
Noname manuscript No.
(will be inserted by the editor)

Analysis of Using Mixed Reality Simulations
for Incremental Development of Multi-UAV Systems

Martin Selecký · Jan Faigl · Milan Rollo

Received: date / Accepted: date

Abstract Developing complex robotic systems requires expensive and time-consuming

verification and testing which, especially in a case of multi-robot unmanned aerial sys-

tems (UASs), aggregates risk of hardware failures and may pose legal issues in exper-

iments where operating more than one unmanned aircraft simultaneously is required.

Thus, it is highly favorable to find and resolve most of the eventual design flaws and

system bugs in a simulation, where their impacts are significantly lower. On the other

hand, as the system development process approaches the final stages, the fidelity of the

simulation needs to rise. However, since some phenomena that can significantly influ-

ence the system behavior are difficult to be modeled precisely, a partial embodiment of

the simulation in the physical world is necessary. In this paper, we present a method for

incremental development of complex unmanned aerial systems with the help of mixed

reality simulations. The presented methodology is accompanied with a cost analysis to

further show its benefits. The generality and versatility of the method is demonstrated

in three practical use cases of various aviation systems development: (i) an unmanned

system consisting of heterogeneous team of autonomous unmanned aircraft; (ii) a sys-

tem for verification of collision avoidance methods among fixed wing unmanned aerial

vehicles; and (iii) a system for planning collision-free paths for light-sport aircraft.

Keywords UAS development · Mixed-reality simulations · UAS applications ·
multi-UAV systems

1 Introduction

With increasing numbers of Unmanned Aerial Vehicles (UAVs) simultaneously carrying

out their missions increases the cognitive load on the UAV operators. To deal with

this problem, the autonomy of UAV assets needs to be improved and the research

focus is being shifted from development of solitary intelligent vehicles to teams of

Authors are with the Czech Technical University, Faculty of Electrical Engineering, Technicka
2, 166 27, Prague, Czech Republic
{selecmar|faiglj|rollom}@fel.cvut.cz
Tel.: +420-22435-7677

2

Fig. 1: Aerial vehicles used in a practical deployment of the proposed method

cooperating intelligent UAVs. Developing and verifying algorithms to control teams of

UAVs is a complicated task with a lot of complex issues that need to be taken into

account [1]. Some of them, like complex interactions among the team members or basic

functionality of the planning algorithms can be modeled with the help of multi-agent

software simulations [2], [3]. However, pure software simulations are not enough to

deploy the algorithms in the real-world. Effects of real-world phenomena like those of

the communication issues, sensor and actuator errors, weather or limited computational

resources on the function and efficiency of the algorithms have to be studied. Since

in many cases these phenomena are difficult to be modeled on high fidelity levels, the

whole system needs to be verified using real hardware assets, which can be very costly if

it is made for all components at every stage of the system development and integration.

Recently, experiments have been conducted both in a virtual world and in the real

world as each of them has its limits and justifications [4], e.g., specifically for the real

experiments that are costly and has to respect physical constraints such as available

space. Virtual simulation allows for quick observations of results of interactions among

simulated entities and the environment fast modeling of a basic functionality of the

developed system. Its main advantage is an ease of set up and execution and repeata-

bility. Simulations can be used to study effects of various environmental phenomena by

modifying only specific conditions and fixing others, and thus removing possible sources

of noise and ambiguity. Moreover, experiments conducted in virtual environments can

significantly save costs both during regular testing and also in cases of malfunctions

and accidents.

On the other hand, software simulations cannot incorporate all sources of the real

world inputs that are needed for realistic modeling of the behavior of the developed

system. Thus, the real world experiments should be an obligatory step for obtaining

realistic results in later stages of development of a robotic system and for validating

the robotic software robustness before it is deployed in real missions.

3

Mixed Reality (MR) simulations [5] provide a world where the virtual and real ob-

jects and entities can co-exist and interact in real time. The MR concept allows system

developers to get more insight into the behavior of the entities (e.g., by visualization

of their inner states) and to perform much cheaper and safer experiments with parts

of the system being real and other parts virtualized. MR simulations also relieve simu-

lators from recreating complete worlds since the simulation occurs partially in the real

world where certain phenomena, such as noise and complex physics, do not need to be

modeled and are observed instead. In contrast to hardware-in-the-loop (HIL) simula-

tions [6,7], the concept of MR simulations allow for easily executable co-existence and

interaction of purely virtualized and fully hardware deployed entities.

1.1 Overview and Contribution

This paper provides analysis of the method for incremental development of HART

(human, agent, and robot teams) applications originally introduced in [1], and reports

on practical usage of modular multilayer architecture for incremental development of

complex unmanned aerial systems (UASs) [8]. Both the method and the architecture

have been successfully employed during development of different aviation applications

within projects funded by Czech Ministry of Defence, U.S. Air Force Research Labo-

ratory, and U.S. Army CERDEC, and also utilized for the development of an assistant

system for light-sport aircraft pilots. This multitude of applications shows the versa-

tility of the presented method for UASs in research and development. An overview of

the real aerial vehicles for which the method has been utilized is shown in Figure 1 and

three use cases that are reported in this paper are as follows.

The first presented use-case application is an unmanned system that provides com-

mand and control capabilities over a heterogeneous team of autonomous unmanned

aircrafts [9,8]. The aircrafts are capable of performing complex tactical missions such

as critical infrastructure protection, team area surveillance or target tracking, and

they can perform distributed dynamic mission reconfiguration in a case of change of

the mission or the number of available assets [10]. The second use-case application is a

system for verification of communication-based cooperative collision avoidance meth-

ods among multiple fixed wing UAVs. In this case, the objective has been to develop

a complete testing environment by incrementally deploying the system on two Lock-

heed Martin’s Desert Hawk III aircraft and training the system operators. Finally, the

third use-case application is a system for providing increased flight safety in a domain

of light-sport aircraft where a combination of existing sensors, negotiation among air-

craft, cooperative, and non-cooperative methods of collision avoidance and trajectory

planning algorithms has been used to recommend the best collision-free trajectories for

pilot or autopilot of the real light-sport aircraft.

A short version of this paper has been presented at the ICUAS 2017 [11]. The herein

presented results originate on the previously published achievements and have been

substantially updated in terms of the impact to further developments and deployments

of complex UASs. In particular, we present an analysis of the risks and costs that

may occur during the incremental development process. Further, a detailed description

of the development process in the presented use-cases together with the important

measurements are presented to support deeper insights into the benefits of the proposed

methodology and architecture.

