similar manner. Such selection is not a part of Algorithm 3,
the extension is straightforward.

The fourth part of the algorithm is a post-processing optimization to reduce a
number of found guards. A guard can be placed close to previously found guards,
therefore guards can cover large portion of the same space. Two such guards can be
possibly replaced by one guard with the same coverage. A difference between guards
coverage can be covered by other guards, so only particular not covered part of the
free space can be considered. The optimization procedure is following.

1. Let W is a polygonal map and G is a set of guards.
2. Create pairs of mutually visible guards {G1, . . . , Gn} that are closer than the

visibility range d, Gi = {gi, g′
i}, gi 	= g′

i, |(gi, g′
i)| ≤ d, gi ∈ G, g′

i ∈ G.
3. Sort the pairs according to distance between guards and select pairs with the

shortest distance between guards such that each guard is only in one such pair,
GP = {G1, . . . , Gk}, gi ∈ Gi, gi /∈ G j, i 	= j, i, j ∈ {1, . . . , k}.

4. Compute coverage of guards, which are not in the selected pairs, the uncovered
free space is denoted as U.

5. Select pair Gs from the GP with the closest guards. Compute coverage of
the guards Gs = {gs, g′

s} as Ps = visible(W, d, gs) ∩ U, P ′
s = visible(W, d, g′

s) ∩ U
and coverage of the midpoint p = midpoint(gs, g′

s), P p = visible(W, d, p) ∩ U.
Select guards according to following criterions.

(a) If (Ps ∪ P ′
s) \ P p = ∅ then replace guards gs, g′

s by the new guard p, G ←
{p} ∪ G \ {gs, g′

s} and update uncovered free space U ← U \ P p, go to
step 6.

(b) If |Ps| > |P ′
s| ∧ P ′

s \ Ps = ∅ then use gs, G ← G \ {g′
s} and update uncov-

ered free space U ← U \ Ps, go to step 6.
(c) If Ps \ P ′

s = ∅ then use g′
s, G ← G \ {gs} and update uncovered free space

U ← U \ P ′
s, go to step 6.

(d) use both guards gs and g′
s, update uncovered free space U ← U \ (Ps ∪ P ′

s),
go to step 6.

6. Remove the processed pair Gs from the set of pairs GP ← GP \ {Gs}.
7. Repeat step 5 if GP is not empty.

The performance of the BP algorithm mostly depends on the initial boundary
selection. The original idea of the BP algorithm expects the boundary at a distance
close to the visibility range. If a boundary is created at a very small distance to the
polygon border the guards will be placed unnecessarily close to obstacles. On the
other side, if a distance is relatively high, the boundary created from the shrunk
free space can be degenerated. In a degenerated case a large portion of the free
space is a part of the exterior and the heuristic approach is used. A boundary can
be determined as the border of the shrunk free space by a distance b . During
experimental verification of the proposed algorithm a set of b values have been
found for each particular environment and visibility range, see Section 5. An example
of the Boundary Placement algorithm performance is shown in Fig. 6.

Complexity of the algorithm is very similar to RDS. Assume that the number of
random samples in the first three parts is one and W is represented by nv vertices.
The first part of the BP algorithm requires computation of a visibility polygon for
each new guard, which can be done in O(nv log nv). The second and third parts

340 J Intell Robot Syst (2011) 62:329–353

(a) (b) (c)

(d) (e) (f)

Fig. 6 An example of the BP algorithm performance, the visibility range d is 2 m; a polygonal
environment and its boundary at distance 1.5 m, b boundary coverage and uncovered interior and
exterior parts of free space, c interior coverage, d exterior coverage, e guards reduction, f the final
set of guards

are a little bit complicated as they require computation of the closest guard and
determination of the new point to cover the region. The closest visible guard gc

can be found as an intersection of the full visibility region of the point p with
the set of guards.1 The point p belongs to the particular polygon of the polygon
collection I, resp. E, the furthest vertex v of the particular polygon I p, resp. Ep, is
determined according to its Euclidean distance to gc. The distance between gc and v

is used to estimate the position of the new guard gc according to the current visibility
range d. Then, a visibility polygon for the new guard candidate is determined. The
small region cover strategy is applied for small polygons I p, resp. Ep, therefore its
number of vertices is expected to be less than nv and determination of the vertex
v is negligible according to computation of the required visibility polygon from p.
It means the time complexity can be bounded by O(nv log(nv)). The large region
cover strategy also requires additional computation of a visibility polygon. At first, a
midpoint of the longest circle part is determined in O(k) steps, where k is the number
of disk vertices, then the guard candidate is placed at the center of the segment from
the random point at the border of the uncovered polygon and the midpoint. Similarly
to the RDS, coverage of the new guard is subtracted from the uncovered free space,
which increases a number of vertices. The complexity of the first three parts depends
on the visibility polygons and can be bounded by O(nvng log(nvng)).

