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Abstract. In this paper, we address traversability cost estimation using
exteroceptive and proprioceptive data collected by a team of aerial and
ground vehicles. The main idea of the proposed approach is to estimate
the terrain traversability cost based on the real experience of the multi-
legged walking robot with traversing different terrain types. We propose
to combine visual features with the real measured traversability cost
based on proprioceptive signals of the utilized hexapod walking robot as a
ground unit. The estimated traversability cost is augmented by extracted
visual features from the onboard robot camera, and the features are
utilized to extrapolate the learned traversability model for an aerial scan
of new environments to assess their traversability cost. The extrapolated
traversability cost can be utilized in the high-level mission planning to
avoid areas that are difficult to traverse but not visited by the ground
units. The proposed approach has been experimentally verified with a
real hexapod walking robot in indoor and outdoor scenarios.

1 Introduction

Robots deployed in remote missions such as extraterrestrial exploration [5] have
to deal with challenges related to the traversability of the operational area to
efficiently accomplish the mission and avoid hard-to-traverse regions that might
impose risks to the robotic platform. Various robotic systems suitable for differ-
ent terrain types are emerging, with multi-legged walking robots being already
deployed in several scenarios, e.g., search and rescue tasks [18], inspection of
the failed Fukushima nuclear power plant [6], and underwater marine opera-
tions [10]. Therefore, we consider a hexapod walking robot as a suitable ground
robot that is capable of traversing complex terrains, especially when aided by an
efficient locomotion control such as [13]. However, it is still beneficial to further
increase mission efficiency by planning to avoid hard-to-traverse areas that can
be assessed using a cost of transport characterizing the terrain traversability.
In autonomous missions, terrains may not be a priory known, and therefore,
the robots have to learn the terrain traversability model incrementally to im-
mediately assess the traversed terrain and extrapolate the assessment for the



forthcoming areas. Such a model can be based on the terrain classification into
discrete classes [15], but it can also be a continuous measure based on exte-
roceptive [19] or proprioceptive data [11]. The fundamental requirement of the
traversability model suitable for a high-level mission planning is the ability to
extrapolate the learned traversability estimation to not visited but already seen
areas, e.g., by utilizing Unmanned Aerial Vehicle (UAV) to efficiently explore
the environment and evaluate its cost of transport using a ground walking robot.
Such a system of cooperative navigation of a UAV and a legged robot is pro-
posed in [7]; however, the authors based the traversability estimation on fixed
local terrain characteristics, which deny the robot exploitation of newly collected
information about the terrain traversability.

In this paper, we report on the deployment of learning framework [17] for the
cost of transport regression from RGB-D data that allows combining numerous
learning algorithms and terrain characterization features to learn and infer the
traversability cost. However, we consider the Fast Incremental Gaussian Mixture
Network (F-IGMN) [16], an online incremental Gaussian mixture algorithm,
and a set of computationally efficient point cloud-based terrain descriptors for
the herein presented results of the practical deployment of the framework. The
descriptors are robust to viewpoint changes, and they can be captured both from
the robot near-to-ground viewpoint and also from the aerial viewpoint.

The rest of the paper is organized as follows. The most related existing ap-
proaches and the utilized cost of transport are presented in the next section.
The addressed problem is described in Section 3 and a brief overview of the used
learning framework for the regression of the cost of transport is presented in Sec-
tion 4. The main part of the paper is a report on the experimental deployment
and achieved results for both indoor and outdoor scenarios that are reported in
Section 5. Concluding remarks are dedicated to Section 6.

2 Related work

Approaches that tackle the problem of the terrain traversability characterization
can be divided into two main categories. The first category consists of methods
utilizing classification to a discrete set of classes. These classes can be either
human-observed terrain types [4,12,15] (e.g., grass, rock, sand, etc.), or sim-
ple binary distinction between passable/impassable terrains [19]. Three terrain
classes for the simulated Martian terrain are considered in [15] but the passable-
impassable distinction is utilized in [19]. The authors of [4, 12] combine broader
sets of classes with an impassable or otherwise undesirable obstacle class.