4

The remainder of this paper is structured as follows. After relating the presented

approaches to the respective research fields in Section 2, the proposed multi-layer ar-

chitecture used for the incremental development of UAS together with risk and cost

analysis of individual stages of the development process are described in Section 3.

Next, the three aviation use-case applications are presented in Section 4 showing how

they utilize the proposed multi-layer architecture and methodology, followed by a sum-

mary of the experience and lessons learned from the system deployment in Section 5.

Finally, Section 6 gives a conclusion of the achieved results.

2 Related Work

Software simulations are commonly used to develop complex systems because they can

significantly speed up the development process and save costs on hardware as they

allow to early discover, isolate, and correct potential implementation issues. Accord-

ing to Mutter et al. [12] there are two approaches to a simulator development: (i) the

software-in-the-loop (SIL), where all system components (sensors, actuators, airframes,

communication, etc.) are simulated using mathematical models; and (ii) the hardware-

in-the-loop (HIL), where only some (or none) system parts are simulated, and other

elements are the particular physical hardware. Examples of simulators using SIL ap-

proach can be found in [13] and [2]. The HIL approach is taken, e.g., by Goktogan et

al. [14], Day et al. [6], and Pizetta et al. [7] to name few.

This paper describes utilization of the HIL approach extended to integrate benefits

of MR simulations for incremental development of complex multi-UAV systems and an

assistant system for pilots of light-sport aircraft. Therefore, we report on the related

work in each of these research areas.

2.1 Deployment of Algorithms on Multi-UAV Systems

Various approaches have been proposed to develop and deploy complex multi-UAV

systems. For example Šǐslák et al. [15] developed AgentFly system for simulating UAVs

and civilian air traffic. It allows complex coordination and cooperation of the agents,

and provides collision avoidance mechanisms. However, it could not control hardware

assets. Bürkle et al. [16] presented a deployment of control mechanisms for teams

of hardware VTOL micro-UAVs capable of on-board planning and cooperation on

mutual tasks, but they do not coordinate their flight in terms of collision avoidance. The

system also does not allow co-existence of hardware UAVs together with simulated ones.

Scerri et al. [17] designed a system for deployment of multi-agent technology for UAV

coordination to an industrially developed applications, but they used a straightforward

approach that switches from a purely virtual configuration directly to the full hardware

configuration, which is not suitable for more complex systems. Most recently, Sanchez-

Lopez et al. [18] present a multipurpose system architecture for autonomous multi-UAV

platforms with basic high-level planning features which, however, does not allow for

complex distributed multi-UAV planning.

5

2.2 Advisory Systems for Light-Sports Aircraft

As for the control and advisory systems for light-sport aircraft operation, there are

already available off-the-shelve autopilots that can hold the flight level and change the

aircraft heading to the next waypoint according to the given plan. These autopilot

systems are still subject to research and improvement [19]. The actual trend in this

field is equipping the light-sport aircraft with the Electronic Flight Instrument System

(EFIS) with a “glass cockpit” that integrates all avionic sensors into one digital instru-

ment [20] that allows for adding further functions [21,22]. In the field of surveillance

and collision avoidance systems, Haberkorn et al. [23] studied options and efficiency

of methods for cooperative and non-cooperative detection (TCAS – Traffic Collision

Avoidance System, PCAS – Portable Collision Avoidance System) of other aircrafts

for a collision prevention and there have been projects dealing with increasing pilot’s

awareness of the surrounding air traffic [24,25].

2.3 Mixed Reality Simulations

One of the first notions of MR simulations used for the development of mobile robots

has been presented by Chen et al. [5]. The authors used an MR simulation tool based on

the 3D robot simulator Gazebo in a single robot scenario and demonstrated advantages

of combining real entity and simulated objects for development of a practical robotic

system. Later, in [26], the same authors showed that MR simulations can help to

provide efficient testing tools, identify improvements to the UAV controller, and provide

valuable insights into the UAV system performance that would be otherwise difficult to

obtain in real-world tests. Recently, Honig et al. [4] used MR simulations together with

robotic simulators and showed that these simulations can provide many advantages for

research and development in robotics. The authors supported their findings by several

use-cases with Crazyflie nano-quadcopters.

One of the most recent approaches to formal dealing with the process of the develop-

ment of complex robotic systems has been proposed by Jakob et al. in [1]. The authors

suggested a process of incremental development of complex systems by utilization of

mixed-reality test-beds. They defined levels of virtualization as a degree to which parts

of the target system setup are replaced with synthetic computational models in a given

test-bed configuration. The authors suggested to start the system development with a

fully virtual system with all parts purely virtualized and get to the final configuration

with zero virtualization level by iterating through the space of test-bed configurations

in directions which are given by the development costs of all the necessary iteration

steps. Figure 2 shows the test-bed configuration space for n UAV agents. However,

the work is aimed rather at explaining the plain concept of utilization of mixed-reality

simulations for system development, and it does not describe its practical application,

architecture specifics nor the process of estimating the iteration step costs.

The architecture presented here builds on the ideas of [1] that are further gener-

alized for the use of the incremental implementation of hardware subsystems in MR

simulation system. Based on the practical development and deployment of the real

UAV applications, the found insights to the development process and its risk and cost

analysis are provided in this paper. The proposed architecture allows for incremental

development of systems of multiple autonomous robotic entities and thanks to its gen-

6

Fig. 2: Space of test-bed configurations and example of two strategies of iterative

development

erality, it provides a universal method applicable for the development of systems of

various types, as it is shown further in the rest of the paper.

3 Architecture for Incremental System Development

The herein presented architecture leverages on the work [8] and it has been already

successfully used for development of multi-UAV systems of cooperating fixed-wing air-

craft [27] and [9]. Within the architecture, individual subsystems of a multi-robot

system are modularized and situated inside a seven-layer structure. Hereby defined

modules can be represented by a software model with various levels of fidelity or by

a physical hardware modules. By a combination of these virtual and physical modules

inside MR simulations, the virtualization level of the whole system can be gradually

decreased by the iterative addition of hardware parts. This process then leads to the

efficient development of various complex multi-robot systems.