1E.g. by Boolean operation on Nef polyhedra representation.

J Intell Robot Syst (2011) 62:329–353 341

Table 2 Basic properties of
used maps

Map Dimensions No. No. Reduced
name (m × m) holes vertices no. vertices

jh 20.5 × 23.1 9 424 212
ta 39.7 × 46.9 2 174 87
pb 133.3 × 105.0 3 192 92

The last optimization procedure requires computation of mutually visible guards,
which can be done in O((nv + ng)

2). All pairs can be sorted in O(n2
g log(n2

g)), but only
ng/2 pairs can be selected at maximum and only ng/2 new guards can be determined,
therefore complexity of the determination of visibility regions is not increased. The
overall algorithm complexity can be bounded by O(nvng log(nvng) + n2

v + n2
g log(n2

g)).
The boundary, used in the first part of the algorithm, can be obtained as a border

of the shrunk free space. The shrunk free space can be found by the Minkowski sum
of the free space polygon and a convex disk, therefore the boundary determination
can be bounded by O((nvk)2), where nv is the number of polygon vertices and k is
the number of disk vertices.

5 Experiments

The performance of the three presented algorithms have been experimentally eval-
uated within three maps of real environments.2 The assumed robot has differential
nonholonomic drive and free space has been shrunk by a radius of the circumscribed
circle around the robot polygonal shape, therefore a robot is modeled as a point
robot. All maps3 have been filtered by the polygon filter technique presented in
Section 4.1.1 for the relevance value r = 5 cm. Changes of the free space area is less
than one percent after filtering. The environment properties are presented in Table 2
and they are visualized in Fig. 7.

The performance of algorithms is evaluated for the set of visibility ranges {inf,
10.0, 5.0, 4.0, 3.0, 2.0, 1.5, 1.0} meters, where inf denotes the unrestricted visibility
range. The restricted visibility is modeled by a disk with 24 vertices.

Two qualities of the sensor placement solutions are examined, a number of found
guards and a length of the inspection path. The path is found as a solution of the
related TSP. The TSP is solved exactly by the Concorde solver [26] for all problems,
except solutions for the map pb and visibility ranges d ∈ {1.0, 1.5} (all algorithms)
and the map ta, d = 1.0 only in the case of the CPP algorithm. In these particular
cases a number of guards is too high and the exact solution is too computationally
demanding. That is why these problems are solved by the Chained Lin-Kernighan
heuristic [27].

The BP and RDS algorithms are randomized, therefore 20 solutions are found
by each algorithm for each particular configuration (map and visibility range) and
average values are determined. To compute overall algorithm performance ratios of

2These environments were used as testing environments for real experiments in the search and rescue
missions during solution of the IST-2001-FET project number 38873—PeLoTe Building Presence
through Localization for Hybrid Telematic Systems.
3The maps are available at http://purl.org/faigl/planning.

http://purl.org/faigl/planning

342 J Intell Robot Syst (2011) 62:329–353

(a) map jh (b) map ta (c) map pb

Fig. 7 Testing environments jh, ta and pb

the number of guards and the length of the path are used. Before the algorithms
comparison the most suitable settings for each algorithm have been found.

The CPP algorithm does not have any special parameters. The polygon filtering
technique is useful, because the reduction of vertices leads to less number of guards.
A number of vertices after the polygon filtering is shown in the last column of
Table 2.

The RDS algorithm depends on the number of random samples m. An overall
results according to reference for m = 1 are presented in Table 3. The m = 25
provides the best performance while it is less computation intensive than higher
values of m.

