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Abstract.  
Fast and robust obstacle avoidance plays an important role for design of a successful robot soccer team, 
although not all teams use it nowadays. The standard algorithms assume that a working environment is static or 
changing slowly. Moreover, computation time and time needed for realization of the planned path is usually not 
crucial. Speed of robot soccer players (which act as obstacles) can be several meters per second, what requires 
low reaction time. One criterion for obstacle avoidance is therefore to plan a path far enough from opponent 
robots to guarantee that their trajectories will not collide with the planned one. This is in contradiction to a 
primary goal of robot soccer – to reach the desired position as fast as possible. An obstacle avoidance algorithm 
suited for robot soccer should find acceptable compromise between these two antagonistic requirements. The 
novel obstacle avoidance algorithm – Transformed Net, satisfying the above-mentioned criterions, is introduced 
in the paper. The approach is based on searching a graph that covers only most important part of playfield. The 
output of proposed obstacle avoidance algorithm is a sequence of strategic points to be passed through in order 
to avoid obstacles. A trajectory generator produces feasible and smooth reference path from this set of points. 
The robot is then controlled using a classic state space controller to follow a preplanned collision free path. The 
above motioned obstacle avoidance algorithm has been compared with standard algorithms. 
 
1. Introduction 

 
 Obstacle avoidance is an important part of every robotic system and therefore many different algorithms for 
obstacle avoidance were mentioned in the robotic literature. Unfortunately, most of the methods require static or 
slowly moving obstacles, which is in contradiction with needs of robotic soccer where robots move very fast 
(several meters per second). High dynamics of soccer systems is also a reason why time-complexity of planning 
and obstacle avoidance algorithms should be low. Generated paths should be moreover collision-free, because 
collisions can cause damage of the robots.  It is impossible to prevent all collisions in robotic soccer due to its 
dynamics, so algorithms it this domain minimize a risk of collisions or its consequences only. 
 All obstacle avoidance approaches find a path from an actual position S of the controlled robot to a desired 
goal position C, with respect to positions and shapes of known obstacles P in the environment and dynamic 
constraints of the robots. While all these parameters stand as the inputs of the algorithm, the output can be either 
an optimal trajectory from S to C or direction from the actual position respecting locally optimal trajectory. The 
penalty function to be minimized by the planning algorithm consists of two parts. While the first one is evaluates 
a length of the trajectory (or time needed to execute the trajectory), the second part takes safety of the path (i.e. 
distance to obstacles) into account. To find an acceptable compromise between these requirements is on of the 
crucial problems of the obstacle avoidance. 
 Standard algorithms described in the literature are either not fast enough or give bad results in dynamic 
environments as robotic soccer is.  It was the reason, why we looked for a new method satisfying all the 
requirements mentioned above.  
 The problem of controlling a robot on a path is solved in the second part of the paper. The output of the 
obstacle avoidance algorithm is passed to the trajectory generator that produces a feasible and smooth reference 
path from this set of points. The trajectory generator defines a reference path as a smooth path - spline composed 
of cubic polynomials. A maximal allowable velocity profiles that the robot could still afford due to acceleration 
limits is then determined. Control of the robot on the reference path is done using a well-known approach [7] 
with combination of feed forward and closed-loop actions. The former uses robot inverse kinematics to calculate 
the feed forward inputs from the reference curve, while the latter cancels the effects of noise, disturbances and 
initial state errors using state space controller. 



 The rest of the paper is organized as follows. A short review of most popular obstacle avoidance techniques 
is presented in the second section, while Transformed Net reflecting special requirements of robotic soccer is 
described in section 3.  A trajectory generator smoothing a planned is presented in section 4 and experimental 
results in section 5. 
 