There are three main parts of the proposed iterative development method: (i) a

modularized multi-layer architecture that enables simulations at various virtualization

levels; (ii) a process of verification of the correct behavior on each of these levels; and

(iii) an estimation method of the development cost of each iteration step.

3.1 Design Layers

The seven-layer architecture for the classification of system sub-modules is shown in

Figure 3 together with the schematic indication of possible interactions among the

individual subsystems. The architecture layers starting from the bottom are as follows.

1. Environment layer represents the environment in which all the assets or agents

exist. It subsumes a real environment if the virtualization level of at least one agent is

such that it can sense or move in the real world. It also contains a simulation server

with a model of the virtual world (with the defined terrain, weather or entities obtained

from third-party systems). The simulation server can use the information from the real

assets to enhance the virtual world model with the real world data.

2. Asset layer defines the flight dynamics of the entities in the system and their

physical behavior in the environment, i.e., how the environmental forces affect the state

of the entity. In a case of the zero virtualization level, this layer is represented by the

physical airframe itself.

7

HMI

Reasoning

Communication

Sensors

Autopilot

Asset

Environment

Fig. 3: Modular architecture for multi-robotics system development

3. Autopilot layer specifies the behavior of the autopilots. Entities can be equipped

either by hardware autopilots (in such a case this layer implements the interfacing pro-

tocols to communicate with the autopilot) or by a set of algorithms and control loops

(stabilization, trajectory following, navigation, etc.) that simulate the autopilot behav-

ior.

4. Sensory layer specifies the payload that is deployed on the assets, such as

LiDAR, camera, ADS-B, etc. Again, either real hardware devices or their computational

models can be used. In the case of mixed-reality scenarios with a combination of the

hardware and virtual sensors, the information from the real sensors is sent first to the

simulation server and from there passed to the virtual entities that should be able to

sense this type of information. A similar process applies to virtual sensors and physical

entities. This way, developers can increase both the scalability of the scenario and

the simulation fidelity by allowing both more entities and real sensory feeds into the

simulation.

5. Communication layer is used for implementation of message exchange and

also defines a set of communication protocols, such as routing protocols for Mobile

Ad-hoc Networks (MANETs), various interaction protocols (e.g., FIPA protocols [28]),

or protocols for message transport (handshakes, acknowledgments, etc.). Exchange of

messages among entities with a different level of virtualization (i.e., between those

with hardware and those with a virtual communication infrastructure) is handled by

the same means as the mixed-reality sensory data exchanges – with the help of the

simulation server.

6. Reasoning layer defines algorithms for high-level control, decision making,

mission planning, team coordination, and plan execution monitoring. This is a pure

software layer, and as such, it is the same for all agents independent of their virtual-

ization level.

7. HMI layer is the uppermost layer used by the system operators as a command

and control tool to assign tasks to the assets and to visualize mission data.

The realization of the bottom five layers can vary from simulated computational

models to the utilization of the hardware equipment. It depends on the virtualiza-

8

Sensors

Communication

Autopilot

Flightxdynamics
Preprogrammedxsimplexbehavior
Flightxsimulator
Flightxinxrealxworld

Autopilotxmodel
HWxautopilot

Sensorxmodel
Realxsensor

Localxobjectxexchange
Messagexexchangexviaxwiredxnetwork

MessagexexchangexviaxRFxmodems
RFxsignalxpropagationxmodel

Virtualizationxlevels

Environment
Environmentxmodel
Controlledxenvironment
Realxenvironment

Fig. 4: Virtualization levels of the system layers

Application´sTEnvironmentControlledTEnvironment

Simulation Simulation

VirtualTScenario HILTScenario

Simulation

Mixed-RealityTScenario

Simulation

HWTTestT HWTApplication

a) b) c)

d) e)

ControlledTEnvironment

Fig. 5: Consecutive scenario stages of the development process

tion level of entities used in the testing scenario configuration. Possible variants of

individual-level realizations are depicted in Figure 4 and more details about the indi-

vidual layers and the subsystems can be found in [8].

3.2 Verification Process

During the incremental development of an autonomous multi-UAV system, the very

system must pass through several stages that differ in the utilized level of virtualization

of its system layers. Basic categorization of these development stages is presented in

our previous work [11]. From the simplest to the most advanced stages are depicted in

Figure 5 and they can be characterized as follows.

Purely virtual scenarios – the environment is represented solely by the simula-

tion server, and the UAV assets are equipped only with simulated sensors and their

9

Actual level

Identify required
tests

Determine pass
criteria

Execute tests

Evaluate results

passed

Move to next level

Decrease
virtualization

Identify & Solve
problems

not
passed

Fig. 6: Steps for verification of individual virtualization levels

movement is modeled by simple computational models. This configuration is suitable

for early stages of development where the system fidelity is not yet important, and it

is used for high-level system design.

Mixed-reality scenarios – at least one of the assets utilizes a computational

model for at least one layer of its architecture, and at least one asset uses some sort of

physical hardware. Mixed reality scenarios can range from groups of agents with mixed

virtual and hardware layers (Figure 5b), to groups of interacting purely virtual and

full hardware deployed1 agents (Figure 5c)). Usually, the most frequently virtualized

layers are the Asset layer and Environment layer that are replaced by a flight simulator

because the outdoor flight tests are very time and resource consuming.

Fully deployed hardware field tests – correspond to the desired final stage of

the UAS where all the assets operate in the real world with minimal requirements on

a human operator. The only difference is that the tests are performed under controlled

conditions and operator and developers supervision. Hardware assets of various types

with real sensors are used, equipped with on-board computers and data modems. Scal-

ability of these scenarios is limited by the price of the overall setting, communication

medium bandwidth, safety requirements, and legislation.

Fully deployed hardware application – the final stage of the unmanned system

development, where the system is deployed in the real application and the conditions are

not controlled anymore. The system must remain operational in all situations required

by the application, such as various light and weather conditions, safety and legal issues

need to be taken care of, and battery management needs to be solved.

As the system moves through various virtualization levels during the development,

it has to be verified on each such level before moving to the next level. The verification

procedure presented further in this paper ensures that eventual design or implemen-

tation errors are discovered and resolved as soon as possible. Thus, the system is then

ready to proceed to further virtualization decrement. Respective steps for the verifica-

tion of a given virtualization level are depicted in Figure 6.

1 By fully hardware deployed entity it is meant an entity with none of its mission-critical
parts virtualized that can be; however, still equipped with virtual sensors for reception of
simulation-based feeds.