The BP depends mainly on the boundary distance. For each map and visibility
range the boundary distance b has been experimentally found, see Table 4. For small
visibility ranges the boundary is in one meter from obstacles for all used maps, while
higher visibility ranges require particular value of b for each map to get better results.
Presented values do not provide the smallest number of found guards, but they have
been selected to have small the total number of b values and the length of inspection
paths. The number of random samples has been set to 1 and the heuristic parameters
to μI = μE = 0.66.

A comparison of the algorithms is made according to reference solution found by
the CPP algorithm, it means that for each particular solution a number of guards
and a length of the tour are divided by appropriate values of the CPP solution. The
ratios are denoted as GR for Guards Ratio and LR for Length Ratio. The relative

Table 3 RDS performance
according to the number of
random samples m

m Guards ratio Length ratio

1 1.00 1.00
5 0.88 0.95
10 0.87 0.94
25 0.87 0.93
50 0.87 0.93
75 0.88 0.93
100 0.89 0.93

J Intell Robot Syst (2011) 62:329–353 343

Table 4 Selected values of the
boundary parameter b

Map Boundary distance b (m)

Visibility range d ≤ 2 m Visibility range d > 2 m

jh 1.0 1.5
ta 1.0 3.0
pb 1.0 2.0

values allow presentation of overall results as average values and sample standard
deviations σGR, σLR. The overall results of the RDS and BP algorithms are presented
in Table 5. In Fig. 8 the first two bars denote guards ratios and the next two bars
denote length ratios for the RDS and BP algorithms according to the reference
solution found by the CPP algorithm. Detail results are dedicated to Appendix A.

The RDS algorithm provides less number of guards than the CPP and also the path
is about 10% shorter. Similarly the BP outperforms the CPP. The ratios increase with
decreasing visibility range, but paths are more than about twenty percents shorter.
For the unrestricted visibility range performances of the BP and RDS algorithms are
pretty much similar, however for the visibility range 10 m the BP provides shorter
tour about more than 10%. For higher visibility ranges the difference in the numbers
of guards is not so significant, but the BP still outperforms the RDS in the length of
the inspection tour.

During the evaluation of the BP performance, it has been observed that the
guards optimization procedure significantly reduces the number of required guards.
The procedure can be used for any guard set, therefore solutions of the CPP and
RDS have been optimized. The overall comparison as ratios according to the CPP
algorithm is presented in Table 6. The post-processed solutions are denoted as CPP-
opt and RDS-opt and the BP algorithm without optimization as BP-notopt. The
optimization procedure decreases numbers of guards for the CPP and RDS and tour
lengths are also decreased. For the RDS the tour reduction is about three percents.
An interesting observation provides results for the BP without optimization. How-
ever the number of guards is reduced about 10% the length of the tour is shortened
only about one percent after the optimization. This experimental results support the
main idea of the BP algorithm to guide the sampling process and to place guards close
to each other to reduce the final length of the tour. The inspection path is still shorter

Table 5 Algorithms
performance

d (m) RDS algorithm BP algorithm

GR LR σGR σLR GR LR σGR σLR

inf 0.38 0.76 0.05 0.05 0.38 0.77 0.05 0.05
10.0 0.49 0.85 0.08 0.07 0.45 0.74 0.11 0.13
5.0 0.61 0.89 0.13 0.11 0.54 0.75 0.12 0.14
4.0 0.65 0.89 0.15 0.11 0.60 0.76 0.15 0.14
3.0 0.67 0.91 0.09 0.05 0.62 0.78 0.11 0.13
2.0 0.75 0.93 0.04 0.03 0.59 0.82 0.04 0.04
1.5 0.72 0.88 0.03 0.04 0.56 0.75 0.02 0.02
1.0 0.70 0.85 0.01 0.04 0.60 0.74 0.01 0.02

344 J Intell Robot Syst (2011) 62:329–353

Fig. 8 The algorithms
comparison relatively to the
CPP algorithm

10.0 5.0 3.0 2.0 1.0

Visibility range [m]

R
at

io
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0 Guards ratio: RDS
BP

Length ratio: RDS
BP

for solutions found by the BP-notopt, however the number of guards is higher than
for the RDS-opt and CPP-opt in several cases.

To demonstrate capabilities of the presented algorithms several examples of found
solutions for additional environments are presented in Appendix B.