The second category characterizes the traversed terrains with a continuous
function. Approaches that use proprioceptive [11], or exteroceptive [3,19] data
can be further distinguished. Continuous traversability assessment functions can
be utilized as a motion cost in planning algorithms. In [3] and [19], assessment
functions based directly on locally observed properties are presented. Two-level
discrete-continuous functions using three hazard criteria (i.e., slope, roughness,
and step height) are proposed in [19]. A set of general global features is used to



define the terrain traversability for a large wheeled vehicle in [3]. The utilized
descriptors are the position, density, and point cloud distributions of the sensed
obstacles. The main disadvantage of these approaches is that the traversability
value assigned to a specific terrain cannot be directly updated based on the new
robot experience.

In proprioceptive approaches such as the Cost of Transport (CoT) [20], the
terrain traversability property is inferred from the terrain traversal experience.
A particular value of the CoT is proportional to the energy consumed for travers-
ing the respective terrain and to the inverse of the traversal speed. The CoT for
battery powered robots is defined in [11] as

1 Rnst

T=—-: 1
CoT = —— . 2, (1)

where m is the robot weight, g is the gravitational acceleration, v is the robot
speed, and P, is the instantaneous power consumption computed from the
battery voltage V' and the instantaneous current Ij,s drawn from the battery

Pinst =V. Iinst- (2)

Proprioceptive-based approaches and discrete terrain classification approaches
need to be paired with terrain characterization features to enable terrain eval-
uation from a distance. Simple color space features as a part of the respective
terrain descriptors are used in [1, 2, 15]. Color- and reflectance-based vegetation
indexes have been used in [4,21]. The Gabor filter response combined with the
HSV and grayscale descriptors are used as features on aerial images in [3].

Among the various shape and geometric features reported in [2,9,12,19], the
most notable is the fact that all approaches use some height-based descriptor. It
requires a selection of the canonical vertical orientation, which may be difficult,
e.g., when dealing with sloped mountain terrains. The Principal Component
Analysis (PCA) to characterize the terrain shape is utilized in [22] that is further
combined with the normal vector based statistics in [12].

A simple feature set consisting of the height feature and histograms in the
HSV color space is proposed in [2]. A set of seven geometric features extracted
from a point cloud constructed using a stereo camera is utilized to characterize
the terrain roughness and step height in [9]. Voxel, point cloud, and color features
are used for terrain and vegetation classification by the authors of [4]. Their
descriptors include scan line features, a vegetation index, and the PCA.

Based on the literature review briefly reported in this section, and also based
on our results [17], we have selected the CoT terrain traversability measure [11] as
the traversability assessment function that is combined with the computationally
inexpensive color-geometric features.

3 Problem statement

The problem addressed in this paper is a remote estimation of the CoT defined
by (1). The requested model of the CoT is learned using our incremental learning
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Fig. 1. Individual building blocks of the CoT regression framework [17].
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framework [17] for the CoT regression of a priory unknown terrains by a hexapod
walking robot that collects real measurements of the terrain traversability using
RGB-D images and robot power consumption readings.

The learned traversability model is utilized for the evaluation of environment
scans, which can be captured from a viewpoint that differs from the robot near-
to-ground position, e.g., by a UAV. Hence, we aim for a two-agent setup, where
the ground walking robot learns and creates the terrain traversability model and
the UAV can evaluate the environment terrains remotely. Moreover, we consider
that the ground robot incrementally learns the terrain traversability property
and provides continuously improving the traversability assessment.

4 Incremental Traversability Learning Framework

The herein presented results leverage on the CoT regression framework intro-
duced in [17], which is schematically shown in Fig. 1. The framework can run
online, and its building blocks are as follows.

RGB-D sensor provides RGB and depth images with 30 frames per second.
For each RGB-D frame, an individual colored point cloud is created.

Localization & Speed localizes the robot and the captured RGB-D frames
using the ORB-SLAM [14]. Besides, it allows to compute the speed of the
robot utilized in the calculation of the CoT according to v = ds/dt, where
ds is the measured robot displacement for the fixed period dt = 20 s.

Global point cloud is created by merging the individual localized point clouds
with the frequency approx. 1 Hz. Its size is limited to 2M points, whereas the



individual point clouds consist roughly of 300k points. Point cloud snapshots
are further down-sampled to 5-15k points. Note, the externally supplied
aerial environment scan is constructed similarly.

Power consumption sensor provides mean power consumption using moving
average with 10 s long window of instantaneous power readings calculated
according to (2) from the raw battery voltage and current measured with
the frequency 500 Hz.

CoT is computed from the robot velocity, the corresponding power consump-
tion, and known robot weight and gravitational acceleration according to (1).