10

At each level, it is necessary to determine the required behavior of the system first

and requested fidelity features, but also identify the corresponding tests needed for a

transition to the next level. Then, the criteria for successful passing of the tests are set,

and the test should be executed either in software simulation or field experiments. If

the pass criteria are not met, it is necessary to identify and resolve the problems that

caused the test failures and re-run the tests. Once all the tests pass, it is possible to

move to the next development level by decreasing the virtualization of the system.

3.3 Step Cost

During the incremental development of the system, the most convenient way to lower

the system virtualization level and define a new testbed configuration has to be chosen

at each development step. This selection should be based on the iteration cost for a

given pair of the testbed configurations. As defined in [1], the iteration cost of a step

cost(σ1, σ2) that transforms the system from an application that works correctly on the

testbed configuration σ1 to an application that works correctly on the configuration

σ2 consists of three partial costs:

– the testbed cost of providing a testbed with the configuration σ2;

– the development cost of modifying the application logic of the testbed configuration

σ1 to work correctly on the testbed σ2;

– the test cost of verifying that the modified application works correctly on the

testbed σ2.

Authors of [1] do not specify how to estimate these costs. Based on years of expe-

rience of building UASs and many experiments with different testbed configurations,

a more detailed specification of the costs of an iteration step is provided here together

with the analysis of the risks and costs during the development process.

The first two partial costs can be considered as self explanatory – testbed cost

(CE(σ1, σ2)) is a cost of the hardware equipment needed for moving from the testbed

configuration σ1 to σ2 and development cost (CD(σ1, σ2)) is a price of the time and

resources needed to modify the application logic to work in the testbed configuration

σ2. The estimation of the test cost (CT (σ2)) is a bit more complicated since it should

reflect two issues: (i) the cost of the experiments (Cex(σ2)) that consists of the prepa-

ration costs, cost of work-time of each person presented at the experiment, and cost

of processing the results, and (ii) costs caused by accidental failures (Cfail(σ2)) that

consists of the cost of repairs and cost of repair time when no other experiments can

be conducted with the broken equipment. The resulting iteration step cost can be

expressed as

cost(σ1, σ2) = CE(σ1, σ2) + CD(σ1, σ2) + Cex(σ2) + r(t, σ2)N(σ1, σ2)Cfail(σ2), (1)

where r(t, σ2) is the time-dependent failure rate of the testbed with the configuration σ2
and N(σ1, σ2) is the number of experiment required for verification of all new features

of the configuration σ2.

Tools of the reliability theory can be used to estimate the probability of a failure or

en error in design and implementation of a complex system. According to the reliability

theory, the failure rate (frequency with which an engineered system or component fails,

expressed in failures per unit of time) in the initial stages of a system development can

11

Fig. 7: Development of the failure rate r(t) and costs caused by incidental failures Cfail
in three different development stages

be modeled by Weibull distribution [29], [30]. This distribution models a decreasing

failure rate caused by design faults and initial problems and their fixing in the burn-in

phase. The failure rate function according to Weibull distribution is given by

r(t) = (β/α)(t/α)β−1, (2)

where α is called the scale parameter and β ∈ (0, 1) is the shape parameter.

The development of the costs of failures Cfail(σ2) and the failure rate r(t, σ2)

during the development process are depicted in Figure 7. When an error occurs, and is

fixed, the system should be verified in all the previous development stages again, and

the next stage should be started only after thorough testing to ensure that the error

rate is low enough. This way, in stage sx, most of the problems that would otherwise

occur also in the stage sx+1 are discovered and resolved. Thus, a lower probability of

error can be expected in the stage sx+1 compared to the stage sx. Notice the sharp

step changes in the error probability at the beginning of each stage in Figure 7. These

step changes are caused by an occurrence of new errors that could not appear in the

previous stages because of their lower fidelity. Over the time, across all the stages, the

overall error probability should be decreasing, since it follows Weibull distribution in

a burn-in stage.

4 Case Studies

4.1 Heterogeneous Team of Autonomous UAVs

The first herein presented use-case of the presented method and architecture is a devel-

opment of the UAS with a heterogeneous team of autonomous UAVs. The system allows

for the execution of complex tactical missions such as critical infrastructure protection,

team area surveillance, or target tracking, as well as performing dynamic mission re-

configuration in a case of any change in the mission tasks or the number of available

assets. Individual parts of this system are described in our previous works [9], [8], [10],

therefore only a brief overview is presented here to make the paper self-contained.

The layers of the system architecture and their inner content, specific for this ap-

plication, are depicted in Figure 8. The first five layers contain both real and virtual

12

FlightWDynamicsWModel

Simulation
Server

PixhawkKestrel

Autopilot

SIMWAutopilot

Asset

Environment

HWWAssets

Rotary
Aircraft

Fixed
Wing

Comm

Reasoning

Sensors

Terrain
Obstacles
Weather

PlanWExecution
Feedback

HWWComms

Microhard Xbee jjj
WiFi Bluetooth jjj

XGeoWfencing.
TrajectoryWPlanning

CollisionWAvoidance SecurityWPolicy

ComplexWMissions

ISTAR SLAM CIP

MissionW
Control

Visualization
HMI

SIMWComms

SignalWPropagation
Model

3rdWparty
entities

SIMWSensors RGBWCamera FlightWControlWSensors

Fig. 8: Architecture of the system for command and control of autonomous UAVs

parts that can be mixed in the MR simulation during the incremental development

process. A series of experiments have been performed with both the fixed wing and

VTOL rotary UAVs with the aim to verify the architecture. Following the methodol-

ogy, the experiments started with the pure virtual simulation of all unmanned assets

and the environment using multi-agent simulations to verify basic functionality of the

team interaction, coordination, and planning. Next, the interaction protocols for the

intended autopilots (i.e., Kestrel, Pixhawk) have been implemented and a set of indoor

hardware-in-the-loop simulations with the real modems and autopilots (with simulated

sensory inputs and flight dynamics) have been conducted to verify the basic communi-

cation properties, autopilot APIs, and basic plan execution with more complex flight

dynamics. After these tests, field experiments in MR simulations with one hardware

UAV and several virtual ones have been performed to test the correct behavior of the

planning algorithms in the wind and acquire characteristics of the communication de-

vices on large distances. Finally, the experiments with multiple fully deployed hardware

assets have been performed, e.g., see Figure 9.