5.1 Effect of Disturbances

A robot performing an inspection does not have precise localization nor sensors are
perfect. The imperfect localization leads to miss the exact guards positions. Also
particular sensor coverage can be less than the expected one. These disturbances
can lead to imperfect coverage. It is clear that a solution with less number of sensing
locations for particular visibility range will be more sensitive to sensing locations
disturbances or changes in the sensor visibility range. To examine the sensitivity of
solutions found by the particular algorithm two experiments have been performed as
follows.

The effect of the localization error has been examined by a random perturbation
of each sensing location of found solutions presented in the previous section. The
perturbation has been performed in two steps to reflect position estimation accuracy
and repeatability. At first, the position of the guard has been modified according to

Table 6 Overall algorithms
performance

Method GR LR σLR σGR

CPP 1.00 1.00 0.00 0.00
RDS 0.62 0.87 0.08 0.15
BP 0.54 0.76 0.10 0.12
CPP-opt 0.74 0.91 0.04 0.03
RDS-opt 0.53 0.84 0.08 0.12
BP-notopt 0.64 0.77 0.11 0.18

J Intell Robot Syst (2011) 62:329–353 345

(a) 98.9% coverage caused by localization imper-
fections

(b) 87.8% coverage caused by 25% reduced visi-
bility range

Fig. 9 Examples of disturbances to coverage, small disks represent guards, the guards before
disturbances are in blue

two dimensional Gaussian distribution N (0, σ 2
a), where σa represents accuracy of the

localization. Such positions have been then modified according to N (0, σ 2
r), where

σr represents repeatability of the localization method. Computed coverage from
these new positions has been expressed as the percentage of seen area of free space,
denoted as %Coverage. An example of imperfect coverage is illustrated in Fig. 9a. To
get statistically meaningful results each found solution has been randomized 20 times
and average values of the coverage have been computed.4 Regarding to presented
results of localization methods in [28], two sets of values of localization accuracy
and repeatability have been considered for indoor environments. The methods are
based on visual landmarks and the accuracy is lower than for a method based on laser
range finder presented in [29], thus the selected values of coverage change represent
the upper bounds. The total number of performed experiments for the position
perturbations is 39,360. The overall results are presented in Table 7. It is shown that
the guard optimization procedure increases sensitivity of the solution to the position
perturbations. The coverage error is not significant for higher visibility ranges, even
for the d = 1 m the error is less than 1.5% for more accurate localization method
(σa = 14 cm). For σa = 30 cm the proposed BP algorithm without the optimization
procedure provides competitive results to the RDS algorithm.

Sensitivity of the algorithm to disturbances of the visibility range d has been
examined by a systematic decreasing of the sensor visibility range. A coverage of
a solution for the particular value of d has been computed for the decreased d and
expressed as the percentage of seen area similarly to the previous examination. An

4That means 480 sets of sensing localizations for the RDS, resp. BP, algorithm for each map and
visibility range.

346 J Intell Robot Syst (2011) 62:329–353

Table 7 An effect of position disturbances

Method d = 1.0 m d = 5.0 m d = 10.0 m

%Coverage LR GR %Coverage LR GR %Coverage LR GR

Localization accuracy σa = 14 cm, localization repeatability σr = 8 cm
CPP 99.95 0.97 1.00 100.00 1.00 1.00 100.00 1.00 1.00
RDS 99.42 0.83 0.70 99.93 0.88 0.61 99.93 0.85 0.49
BP 98.72 0.73 0.60 99.52 0.75 0.54 99.64 0.74 0.45
CPP-opt 99.79 0.87 0.75 99.99 0.91 0.72 100.00 0.91 0.72
RDS-opt 98.84 0.79 0.57 99.91 0.86 0.54 99.91 0.83 0.44
BP-notopt 99.24 0.78 0.77 99.58 0.76 0.64 99.69 0.74 0.51