2. State of the art 
  
 Comprehensive review of path planning and obstacle avoidance methods can be found in [1]. Algorithms 
usually used in mobile robotics are divided there into two types: local and global. Local approaches find optimal 
direction from the actual position using information from a local area of the robot. While locality of this 
approach leads to fast planning, trajectories generated by these methods are not guaranteed to be globally 
optimal. Moreover, unavailability of a full path can cause problems to low-level regulators and strategy planning 
that can need a full path for their better performance.   
 Vector field histograms VFH [3], originally developed for obstacle avoidance of robots equipped with 
sonars are a typical example of local approaches. Similarly to a rotating sonar exploring a space in 360° range, 
VFH obtains histogram distances to the closest obstacle in each direction. Directions whose distance is smaller 
than an adaptive threshold are selected from this histogram. Value of the threshold depends on a distance of the 
robot to the goal position. The direction that has the smallest angle to vector SC is chosen as optimal robot 
heading. VFH cannot solve situations with high density of obstacles and with U-shape obstacles. Both types of 
the workspace configurations caused movements oscillations.  
 Output of global algorithms is a complete trajectory from the actual robot position S to the desired position 
G. The main advantage of these approaches is ability to avoid a group of obstacles and to find more optimal 
trajectories as illustrated in Figure 1. Most of them build a graph representing possible robot paths at the first and 
then finds an optimal (shortest) trajectory in this graph.  
 The most widely used collision avoidance method in the robotic soccer is potential field [2]. It minimizes a 
penalty function Z that consists of two parts describing influences of the obstacles in the workspace and intention 
to go to the desired point. The repulsive part discriminates paths that are close to obstacles – it has a maximum in 
a center of each obstacle and decreases with a distance. The second part is attractive having minimum in the goal 
of the robot and uniformly growing with a distance to the goal. The biggest problem of this approach is that 
optimization can finish in a local minimum and therefore a globally optimal path is not guaranteed to be found. 
We used the algorithm potential field for comparison results with the function 
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where G is a desired position of the robot, P is a center of the obstacle, A is left bottom corner of the playground, 
B is a right top corner of the playground and ci are constants weighting influences of the attractive and repulsive 
parts.  
  

           
Figure 1. The blue trajectory is obtained by Visibility 

Graph and the red by Potential field. 

Figure 2. Voronoi diagram used in the robotic soccer. 



 Visibility graph approach VG [4] constructs a visibility graph of vertices of polygons representing obstacles. 
It means that two vertices are connected in VG iff there are visible. A shortest path is then determined using 
standard Dijkstra algorithm [8]. The path found by this algorithm is typically close to the obstacles, which can 
lead to collision because robots cannot follow planned path precisely. Growing of the obstacles by a certain 
value can solve this problem, but it is not clear how to optimally determine this value. 
 Occupancy grid [5] divides a workspace into disjoint cells that cover the whole space. The value of a cell is 
one if a part of any obstacle is inside the cell or zero otherwise. Centers of the zero-valued cells are nodes of the 
graph, while edges connect neighboring nodes.  
 Voronoi diagrams VD [6] divide a workspace into disjoint cells also. Given a set P of points in the plane, 
one cell of VD is a set of points that are closer to the specific point than to any other point in P. For robotic 
purposes, the set P contains centers of robots (excluding the one the plan is generated for) plus points 
representing boards around the playfield. One possibility is to represent each barrier by a set of points placed 
along each barrier, but it increases computation time. The second way is to compute generalized VD where the 
set P can contain lines also. As it the previously mentioned algorithms, a shortest path in the graph where 
neighboring cells of VD are connected can be found by Dijkstra algorithm. 
 VD finds path that go from obstacles as far as possible. This is useful in dense environments, while paths 
generated in sparse spaces are needlessly long and cautious (see Figure 2). 
       
3. Transformed Net 

 
 In this section we introduce a novel obstacle avoidance algorithm  - Transformed Net that is designed to 
have small computational complexity and to avoid disadvantages of above-described methods. The algorithm 
should be also able to set weight for safeness (distance to obstacles) and optimality (length) of the path. It is 
crucial for robotic soccer, because for example intention to avoid obstacles for defender is smaller than for 
attacker that is not allow to charge the opponent goalkeeper.  
 The main idea of the algorithm is to cover a whole playfield by a set of nodes and construct a graph, where 
neighboring nodes are connected by an edge with a weight w.   
 