13

Fig. 9: Flight tests of multi-UAV system

Fig. 10: Scheme of multi-UAV system deployment

The system has been deployed on the physical hardware according to Figure 10.

It consists of two sub-systems: (i) on-board agent control and reasoning; and (ii) the

ground control station (GCS) with mission control, simulation, and visualization. The

agent control runs on-board of the UAV and data modem is used for the team coordi-

nation and communication with the operator. The GCS runs the simulation server and

virtual UAVs all together with the simulated environment providing virtual moving

ground targets, terrain, obstacles, etc. The GCS enables system operators to alter-

nate the mission assignments, and third-party GCS software (such as UGCS, Virtual

Cockpit, Mission Planner, etc.) can be connected for extended visualization options.

Moreover, the control of each UAVs can be overtaken by a pilot using the Remote Con-

troller (RC) to improve the safety of the operation that is usually required for legal

reasons.

Adopting the strategy of the incremental development resulted in less flight test

hours required for the system testing and verification, both for one, but mainly for two

aircraft flying simultaneously. The proposed methodology shows itself advantageous for

decreasing the deployment cost because the field tests were conducted only when they

14

Fig. 11: Experimental setup for measurement of RF signal strenght.

were necessary for the verification of particular virtualization levels. Requirements

and modeling of communication subsystems is a particularly important part of the

methodology related to the practical deployment of the system to real UAVs. Therefore

it is further described in the following subsection.

4.1.1 Communication Experiments

The communication subsystem produced the most significant differences between the

computational models and measurements from the field experiments. The radio fre-

quency bandwidth has to be wide enough to transmit telemetry, plans, commands,

and other data required for proper system behavior. Also, the transmission delay has

to be small enough to provide good response time and well-timed collision avoidance.

The required minimal bandwidth and maximal delays have been estimated in simulated

scenarios with a variable number of UAVs and tasks performed. However, experimen-

tal measurements of the signal strength have been performed to validate the used RF

communication modems. Fixed wing aircraft with an omnidirectional antenna secured

on its left wing has been scheduled to fly square patterns at various distances from the

GCS, see Figure 11.

Early experiments show that a basic XBee-PRO DigiMesh 2.4 RF modules provide

only limited communication bandwidth less than approximately 5 kBps, which is not

sufficient for the system needs. Therefore, the modules have been replaced by Microhard

nVIP2400 broadband modems capable of hypothetical data-rates of 54 Mbps and also

feature TCP/IP protocol and communication encryption. The results showing the real

signal strength and latency in various distances and heading configurations are shown

in Figure 12.

The communication delay has an effect mainly in two situations: (i) the delay be-

tween the issuance of the operator’s command and the start of the command execution;

and (ii) the time from the moment a high-priority UAV successfully broadcast its plan

to the moment another low-priority UAV with colliding trajectory starts execution

of its collision avoidance (CA) maneuvers. Note that every UAV periodically broad-

casts 50 seconds look-ahead part of its plan every 10 seconds. Variable throughput

and delays have been caused by different channel properties and noise characteristics

in every development stage. Together with the requirements on the bandwidth, and

our available financial budget, these data have been used to select the most suitable

15

Fig. 12: Results of the communication tests - (a) RSSI [dBm] and (b) latency [ms] - with

the Microhard nVIP2400 modem. The distance parameter is the distance between the

aircraft and GCS and the heading parameter represents the relative heading attitude of

the aircraft to the GCS. The highlighted area corresponds to the configuration where

the UAV’s antenna has been positioned away from the GCS.

communication hardware. The real measured throughput and latencies of the utilized

Microhard nVIP2400 RF modems are depicted in Table 1. Relatively large delays in a

case of the full hardware deployment have been still manageable for the correct system

function of small UAV teams, but may strongly limit the scalability in the number of

UAVs available in the system.

During these experiments, an anomaly in the signal propagation appears as follows.

The signal quality is locally degraded in situations when the antenna points away from

the GCS, and the aircraft’s body and motor is in the way of the line of sight to the

GCS (see the highlighted areas in Figure 12). This phenomenon has been observed by

Meiser [31] and Mahdi et al. [32], but has not been studied in more detail yet. Very

probably this RF signal hindering can be caused by aircraft’s body and motor jamming.

16

Table 1: Data-link quality in different development stages.

System
Data-link

spec
Throughput

[Mbps]
Execution
delay [ms]

CA
delay [s]

Sim
localhost
TCP/IP
sockets

650.0 10 0

HIL
RF modems

in lab
30.0 300 2

HW
RF modems
in the field

0.5 1500 8

None of the existing wireless network simulators and no RF signal propagation models

deal with this phenomenon, and thus the real world experiments have been necessary

to discover this particular issue. Based on the experimental evaluation, this phenomena

can be integrated into the system simulation to significantly increase its fidelity.

4.2 System for Verification of Collision Avoidance Methods

The next use-case of the presented development method is related to the project with

Quanterion Solutions Inc., U.S. Air Force Research Laboratory (AFRL), and NUAIR

alliance. The project goal has been to develop a robotic testing platform for verification

of collision avoidance methods that would enable high-level command and control of

multiple fixed-wing airplanes Desert Hawk III. The emphasis of the project has not

been only on the flight safety in shared airspace and verification of cooperative collision

avoidance among aircraft (in which the testing is crucial for achieving the desired

reliability), but also on the training of operators of the final system.

The system is similar to the first use-case, and thus the individual layers of the

architecture are similar to those in Figure 8. Additional extra RC and extra GCS with

third-party software (Virtual Cockpit 3D) in the HMI layer of every single UAV have

been utilized (for emergency situations only) because of increased safety requirements.

A common GCS serving for multi-agent command and control has been provided, see

Figure 13 for the overall schema of the deployed system. Besides, a new autopilot

control protocol (AFRL’s Common Communications Client for Payload Operations

(C3PO)) with the increased level of control safety has been implemented and tested.

It is worth noting that the system has not been deployed and operated by us,

but by members of the Quanterion Solutions with our remote assistance only. Thanks

to the system modularity and existing implementations of system configurations of

various virtualization levels, the operators have been trained iteratively. They started

with training with a pure software simulation of the system, then using various degrees

of mixed reality setting, and finally training with the real Desert Hawk III airplanes.