Localization accuracy σa = 30 cm, localization repeatability σr = 18 cm
CPP 99.28 0.92 1.00 99.99 1.00 1.00 100.00 1.00 1.00
RDS 97.05 0.81 0.70 99.50 0.88 0.61 99.46 0.84 0.49
BP 95.45 0.73 0.60 98.56 0.75 0.54 98.78 0.74 0.45
CPP-opt 98.05 0.83 0.75 99.86 0.91 0.72 99.95 0.91 0.72
RDS-opt 94.94 0.76 0.57 99.26 0.86 0.54 99.33 0.83 0.44
BP-notopt 97.44 0.79 0.77 98.69 0.76 0.64 98.87 0.75 0.51

example of such decreased coverage is shown in Fig. 9b. Results for the selected
visibility ranges and particular reductions are presented in Table 8. A shortened
visibility range about 10 cm (or less), which is higher disturbance than an accuracy of
available laser range finders, does not really affect the quality of coverage. Moreover,
the accuracy can be considered in the requested visibility range and a solution of the
sensor placement problem can be found for such reduced visibility range.

The presented results confirm the expectation that a solution with smaller number
of guards is more sensitive to disturbances. However, the cost of the solution (the
number of guards and the length of the inspection path) have to be taken into
account in selection of the most suitable algorithm for particular robot configuration.
In addition, the imperfections can be considered in the visibility range, thus a solution
can be found for particularly smaller d. Hence, the disturbances are not a real issue
and overall comparison of the algorithms, presented in Table 6, provides an overview
of expected quality of a found solution by the particular algorithm.

5.2 Required Computational Time

Beside the quality of solutions the required computational time is important for the
real applicability of the algorithms in the mobile robotics. The theoretical bounds
provide estimation of the complexity, however the real computational requirements

Table 8 An effect of visibility range disturbances, values of %Coverage

Method d = 1.0 m d = 5.0 m d = 10.0 m

d95% d90% d75% d98% d90% d80% d99% d90% d80%

CPP 100.00 99.99 99.40 100.00 99.95 99.73 100.00 100.00 99.99
RDS 99.90 99.16 89.81 100.00 99.62 97.48 100.00 99.60 98.19
BP 99.15 97.37 85.92 99.97 99.19 96.51 99.99 99.29 97.48
CPP-opt 99.94 99.78 96.90 100.00 99.82 99.19 100.00 99.98 99.74
RDS-opt 99.40 97.84 85.17 99.98 99.36 96.50 100.00 99.47 97.70
BP-notopt 99.58 98.40 89.39 99.99 99.38 97.15 100.00 99.42 97.85

J Intell Robot Syst (2011) 62:329–353 347

mainly depend on used geometric models. To compare the real requirements all
experiments have been performed in the same computational environment with the
Athlon X2@2 GHz CPU, 1 GB RAM running FreeBSD 7.1 with only one CPU core
dedicated to computations.

The CPP algorithm has been implemented in C++ and CGAL library version
3.3.1 [30]. The used geometric kernel has been Exact_predicates_exact_-
constructions_kernel_with_sqrt, which provides sufficient precision and good real-
time performance. The program has been compiled by the G++ 4.2 with the
−O2 optimization flag. The required computational time linearly increases with a
number of found guards, see Fig. 10a. For problems with less than 500 guards the
computation takes hundreds of milliseconds. The largest solved problem with 1,852
guards has been solved in 3.3 s.

The RDS algorithm has been implemented in Java with the geometric library
JTS [31] and the diablo-jdk1.6.0 [32] java runtime machine. The real-time per-

++++++
+
+

+
+
+
+
++
++
+

+
+

+
+++

+
+
+
+

+

+
+

+ +
++ +

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+ +

+

100 200 300 400 500

0
20

0
40

0
60

0
80

0

Number of guards

C
PU

 ti
m

e
[m

s]

(a) CPP

0−100 100−200 200−300 300−400 400−500

Number of guards

C
PU

 ti
m

e
[s

]

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

m=1
m=5
m=25
m=50

(b) RDS

0−100 100−200 200−300 300−400 400−500

Number of guards

C
PU

 ti
m

e
[s

]

10
20

50
10

0
20

0
50

0
10

00
20

00

(c) BP

Fig. 10 The algorithms required computational time of the examined problems

348 J Intell Robot Syst (2011) 62:329–353

formance is presented in Fig. 10b as a histogram of required computational time
according to the number of found guards, average values are visualized. For 25
random samples a solution is found in several seconds, while for m = 1 it is found in
hundreds of milliseconds (solutions with less than 300 guards). The used geometric
representation is double precision floating point (IEEE 754), which provides only
limited precision of geometric operations. During the experiments, the total number
of failures (mainly in the intersection operation) has been 3,867, which represents
0.560% of the total number of found guards or 0.015% of the total number of
performed guards selections. The most problematic map is jh with 2,120 failures.
For the map ta 1,378 failures has been recorded. The advantage of the randomized
incremental algorithm is safe recovery from such fails. If an operation cannot be
performed, a new random point is generated and the algorithm can continue.