( ) ( )
( ) ( )( )













+= ∑

=

n

j joCeCd

c
elengthew

1 ,
1. , (2) 

 
where length(e) is a length of edge e, d(.) stands for Euclidean distance, C(e) is the center of e, C(oj) the center of 
obstacle oj, n is a number of obstacles and c is a constant. This means that the closer is an edge to any obstacle 
the higher is its weight. The optimal trajectory is then the cheapest path in this graph found by Dijkstra 
algorithm.  
 

 
 In order to get optimal results, a distance between neighboring nodes should be comparable to the size of 
obstacles.  This requires generating a net with thousands of edges to cover a robotic soccer playfield. Instead of 
that only a grid of points covering an area along a straight line connecting robot’s actual position with a 
requested goal position is constructed. A number of points in the net depends on a distance between the start and 
goal position. In order to increase a speed of the algorithm, the net is not computed on the fly. Instead of this, 

 
Figure 3. Left: net in the basic form. Right: evaluated Transformed Net. (Edges without arrows direct from the 

left to the right.) 



several basic nets with a different number of points are pre-computed. An appropriate net is then chosen in a 
planning phase and transformed (rotated, shifted, and resized) to a correct position (see Figure 3) according to 
the following equations: 
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where [x,y] are coordinates of a node in a predefined net, [x’,y’] coordinates in the resulting net, [Sx, Sy] robot 
start position, and k and α scale and rotation parameters, which are calculated as follows: 
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where w is a number of nodes, which lie on the line SC and g stands for a distance between two neighboring 
nodes on SC.  
 

  
Figure 4. Transformed Net used in situations in the robotic soccer. 

 
 
4. Trajectory generator 

 
 Transformed Net algorithm generates a path as a polyline (i.e. set of points to be visited by a robot 
supposing that a trajectory between two points is straight line). This kind of path cannot be traversed by a robot 
precisely due to dynamic and kinematic constraints. The polyline is therefore “smoothed” – approximated by a 
spline curve that must go thru all points of the planned path and not collide with obstacles.  
 A two-dimensional curve is obtained by combining two splines, x(u) and y(u), where u is the parameter 
along the curve. Each spline consists of more segments - cubic polynomials. Knots are points of tangency of two 
neighbour segments with continuous (the same) derivatives. When the knots are set, the spline parameters can be 
obtained by solving a linear equation system (8). If the spline consists of m polynomial segments of order p, than 
the number of parameters to determine is )1( +⋅ pm  which requires )1( +⋅= pmn  conditions (linear equations) 

to completely define spline curve. 
 The spline curve is therefore fully determined by the start point of the route S, an the end point of the route 
G, derivatives in S and G and knots. The knots are selected to fit in remaining points of the route (all the points 
except S and G) and additional points obtained as a geometric average of two neighbouring points of the route. 
An example of obtained spline paths is given in Figure 6. 



 A robot will drive on the obtained path if a pure rolling condition of the robot wheels is supposed. This 
condition is achieved by limitation of the allowed overall acceleration )( 22

radtang aaa +=  which is limited with 

the friction force and can be decomposed to the tangential acceleration atang and to the radial acceleration arad. 
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and derivatives in Eq. (9) are with respect to parameter u. 
 Because the gravity centre of the robot with a differential drive is on a certain height above a ground level, 
the limit of the tangential acceleration differs from the limit of the radial acceleration. When accelerating in a 
linear direction, a part of the robot weight is carried by a rear or a front slider, which results in a smaller limit for 
the tangential acceleration. Measured acceleration limits are shown in Figure 5. (for more details see [10]). The 
overall acceleration should be somewhere inside or on the ellipse if robots are driven time optimally. 
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Figure 5. Acceleration limits 
 