Terrain descriptors are computed at randomly sampled interest points in the
robot field of view, i.e., points that are likely to be traversed soon. For each
processed robot position, i.e., the localized frame, 30 points are selected. The
Lab channel mean values in the 0.3 m radius neighborhood of the sampled
point and the PCA shape feature [12], based on the 0.2 m radius neighbor-
hood, are computed using the point cloud snapshot.

CoT regression model is learned from the CoT of the traversed terrain and
terrain descriptors in the robot field of view. Therefore, the descriptors must
be stored until the robot passes the respective locations. The stored descrip-
tors are randomly pruned, and only the locations in front of the robot are
kept for an extended period. An online incremental Gaussian mixture model
called the Fast Incremental Gaussian Mixture Network (F-IGMN) [16] is
utilized for learning and regression. In the F-IGMN, a single data point
is processed in O(kd?) for k components and d dimensions. The particu-
lar parametrization of the F-IGMN is k£ = 10 components, grace period
Umin = 100, minimal accumulated posterior sppnin = 3, and scaling factor
0 =1 with d = 7+ 1 dimensional CoT annotated terrain descriptor.

Map evaluator evaluates an externally provided point cloud using the CoT
regression model. The point cloud is centered to [0,0,0], and the global
ground plane is fitted using the RANSAC scheme [8]. In such a way, the
0.1 m spaced grid of the 2D cost map can be constructed, which is then
utilized for the grid-based path planning.

5 Experimental Results

The incremental learning framework [17] has been deployed and experimentally
verified in three testing scenarios using battery-powered hexapod robot shown in
Fig. 2a. The robot has six legs, each with three joints actuated by the Dynamixel
AX-12A servomotors. Thus the robot has 18 controllable actuators, and it is ca-
pable of traversing irregular terrains using an adaptive motion gait [13], which
utilizes only the position feedback from the servomotors. The robot is equipped
with the Intel RealSense D435 RGB-D camera mounted approx. 15 cm above
the ground and slightly skewed towards the ground to collect exteroceptive mea-
surements and support localization and map building.
The regression framework overviewed in Section 4 is employed in the traversabil-

ity cost assessment that is used in the grid-based path planning. Moreover, the



extrapolation of the learned CoT using features from exteroceptive measure-
ments enables path planning for terrains not visited by the ground robot, but
for which an aerial scan is available. In the experimental evaluation, an initial
model of the real robot CoT is learned in an indoor setup first, and it is then
evaluated in a testing setup that is reported in Section 5.1 and Section 5.2,
respectively. In Section 5.3, we report on the performed outdoor deployment.

co 2

(a) Robot (b) Indoor Learning  (c) Indoor Testing (d) Outdoor
Fig. 2. The (a) hexapod walking robot and the (b-d) three experimental setups.

5.1 Indoor Learning Setup

In the first evaluation scenario, the robot is remotely guided over three artificial
indoor terrains, see Fig. 2b. First, the robot traverses over variable height and
slope 10 x 10 cm wooden bricks covered by an artificial turf, which is firm enough
to support the robot even if some of its legs are not directly supported by the
bricks. After leaving the artificial turf, the robot continues over flat PVC flooring
where it crawls in one direction, and then, it turns around and returns. Finally,
the last terrain type is a flat ground covered by slippery black fabric.

The robot is guided by a human operator over the individual terrains who
adjusts the robot speed to prevent it from getting stuck. Therefore, based on the
experience from [17], the operator chooses the most efficient motion, the CoT
is minimized, and we consider its measured values to be the ground truth. In
this setup, the artificial turf is the hardest terrain to traverse, and the robot
is guided slowly. The fastest locomotion is over the flat PVC flooring, but the
overall speed is hindered by the turn. The flat ground covered by the black fabric
allows medium speed because the fabric is slippery.

The aerial scan of the track is captured by manually scanning the track from
2 m above the terrain. The scan is evaluated using the CoT model altogether
four times: (1) at the beginning of the experiment; after traversing (2) the arti-
ficial turf; (3) flat PVC flooring; and (4) the black fabric. Each time the model
encompasses the robot experience up to the given instant. For each case, the
CoT annotation of the scan is created, and a path over the experimental track
is computed using the 8-neighborhood A*. The edge cost is defined as the mean
CoT of the edge incident nodes, and the minimal observed CoT is utilized as a
multiplier of the Euclidean heuristic. The start and goal locations are situated
in such a way that the shortest path leads over the hard-to-traverse turf, the
longest over the flat ground, and the mid-length path over the black fabric. The
aerial scan annotations and the respective paths are shown in Fig. 3.