An implementation of the BP algorithm is based on the Planar Nef polyhedra
representation, from the CGAL library version 3.1, which does not support simple
double precision, therefore the precise CGAL::Gmpz kernel has been used. This
representation allows Boolean operations on polygons, which can be partially closed,
i.e. an edge of the polygon border can be opened while the next edge can be closed.
However the theoretical bound for the first three parts of the algorithm is less
than for the RDS (only one random sample is used), the real computational time
is heavily affected by the used geometric kernel. During subtraction of polygons a lot
of Steiner points are created and due to the used arbitrary precision representation
the polygonal operations are incredibly slow and the largest problem with more
than one thousands guards has been solved in two hours. Small problems with less
than hundred guards are solved in tens of seconds. Running times are shown in
Fig. 10c, solutions with 300–400 guards are mostly found for small visibility ranges,
therefore more Steiner points are created. The post-processing optimization takes
about twenty percent of the total required computational time. It should be noted
that all visibility polygons of found guards are re-computed in the optimization
procedure.

6 Conclusion

The new randomized sensor placement algorithm called the Boundary Placement
has been presented. The proposed randomized sampling procedure explicitly uses
knowledge about the environment shape to guide the randomization process. Perfor-
mance of the proposed algorithm has been experimentally compared with two state-
of-the-art algorithms. The algorithms have been evaluated according to the number
of found guards and the length of the inspection path. The proposed BP algorithm
outperforms both algorithms and provides solution with less number of guards and
about 10% shorter path. The experimental results show that length of the path can be
decreased by more sophisticated sampling even in cases that the decoupled problems
are solved independently.

However only restricted visibility range has been considered in the experiments,
the proposed BP algorithm can be easily extented to consider the incident constraints
like the RDS. Applications of the RDS algorithm in the related VPP have been
reported in the literature, hence the applicability of the BP algorithm to all related
problems is expected, as it provides better solutions than the RDS.

J Intell Robot Syst (2011) 62:329–353 349

The randomized approach provides solution of the sensor placement problem
in less than few seconds, therefore it is suitable for real applications. Even though
the real computational requirements of the proposed BP algorithm are higher than
the RDS, due to used precise geometry representation, the complexity of the BP
algorithm is lower then the RDS, because only one random sample and one point
from the heuristic is used for each found guard. The post-processing optimization
increases the complexity, but overall performance of the BP without optimization
is similar to the RDS regarding to the number of guards and it provides shorter
inspection paths. Also the optimization procedure is useful for the RDS as well as
for the CPP algorithm.

In the majority of the examined problems, more than 80% guards are placed
on the boundary in the initial (the boundary cover part), which is very efficient,
just one random sample is used. The boundary is created from the shrunk free
space, and the performance of the algorithm can be probably increased by structures
like the Visibility-Voronoi diagram [33] or Saturated Generalized Voronoi Diagram
(SGVD) [34].

Appendix A: Experimental Results

Particular results for each examined environment are presented in Tables 9, 10
and 11.

Table 9 Algorithms
performance for the map jh

d (m) No. guards Length (m)

CPP RDS BP CPP RDS BP

inf 94 33 31 208 154 149
10.0 95 37 32 207 158 118
5.0 101 44 37 216 160 124
4.0 106 47 41 220 164 125
3.0 115 63 53 226 190 138
2.0 175 126 94 282 269 217
1.5 282 200 160 350 321 258
1.0 552 388 340 471 414 359

Table 10 Algorithms
performance for the map ta

d (m) No. guards Length (m)

CPP RDS BP CPP RDS BP

inf 34 14 13 204 167 167
10.0 35 18 15 203 176 159
5.0 58 41 34 254 239 197
4.0 72 54 52 272 260 224
3.0 118 83 83 315 292 266
2.0 231 170 139 408 366 330
1.5 405 280 231 522 436 386
1.0 865 598 526 746 595 528