 For a given path the velocity profile for each robot is calculated as follows. The local extreme (local 
maximum of absolute value) of the curvature are determined and named turning points (TP). In these points the 
robot has to move with maximum allowed speed due to radial acceleration limit. Its tangential acceleration atang 

must be 0. Before and after a TP, the robot can move faster, because the curve radius gets bigger than in the TP. 
Before and after the TP the robot can tangentially decelerate and accelerate respectively as max. allowed by 
(de)acceleration constraint. In this way the maximum velocity profile is determined for each TP and has the 
shape of “U” (or “V”). Similarly the maximum velocity profile (due to tangential acceleration/deceleration) is 
determined for initial point S and final point C velocity respectively. The highest allowable overall velocity 
profile is determined as the minimum of all the velocity profiles.  
 

5. Experimental results 

 
 The Transformed Net algorithm was tested in two experiments. In the first experiment we studied influence 
of different algorithm parameters, while in the other one we compared the algorithm with other methods used in 
robotic soccer domain.  For the first experiment we generated an experimental set of 1000 random scenes, for 
which an optimal trajectory was found by the algorithms. Each scene contains barriers of robotic soccer 
playfield, 7 randomly generated obstacles (robots), and random start and goal positions of a robot. The set of 
scenes was a little bit reduced for the second experiment ( see section 5.2). 
  The generated paths were evaluated and compared according to several criteria (see Tables bellow). The 
first criterion l stands for a length of the path; the second one d describes ability of the algorithm to find a path in 
safe distance from all obstacles. Precisely, it is the shortest distance between any obstacle and the trajectory. The 
values wc and hc mean a number of collisions. The “weak” collision wc occurs if d is smaller than the robot 
radius. In this case the robot lightly touches an obstacle and can push it. In the case d is smaller than a half of the 
robot radius, we speak about a “hard” collision hc. The last, but one of the most important criterion is t that 
describes computational complexity. The complexity is described as a ratio of time needed by the algorithm to 
time needed to solve the same problem by Visibility graph algorithm (it is 7.2ms for 9 obstacles on PC 668MHz, 
256 MB RAM). 
 
 



5.1. Constants setting 

 
 In this section we studied influence of different settings of the constant c in equation (2) on algorithm 
behavior and evaluated the results in Table 1.  Each row in the table shows values averaged for all 1000 
situations from the experimental set.  
 

c[-] l[mm] d[mm] hc[-] wc[-] 

500000 801.4 184.4 2 12 

50000 791,2 181,9 1 10 

25000 784,3 180,3 1 8 

5000 717,6 153,6 9 102 

2500 707,5 146,2 29 234 

250 696,3 139,2 154 309 

Table 1: Influence of constant c. Size of the net is 11x11 nodes. 
 
 Looking at the table, we can see several remarkable facts, which we would like emphasize. First of all, the 
higher is c, the longer is the generated path. It is caused by increasing influence of obstacles, which “pushes” a 
path to the free space. Thank to this a distance from all obstacles d as well as a number of collisions decreases 
with increasing c.  
 Relation among a size of the net, computational time, and quality of the trajectory is evaluated in Table 2. 
The rows depict different parameters according to a number of nodes in the net. It can be stated that nets with 
bigger than 7x7 produce remarkably smaller number of paths with collisions. Interesting behavior is shown in 
the second and third columns. These two indicators are normally dependent in the sense that a length of the path 
is increasing when a higher safety is requested, which is not this case: with increasing a net size, paths are 
shorter and more distant from obstacles. This is caused by finer resolution of larger nets that allow controlling 
generated paths with higher precision. On the other hand, time complexity is of course higher for bigger nets, so 
sizes 11x11 and 13x13 looks as a good compromise between quality of generated paths and time complexity. 
 

size[-] l[mm] d[mm] hc[-] wc[-] t[%] 

3x3 693,9 138,6 163 310 1,2 

5x5 800,0 171,5 26 71 4,0 

7x7 791,1 175,6 7 24 7,9 

9x9 788,7 179,9 2 10 11,7 

11x11 784,3 180,3 1 8 16,9 

15x15 782,6 183,2 1 5 40,2 

25x25 779,4 184,5 0 2 121,7 

Table 2: Influence of different size of the net. Constant c is 25000.  
 