The fast and successful training of the operators refers to simplicity and portability

of the resulting system. Moreover, it also supports the suitability of the incremental

development method even for the training activities. An example of the Desert Hawk

III launch and field test settings is shown in Figure 14.

During this project, there have been extensive testing sessions. Not only for the

reasons of the system development and verification but also for the system operators

17

Fig. 13: Scheme of system deployment on Desert Hawks

Fig. 14: Flight tests with Desert Hawks III

to get familiar with the system safely. These operators then provided useful feedback

that resulted mainly in changes of the HMI layer and integration of the third-party

18

software for monitoring and visualization (Virtual Cockpit2 software). The modularity

of the system and possibility to easily change its virtualization level allowed for the

fast, safe, and successful training of the operators.

4.3 Safefly - System for Flight Safety of Light-Sport Aircraft

The third use-case where the herein presented architecture has been used for the incre-

mental development is the project called Safefly in which we aim to build a system for

increasing flight safety of light-sport aircraft. During this project, on-board sensors of

the aircraft have been extended with collision avoidance sensors, communication equip-

ment, and on-board computer. Algorithms for the trajectory planning and cooperative

and non-cooperative collision avoidance have been deployed to plan the most suitable

collision-free trajectories. The plans are provided as recommendations to the pilot, or,

if possible, uploaded to a particular autopilot of the light-sport aircraft.

The system consists of hardware equipment that has been selected to satisfy the

requirements of the final system on the computational power, reliability, communication

bandwidth and latency, weight, and size as follows.

– TL-1000 Integra - an electronic flight instrument system (EFIS) that integrates

all primary flight instruments, navigation, and 3-D terrain, together with a glass

cockpit for various visualization options and with a possible connection to autopilot

for the roll and pitch control. EFIS Integra systems have been deployed on two

light-sport airplanes Tecnam P-2002 Sierra and connected with the other system

parts.

– Zaon PCAS XRX - a passive collision avoidance system that uses amplitude

and phase shift of the transponder responses from other aircraft to estimate their

presence and position. Since a great majority of civil aircraft is equipped with a

transponder, this system has been meant to provide non-cooperative detection and

localization of surrounding aircraft.

– Microhard n920F - an RF module for cooperative plan exchange and negotiation

of evasion maneuvers among an aircraft equipped with the Safefly system. It is

also used to transmit the mixed reality data and information for visualization and

debugging to/from GCS.

– Gumstix Overo FireStorm - an onboard ARM computational unit that is con-

nected to all other system parts and runs the reasoning algorithms for planning,

collision avoidance, and negotiation.

The respective layers of the system architecture are shown in Figure 15. We omit

the software models in the individual layers since they are similar to those in Figure 8.

Accordingly to the concept of the incremental development, a flight dynamics model

of the Tecnam aircraft has been implemented based on their BADA performance char-

acteristics [33]. First, the algorithms for the trajectory planning [34] and cooperative

negotiation-based collision avoidance [35] have been tested in a pure virtual simulation,

see Figure 16.

Furthermore, from the simulated encounter models and from the requirements on

the safety, the bandwidth requirements on the communication equipment have been

estimated (see Figure 17). These data-rates reflect the aircraft speed and should be

2 http://www.lockheedmartin.com/us/products/procerus/kestrel-autopilot.html

19

Fig. 15: Architecture of the system for light sport aircraft control with hardware com-

ponents used for its realization

Fig. 16: Model of P-2002 Sierra utilizing BADA performance characteristics used for

MR simulations

large enough for the negotiation algorithms to provide collision-free trajectories at

least 30 seconds before a collision time for 1.5 km separation between airplanes.

Later, a model of the Zaon PCAS, based on its theoretical characteristics stated by

the manufacturer has been integrated into the system to provide for non-cooperative

collision avoidance. When the software model of the Integra EFIS has been obtained

20

Fig. 17: Estimation of communication requirements based on software simulation re-

sults

(a) Altitude
(b) Angle

(c) Distance (d) RSSI

Fig. 18: Results of the Zaon PCAS and RSSI measurements compared with the real

data. Note that the estimation of the neighbor aircraft’s altitude is relatively precise;

however, the precision in the estimation of its angle and distance is low and delayed.

from its manufacturer, the interaction protocols for upload of plan waypoints into the

EFIS have been implemented.

In the next stage, a series of field test experiments have been conducted to test the

respective physical modules for reliability, to measure the bandwidth and range of RF

modems, and real behavior of the Zaon PCAS, see the obtained results in Figure 18.

There has been an intensive interaction with the aircraft pilots in various situations to

verify the suitability of the proposed plans with the aim to increase the precision of

the respective software models.

After the discussion with pilots, a plan visualization widget has been designed (see

Figure 19) that is shown in the glass cockpit together with other flight data. It is

21

20

10

-10

-20
3-1-2-3 1 2

1 2 3

Fig. 19: Plan visualization in the Integra Glass Cockpit used for the situation aware-

ness. The observations provided by the Zaon are in the red, and a trajectory of near

cooperating aircraft is in the orange. The recommend flight path is the blue curve.

Fig. 20: Aircraft pilot panel with the integrated Safefly system – build-in EFIS Integra,

Zaon PCAS with GPS on the flight panel and rest of the system integrated under the

panel

helpful to the pilots in following the provided best collision-free path. Note how the

imprecision of Zaon PCAS position estimation is reflected by larger dimensions of the

red area.

Next, the Safefly system has been deployed in one of the experimental Tecnam

planes, shown in Figure 20. It has been fed with the data of a virtual plane in the MR

simulation, and the pilot reactions on the plan recommendations have been observed.

After the integration of pilots’ feedback (mostly related to visualization of the plan)

and their reaction times into the system, and solving newly discovered hardware issues

(mostly related to the inter-connection of the EFIS Integra and used Gumstix board

as the on-board computer), the system has been fully deployed on two experimental

airplanes.

5 Lessons Learned

The herein presented strategy of the incremental development with the utilization

of the MR simulation showed to be useful in all the presented use cases. The MR

simulation provided valuable insights into the systems that would be otherwise difficult

to obtain in regular real-world experiments. It also helped to increase the fidelity of the

first simulation scenarios without additional risks and costs. The following paragraphs

summarize the most valuable lessons learned during the development of the presented

systems.