350 J Intell Robot Syst (2011) 62:329–353

Table 11 Algorithms
performance for the map pb

d (m) No. guards Length (m)

CPP RDS BP CPP RDS BP

inf 45 16 20 533 389 407
10.0 73 41 44 613 567 533
5.0 131 90 84 683 667 619
4.0 160 120 109 720 697 650
3.0 235 178 160 775 741 696
2.0 434 349 271 902 851 787
1.5 821 616 439 1,116 1,001 858
1.0 1,809 1,289 1,067 1,565 1,346 1,151

Appendix B: Example of Solutions

Solutions for environments denoted as dense, potholes, warehouse and h2 are pre-
sented in following figures (Figs. 11, 12, 13 and 14). All maps are processed by the
polygon filter with the relevance value 5 cm and the RDS has been run with m = 25.

(a) CPP, 285 guards, length 270 m (b) RDS, 61 guards, length 181 m (c) BP, 53 guards, length 180 m

Fig. 11 Example of solution for the map dense, 21 × 21 m, visibility range 4 m and boundary at
distance 0.5 m

(a) CPP, 306 guards, length 234 m (b) RDS, 81guards, length 159 m (c) BP, 68 guards, length 155 m

Fig. 12 Example of solution for the map potholes, 20 × 21 m, visibility range 2 m and boundary at
distance 1 m

J Intell Robot Syst (2011) 62:329–353 351

(a) CPP, 361 guards, length 496 m (b) RDS, 99 guards, length 383 m (c) BP, 78 guards, length 363 m

Fig. 13 Example of solution for the map warehouse, 40 × 40 m, visibility range 4 m and boundary at
distance 1.2 m

(a) CPP, 361 guards, length 1353 m (b) RDS, 99 guards, length 1132 m

(c) BP, 78 guards, length 887 m

Fig. 14 Example of solution for the map h2 representing real building with dimensions approxi-
mately 70 × 40 m, visibility range 5 m and boundary at distance 1.5 m

References

1. Chin, W.-P., Ntafos, S.: Optimum watchman routes. In: SCG ’86: Proceedings of the Second
Annual Symposium on Computational Geometry, pp. 24–33, Yorktown Heights, New York.
ACM (1986)

2. Packer, E.: Robust geometric computing and optimal visibility coverage. PhD thesis, Stony
Brook University, New York (2008)

352 J Intell Robot Syst (2011) 62:329–353

3. Danner, T., Kavraki, L.E.: Randomized planning for short inspection paths. In: Proceedings of
The IEEE International Conference on Robotics and Automation (ICRA), pp. 971–976, San
Francisco, CA. IEEE (2000)

4. Culberson, J.C., Reckhow, R.A.: Covering polygons is hard. J. Algorithms 17(1), 2–44 (1994)
5. Tan, X., Hirata, T.: Finding shortest safari routes in simple polygons. Inf. Process. Lett. 87(4),

179–186 (2003)
6. Ntafos, S.C.: Watchman routes under limited visibility. Comput. Geom. 1, 149–170 (1992)
7. Li, F., Klette, R.: An approximate algorithm for solving the watchman route problem. In: RobVis,

pp. 189–206 (2008)
8. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry. CRC

Press, Boca Raton (2004)
9. González-Baños, H.H., Hsu, D., Latombe, J.-C.: Motion planning: recent developments. In: Ge,

S.S., Lewis, F.L. (eds.) Autonomous Mobile Robots: Sensing, Control, Decision-Making and
Applications, Chapter 10. CRC (2006)

10. Wang, P.: View planning with combined view and travel cost. PhD thesis, Simon Fraser Univer-
sity (2007)

11. González-Baños, H.H., Latombe, J.-C.: Planning robot motions for range-image acquisition and
automatic 3d model construction. In: AAAI Fall Symposium (1998)

12. Hörster, E., Lienhart, R.: On the optimal placement of multiple visual sensors. In: VSSN ’06: Pro-
ceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks,
pp. 111–120, New York, NY. ACM (2006)

13. Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and floor plan-
specific coverage requirements. Comput. Vis. Image Underst. 103(3), 156–169 (2006)

14. Osais, Y.E., St-Hilaire, M., Yu, F.R.: Directional sensor placement with optimal sensing range,
field of view and orientation. Mob. Netw. Appl. 15(2), 216–225 (2008)