Naturally, the robot learns the traversability after it traverses the terrain.
Therefore, the shortest path over the rough terrain is computed first and then



(a) Grid (b) Initial (c) After turf  (d) After flat  (e) After fabric

Fig. 3. Indoor learning scenario: the (a) 0.1 m sized cell grid over an aerial scan and
its (b—e) CoT annotations with the planned path over the track. The used annotations
correspond to four models sampled (b) at the beginning of the run; after traversing (c)
the artificial turf; then after (d) the flat PVC flooring; (e) and finally the black fabric.

it is updated after observing both the rough and flat terrains. Besides, it can be
noticed that the path planner avoids the black areas before traversing them.

5.2 Indoor Testing Setup

The model learned in the indoor learning setup has been utilized on a different
indoor track shown in Fig. 2c. The track consists of the turf-covered bricks, flat
PVC floor, and black fabric covered floor that all have been used in the learning
setup. Besides, three additional (not previously utilized) terrains are used: the
turf-covered floor, fabric covered bricks, and exposed bricks.

The same evaluation methodology as in the previous setup has been utilized,
and individual evaluations of the aerial scan are visualized in Fig. 4. We found out
that the terrains not be presented in the learning phase appear to be evaluated
correctly, and the turf over the bricks is considered to be the most costly terrain
type in the final evaluation. Further, the flat terrain is learned to be the cheapest
terrain, and the fabric and bare cubes have a medium value of the CoT. Even
though there is only a limited difference between the CoT over the fabric covered
flooring and covered bricks, the shortest path is found over the flat ground.

5.3 Outdoor Setup

Two terrain types, which are less distinctive than the indoor terrains, have been
considered in the outdoor experimental setup, see Fig. 2d. In this setup, the robot
traverses over grass first, where the area is relatively scorched, and thus being
a mix of green grass, yellow grass, and brown dirt. Then, the robot traverses
stone brick pavement. Due to nearby construction work, the gray pavement is
partially covered with dirt.

Similarly to the indoor learning setup, the CoT model is learned based on
the measurements collected by the robot while traversing the outdoor track.
Moreover, the final indoor model is also tested on the outdoor track. Individual



(a) Grid (b) Rough terrain (c) Initial

(d) After turf (e) After flat (f) After fabric

Fig. 4. Indoor testing scenario: the (a) 0.1 m sized cell grid over an aerial scan with
the (b) rough terrain highlighted and its (cf) CoT annotations with the planned path
over the track. The used annotations correspond to the four models sampled (c) at the
beginning of the run; after traversing (d) the artificial turf; (e) the flat PVC flooring;
(f) and the black fabric.

evaluations of the aerial scan are depicted in Fig. 5. Again, the correct terrain
evaluation is available only after the respective terrain type is traversed. In the
initial model, the dirt/grass area is sharply distinguished from the pavement.
However, the robot observes that the scorched grass and the pavement have a
similar value of the CoT in the final model. It is correct and expected behavior
as both terrains are relatively smooth and provide enough support. Overall,
we found out that the indoor learned model performed surprisingly well when
utilized on the outdoor dataset.

6 Conclusion

In this paper, we report on the deployment of the terrain traversability regres-
sion framework in practical indoor and outdoor setups. The framework infers a
model of the CoT that can be extrapolated for aerial scans to build a cost map
that is then utilized in path planning. Based on the reported results, the frame-
work has been successfully evaluated, and it is a vital building block for further
development. In particular, we aim to introduce an active perception into the
presented framework to deliberately plan paths that will improve the model of
the terrain traversability property.
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(a) Grid (b) Initial (c) After grass (d) After road (e) Indoor model

Fig. 5. Outdoor scenario: the (a) 0.1 m sized cell grid over an aerial scan and its (b—e)
CoT annotations. The used annotations correspond to three models sampled (b) at the
beginning of the run; after traversing (c) the grass and (d) the pavement. The annota-
tion of the outdoor track using the indoor model from Section 5.1. A different behavior
of the individual models can be observed when encountering areas not represented in
the scan that are shown as the black areas in the grid image.
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