22

– Re-use of System Modules The modularity of the multi-level architecture en-

ables to re-use many of the system modules in various projects even if they are of

different type. For example, the planning and collision avoidance algorithms, and

also the communication protocols are usually very similar independently on the

target application. In addition, it saves time and effort when repeatedly searching

for hardware requirements since they may have been already estimated before. In

particular, the communication device and onboard computers in the Safefly system

have been selected based partially on our measurements of the system requirements

from the previous projects.

– Interchangeable Modules Using the MR simulation with the incremental de-

creasing of the virtualization level makes a replacement of individual system parts

a straightforward task. Since all the modules on the same architecture layer share

the same interface, they are easily interchangeable. This way, the virtualization level

of the system can be quickly altered back and forth to provide the best testbed con-

figuration level needed at the moment. Moreover, an integration of a new module to

the system then requires just an implementation of the device interface according

to respective system layer and its step by step verification in particular develop-

ment stages. This has been the case in the Safefly project when the manufacturer

of Zaon XRX PCAS device stopped its production and support and some of its

alternatives had to be used, i.e., the PowerFLARM.

– Incremental Training of System Operators Utilization of the MR simula-

tions can significantly help target system operators to get familiar with the system

without risk of damage to hardware or third-party property and also without any

legal issues. The incremental decreasing of the virtualization level can be used in

a learning process and teach the operators to use the system step by step. This is

especially useful for aerial systems where the safety and legal issues are of the high-

est importance, as it has been found in our AFRL project where the operators had

to undergo extensive hardware-in-the-loop testing before real field experiments.

– Localization of Problems The incremental development process helps in local-

izing problems that would not appear in the pure software simulation, and that

would be difficult to isolate in the full hardware deployed complex system. For ex-

ample, this has been the case of the effect of the communication delays and limited

data-rate. Besides, similar issues have been observed for the autopilot behavior

during path following.

– Bridging Development Delays In a case of cooperation of multiple parties on

a project, such as we experienced during the development of the Safefly project,

the MR simulation showed to be very useful for substituting delayed hardware

parts. During the project, there have been significant periods where software or

hardware delivery from the project partners has been delayed and would disable

further work of the rest of the team. In these cases, the virtualization and modeling

of the respective system layers showed to be beneficial since these models can be

utilized as a substitute for the hardware without the need to delay further system

development.

– Problematic Wireless Communication Modeling The MR simulations are

difficult to be used for studying some of the issues related to wireless communi-

cation. The problem here lays in the fact that even when the virtual entities use

hardware RF modems to communicate with the physical entities and thus con-

tribute to the common bandwidth use, the fact that locations of their modems

do not correspond to the assumed locations of the virtual entities cause incorrect

23

assumptions on the RF signal propagation, and thus possibly incorrect simulation

results. This issue will be addressed in our future work.

6 Conclusion

In this paper, a methodology for the incremental development and verification of com-

plex multi-robot systems with the use of the Mixed Reality simulations is formulated,

and risk and cost analysis is provided to show its benefits. This approach has been val-

idated, and its universality has been demonstrated by its utilization in building three

different aviation applications: (i) a system for command and control of heterogeneous

team of autonomous unmanned aircraft; (ii) a system for verification of collision avoid-

ance methods of third-party’s unmanned aircraft; and (iii) an assistant system for pilots

of light-sport aircraft that should increase their situation awareness and safety through

recommendations of collision-free flight paths.

Acknowledgements The presented work has been supported by the Czech Science Foun-
dation (GAČR) under research project No. 16-24206S, Ministry of Agriculture of the Czech
Republic under contract No. QJ1520187, and by the Technology Agency of the Czech Republic
under project No. TA01030847.

References

1. M. Jakob, M. Pěchouček, M. Čáp, P. Novák, and O. Vaněk. Mixed-reality testbeds for
incremental development of HART applications. IEEE Intelligent Systems, 27(2):19–25,
2012.

2. R. Garcia and L. Barnes. Multi-UAV simulator utilizing x-plane. In Selected papers from
the 2nd International Symposium on UAVs, Reno, Nevada, USA June 8-10, pages 393–
406, 2009.

3. A. Komenda, J. Vokř́ınek, M. Čáp, and M. Pěchouček. Developing multiagent algorithms
for tactical missions using simulation. IEEE Intelligent Systems, 28(1):42–49, 2013.

4. W. Honig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian. Mixed reality
for robotics. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5382–5387, 2015.

5. I.Y.H. Chen, B. MacDonald, and B. Wunsche. Mixed reality simulation for mobile robots.
In IEEE International Conference on Robotics and Automation (ICRA), pages 232–237,
2009.

6. M.A. Day, M.R. Clement, J.D. Russo, D. Davis, and T.H. Chung. Multi-uav software
systems and simulation architecture. In International Conference on Unmanned Aircraft
Systems (ICUAS), pages 426–435, 2015.

7. I.H.B. Pizetta, A.S. Brandao, and M. Sarcinelli-Filho. A hardware-in-the-loop platform
for rotary-wing unmanned aerial vehicles. Journal of Intelligent & Robotic Systems,
84(725):725–743, 2016.

8. M. Selecký, M. Rollo, P. Losiewicz, J. Reade, and N. Maida. Framework for incremen-
tal development of complex unmanned aircraft systems. In Integrated Communication,
Navigation, and Surveillance Conference (ICNS), pages J3–1. IEEE, 2015.

9. M. Selecký, M. Štolba, T. Meiser, M. Čáp, A. Komenda, M. Rollo, J. Vokř́ınek, and
M. Pěchouček. Deployment of multi-agent algorithms for tactical operations on UAV
hardware. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 1407–1408, 2013.

10. M. Selecký and M. Rollo. Distributed control of heterogeneous team of autonomous uavs.
In Proceedings of EXPONENTIAL 2016: Association for Unmanned Vehicle Systems
(AUVSI), pages 707–717, 2016.

24

11. Martin Selecký, Jan Faigl, and Milan Rollo. Mixed reality simulation for incremental
development of multi-uav systems. In Unmanned Aircraft Systems (ICUAS), International
Conference on, pages 1530–1538. IEEE, 2017.

12. F. Mutter, S. Gareis, B. Schatz, A. Bayha, F. Gruneis, M. Kanis, and D. Koss. Model-
driven in-the-loop validation: Simulation-based testing of UAV software using virtual en-
vironments. In 18th IEEE International Conference and Workshops on Engineering of
Computer Based Systems (ECBS), pages 269–275, 2011.