15. Kazazakis, G.D., Argyros, A.A.: Fast positioning of limited visibility guards for the inspection
of 2d workspaces. In: Proceedings of the IEEE/RSJ Int. Conference on Intelligent Robots and
Systems (IROS 2002), Lausanne (2002)

16. Scott, W.R., Roth, G., Rivest, J.-F.: View planning for automated three-dimensional object
reconstruction and inspection. ACM Comput. Surv. 35(1), 64–96 (2003)

17. Blaer, P.S., Allen, P.K.: Data acquisition and view planning for 3-d modeling tasks. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2007), pp. 417–422, 29
October–2 November 2007

18. Nüchter, A., Surmann, H., Hertzberg, J.: Planning robot motion for 3d digitalization of indoor
environments. In: Proceedings of the 11th International Conference on Advanced Robotics
(ICAR), pp. 222–227 (2003)

19. González-Baños, H.H., Latombe, J.-C.: Navigation strategies for exploring indoor environments.
Int. J. Rob. Res. 21(10–11), 829–848 (2002)

20. González-Banos, H.H.: A randomized art-gallery algorithm for sensor placement. In: SCG ’01:
Proceedings of the Seventeenth Annual Symposium on Computational Geometry, pp. 232–240.
ACM, New York (2001)

21. Lavalle, S.M.: Planning Algorithms. Cambridge University Press (2006)
22. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: SCG ’88: Proceed-

ings of the Fourth Annual Symposium on Computational Geometry, pp. 164–171. ACM, New
York (1988)

23. Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal
decompositions and for triangulating polygons. Comput. Geom. Theory Appl. 1(1), 51–64 (1991)

24. Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour
evolution. Comput. Vis. Image Underst. 73(3), 441–454 (1999)

25. Wolter, D., Richter, K.-F.: Schematized aspect maps for robot guidance. In: Proceedings of the
ECAI Workshop Cognitive Robotics (CogRob) (2004)

26. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: CONCORDE TSP Solver. http://www.tsp.
gatech.edu/concorde.html (2003). Accessed 23 July 2010

27. Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large traveling salesman prob-
lems. INFORMS J. Comput. 15(1), 82–92 (2003)

28. Chen, Z., Birchfield, S.T.: Qualitative vision-based path following. IEEE Transactions on
Robotics 25(3), 749–754 (2009)

29. Sohn, H.J., Kim, B.K.: Vecslam: an efficient vector-based slam algorithm for indoor environ-
ments. J. Intell. Robot. Syst. 56(3), 301–318 (2009)

http://www.tsp.gatech.edu/concorde.html
http://www.tsp.gatech.edu/concorde.html

J Intell Robot Syst (2011) 62:329–353 353

30. CGAL—Computational Geometry Algorithms Library. http://www.cgal.org (2004). Accessed 23
July 2010

31. JTS Topology Suite. http://www.vividsolutions.com/jts/jtshome.htm. Version 1.5 (2004). Ac-
cessed 23 July 2010

32. Diablo Caffe JDK 1.6.0-7. http://www.freebsdfoundation.org/downloads/java.shtml (2009). Ac-
cessed 23 July 2010

33. Wein, R., van den Berg, J.P., Halperin, D.: The visibility–voronoi complex and its applications.
In: SCG ’05: Proceedings of the Twenty-First Annual Symposium on Computational Geometry,
pp. 63–72. ACM, New York (2005)

34. Huang, W.H., Beevers, K.R.: Complete Topological Mapping with Sparse Sensing. Technical
Report 6, Rensselaer Polytechnic Institute Department of Computer Science (2005)

http://www.cgal.org
http://www.vividsolutions.com/jts/jtshome.htm
http://www.freebsdfoundation.org/downloads/java.shtml

	A Sensor Placement Algorithm for a Mobile Robot Inspection Planning
	Abstract
	Introduction
	Related Work
	Problem Statement
	Sensor Placement Algorithms
	Convex Polygon Partitioning - CPP
	Polygon Filtering

	Randomized Dual Sampling Schema---RDS
	Boundary Placement---BP

	Experiments
	Effect of Disturbances
	Required Computational Time

	Conclusion
	Experimental Results
	Example of Solutions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