 
5.2. Algorithm comparison with other methods 

 
 In this section we describe comparison results of Transformed Net algorithm with two standard methods 
described above – Potential Field and Visibility Graph. It is not guaranteed that the Potential Field approach 
finds a trajectory in all situations (even in case a collision-free trajectory exists), because its optimization process 
can get stuck in a local minimum. If we use the same testing set as in the previous section, the algorithm is 
successful only in 67.5%. We therefore reduced the set to 675 situations where the Potential Field gets results. 
 The second column in Table 3 corresponds with expectations. Trajectories found by the Visibility Graph 
have shortest average lengths. Results obtained by the other approaches are similar – they differ only by 4%. On 
the other hand, the trajectories found by the Visibility Graph are too close to the obstacles, which causes frequent 
crashes. This algorithm is therefore not much suitable for a highly dynamic robotic soccer.  
 All situations used for the statistics in Table 3 were solved without even weak collisions as shown in the 
third column. That’s why we don’t use a number of hard collisions as the other indicator, but a number of 
trajectories nc that have a distance to the nearest obstacle smaller than a robot radius multiplied by two. 20% of 
paths generated by the Visibility Graph algorithm were dangerously near to obstacles, while other two methods 
give significantly better results. 



 
 
 
 
 
 

Table 3: Different algorithms used for only 675 situations.  
 
 The last indicator in the sixth columns is computational time. Potential Field is fastest according to this 
criterion, but the value in the table describes time needed to find only an optimal robot heading instead of the 
whole trajectory. If we use full version of the algorithm generating whole trajectory, computational time 
decreases dramatically and it is then longer than time needed by the Visibility Graph. The Transformed Net with 
13x13 nodes is 3.5 times quicker than the Visibility Graph. 
 Some graphical results of the second experiment with four typical situations from the robotic soccer solved 
by compared algorithms are shown in Figure 6. Paths generated by the algorithms were smoothed by the spline 
generator and final trajectories executed by a robot in the simulator were drown.   
 

 
Figure 6. Trajectories used in robotic soccer computed by three methods.  

 
6. Conclusion 
 
 In this paper, we propose a novel collision avoidance method based on graph searching. The method was 
verified in a simulator and compared with standard methods mentioned in the literature – Visibility Graph and 
potential field. 
 The Transformed Net algorithm is useful for finding an optimal path in the area of mobile robotic. This 
approach needs less computational time than the other global algorithms and so it is acceptable in the fast 
dynamic environments such as robotic soccer. Quickly moving obstacles are the reason, why the algorithm tries 

Algorithm l[mm] d[mm] wc[-] nc[-] t[%] 

Potential field 711,1 203,2 0 1 1,8 

Transformed Net 741,5 205,2 0 7 28,4 

Visibility graph 667,0 175,1 0 134 100 



to avoid them with sufficient distance. Other important advantage is the ability to find the trajectory if a free path 
without collision doesn’t exist. Like in a real life, in the robotic soccer holds bad decision is better than no 
decision, because the robot can shift the obstacles.  
 The Transformed Net has much lower computational time than other global algorithms. It is of course 
slower than local algorithms, but these approaches have problems with local extremes and with clusters of 
obstacles. Potential Field that tries to avoid local minimums is mentioned in [11], but its computational time is 
similar to time needed by global algorithms.  
 In the future, we would like to incorporate dynamic obstacles directly into the algorithm. The idea is to 
predict positions of obstacles (other robots) according to their current states and situation on the field and 
evaluate edges in the planning graph according to these predictions. Other stream will be focused on integration 
of dynamic and kinematic constraints into the algorithm. 
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