13. S. Demers, P. Gopalakrishnan, and L. Kant. A generic solution to software-in-the-loop.
In Military Communications Conference (MILCOM), pages 1–6. IEEE, 2007.

14. A.H. Goktogan and S. Sukkarieh. Distributed simulation and middleware for networked
UAS. In Unmanned Aircraft Systems, pages 331–357, 2008.

15. D. Šǐslák, P. Volf, Š. Kopřiva, and M. Pěchouček. Agentfly: A multi-agent airspace test-
bed. 2008.

16. A. Burkle, F. Segor, and M. Kollman. Towards autonomous micro UAV swarms. Journal
of Intelligent & Robotic Systems, 61(1):339–353, 2011.

17. P. Scerri, T. Von Gonten, G. Fudge, S. Owens, and K. Sycara. Transitioning multiagent
technology to UAV applications. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS): Industrial track, pages 89–96, 2008.

18. J.L. Sanchez-Lopez, J. Pestana, P. de la Puente, and P. Campoy. A reliable open-source
system architecture for the fast designing and prototyping of autonomous multi-uav sys-
tems: Simulation and experimentation. Journal of Intelligent & Robotic Systems, 84(1-
4):779–797, 2016.

19. P. Chudy, P. Dittrich, and P. Rzucidlo. HIL simulation of a light aircraft flight control
system. IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), pages 6D1–1,
2012.

20. M.E. Aydemir. Design and implementation of a compact avionics instrument for light
aviation. Turkish Journal of Electrical Engineering & Computer Sciences, 24(5), 2016.

21. P. Pačes, T. Levora, O. Bruna, J. Popelka, and J. Mlejnek. Integrated modular avionics
onboard of small airplanes: Fiction or reality? In IEEE/AIAA 30th Digital Avionics
Systems Conference (DASC), pages 7A1–1, 2011.

22. K. Rydlo, P. Rzucidlo, and P. Chudy. Simulation and prototyping of FCS for sport aircraft.
Aircraft Engineering and Aerospace Technology, 85(6):475–486, 2013.

23. T. Haberkorn, I. Koglbauer, R. Braunstingl, and B. Prehofer. Requirements for future col-
lision avoidance systems in visual flight: a human-centered approach. IEEE Transactions
on Human-Machine Systems, 43(6):583–594, 2013.

24. J. Pellebergs and Aeronautics. The MIDCAS project. Saab Aeronautics, 2012.
25. C. Munoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, M. Consiglio, and J. Chamber-

lain. DAIDALUS: detect and avoid alerting logic for unmanned systems. In IEEE/AIAA
34th Digital Avionics Systems Conference (DASC), pages 5A1–1, 2015.

26. I.Y.H. Chen, B. MacDonald, and B. Wunsche. Evaluating the effectiveness of mixed
reality simulations for developing uav systems. In International Conference on Simulation,
Modeling, and Programming for Autonomous Robots, pages 388–399, 2012.

27. M. Selecký and T. Meiser. Integration of autonomous UAVs into multi-agent simulation.
Acta Polytechnica, 52(5):93–99, 2012.

28. L. Chiariglione. FIPA: Foundation for intelligent physical agents, 2001. [cited 5 May 2017].
29. F. Jensen and N.E. Petersen. Burn-in: an engineering approach to the design and analysis

of burn-in procedures. Wiley, 1982.
30. M. Xie and C.D. Lai. Reliability analysis using an additive weibull model with bathtub-

shaped failure rate function. Reliability Engineering & System Safety, pages 87–93, 1996.
31. T. Meiser. Distributed topology control in MANETs. Master’s thesis, Czech Technical

University in Prague, 2012.
32. Mahdi Asadpour, Bertold Van den Bergh, Domenico Giustiniano, Karin Hummel, Sofie

Pollin, and Bernhard Plattner. Micro aerial vehicle networks: An experimental analysis of
challenges and opportunities. IEEE Communications Magazine, 52(7):141–149, 2014.

33. A. Nuic, D. Poles, and V. Mouillet. Bada: An advanced aircraft performance model for
present and future atm systems. International Journal of Adaptive Control and Signal
Processing, 24(10):850–866, 2010.

34. David Šǐslák, Přemysl Volf, and Michal Pěchouček. Accelerated A* path planning. In
Proceedings of The 8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pages 1133–1134. International Foundation for Autonomous Agents
and Multiagent Systems, 2009.

25

35. David Šǐslák, Přemysl Volf, Antońın Komenda, Jǐŕı Samek, and Michal Pěchouček. Agent-
based multi-layer collision avoidance to unmanned aerial vehicles. In Integration of Knowl-
edge Intensive Multi-Agent (KIMAS), International Conference on, pages 365–370. IEEE,
2007.

Martin Selecký received his B.Sc. and MSc degrees in artificial intelligence from

Czech Technical University in Prague, where he is currently working towards Ph.D.

degree in Artificial Intelligence and Biocybernetics. His research interests include

communication networks, development of complex autonomous multi-UAV sys-

tems, trajectory planning, and mixed-reality simulations.

Jan Faigl is an Associate Professor of Computer Science at the Faculty of Electri-

cal Engineering (FEE), Czech Technical University in Prague (CTU). He received

his Ph.D. (2010) in Artificial Intelligence and Biocybernetics and Ing. (2003) in

Cybernetics from CTU. In 2013/2014, he was Fulbright visit scholar at the Uni-

versity of Southern California. He has been awarded the Antonin Svoboda award

from the Czech Society for Cybernetics and Informatics in 2011. Since 2013, he is

heading Computational Robotics Laboratory at the Artificial Intelligence Center

(AIC), FEE, CTU. His current research interests are in unsupervised learning, self-

organizing systems, navigation of mobile robots, and path and motion planning

techniques.

Milan Rollo received his Ph.D. degree from Czech Technical University in Prague.

He works as a senior researcher at the AI Center, Faculty of Electrical Engineering,

CTU in Prague. His main research interests are agent-based systems and robotics,

with focus on deployment of free-flight concept approaches on autonomous UAVs.

He is a member of NATO NIAG SG-205 Sense and Avoid Feasibility and Cer-

tification for UAS Flight in Non-Segregated Airspace and EUROCAE WG-105

Unmanned Aircraft Systems (UAS).

	Introduction
	Related Work
	Architecture for Incremental System Development
	Case Studies
	Lessons Learned
	Conclusion

