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Abstract. In this paper, we report on early results of the experimental
deployment of localization techniques for a multi-rotor Micro Aerial Ve-
hicle (MAV). In particular, we focus on deployment scenarios where the
Global Navigation Satellite System (GNSS) does not provide a reliable
signal, and thus it is not desirable to rely solely on the GNSS. There-
fore, we consider recent advancements in the visual localization, and we
employ an onboard RGB-D camera to develop a robust and reliable so-
lution for the MAV localization in partially GNSS denied operational
environments. We consider a localization method based on Kalman filter
for data fusion of the vision-based localization with the signal from the
GNSS. Based on the reported experimental results, the proposed solu-
tion supports the localization of the MAV for the temporarily unavailable
GNSS, but also improve the position estimation provided by the incre-
mental vision-based localization system while it can run using onboard
computational resources of the small vehicle.

1 Introduction

Accurate and reliable localization of a multi-rotor Micro Aerial Vehicle (MAV)
is an essential prerequisite for its deployment not only in autonomous missions
but also in semi-autonomous deployments where the vehicle is requested to fol-
low a pre-designed path. The Global Navigation Satellite System (GNSS) is a
natural choice and practical solution for outdoor missions, where it provides
an estimation of the vehicle position. On the other hand, the GNSS system is
not always available, and it becomes unreliable or inaccurate inside and also
close to tall buildings or at places where not enough satellites are in the line of
sight [27]. Therefore, we examine the properties of existing vision-based local-
ization methods using onboard sensors to provide an estimation of the MAV po-
sition. In particular, we focus on the visual odometry and vision-based methods
for Simultaneous Localization and Mapping (SLAM) [23] that recently exhibited
significant improvements in the pose estimation [12].

The proposed method is based on a fusion of the unreliable GNSS localization
and state-of-the-art vision-based localization. The used sensor fusion approach
is based on Kalman filter [23] and the main contribution of this paper is in the
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Fig. 1. The MAV used during the experiments.

presented results on the experimental deployment of the developed solution on
the MAV in an outdoor scenario, with the recent Intel RealSense D435 sensor [3]
depicted in Fig. 1.

The developed method itself represents a general fusion framework to com-
bine various sources of the external localization like the GNSS with the incremen-
tal localization such as visual odometry. The herein reported results support the
feasibility of the proposed solution in the particular experimental deployment
where a precise pose estimation from the Global Positioning System (GPS),
which provides the necessary ground truth for the evaluation, is modified to
decrease its reliability by adding Gaussian noise and disabling the GNSS com-
pletely for a certain deployment period.

The rest of the paper is organized as follows. Principles of the existing lo-
calization methods, the most related sensory fusion methods, and metrics of
localization precision assessment are overviewed in Section 2. The model for the
proposed localization fusion is derived in Section 3. The evaluation results of
the proposed solution are reported in Section 4. The concluding remarks on the
achieved results and our future work are presented in Section 5.

2 Related Work

Two main classes of the methods to localize a robot in GNSS denied environ-
ments can be identified in the literature. The first class of the methods are
solutions that rely on beacons and transmitters [10], or other sensors like cam-
eras [2], [16] placed in the robot operational space. We do not consider these
methods in this paper because these methods require an additional infrastruc-
ture in the robot operational space, which is not practical for our motivational
deployment scenario.

The methods of the second class rely on exteroceptive sensors like LIDARs
or cameras mounted on a robot. These sensors are used to compute a position of
the robot incrementally from consecutive LIDAR scans or camera frames using
some representative landmarks detected as visual feature points in the scans



Localization for Aerial Vehicles in Partially GNSS Denied Environments 3

and camera image. The concept of the incremental localization can be further
extended to improve the localization estimation by simultaneously creating a
map of the environment that is used in localization of the vehicle using new sensor
measurements. Such a technique can be found in the literature as the SLAM [23].
A SLAM method can also be considered as an incremental localization system
with loop closures that further improve the localization estimation once a robot
returns to already visited places, and thus decrease the localization drift.

Methods for localization of the MAV using LIDAR scans have been success-
fully deployed in [27], [17], [4]. Although localization methods based on LIDAR
sensors exhibit remarkable advancements during the last years, LIDARs are rel-
atively expensive sensors in comparison to cameras. Besides, they are still me-
chanical systems, and they are more substantial than most of the conventional
cameras. Therefore, we prefer vision-based localization systems that are using
image processing from the onboard camera or especially new RGB-D cameras.

Several existing vision-based localization methods employ principles of the
visual odometry from a single camera up to complex SLAM systems using several
cameras of different types. The existing monocular camera localization methods
include SVO [8], DSO [6], ORB-SLAM2 [14], and many others [18]. The main
disadvantage of these methods is that they need several frames or additional
information to obtain the scale of the scene, and thus the methods suffer from
the map initialization problem, i.e., the bootstrapping problem [9]. Therefore,
it is beneficial to use sensors that can estimate the scale of the scene from a
single frame. It is the case of stereo, and RGB-B cameras and data from these
sensors can be used in the existing methods such as the RGB-D SLAM [5],
ORB-SLAM2 [13], and Stereo DSO [25] to name a few.

Beside exteroceptive sensors, the pose estimation can also be improved using
data from the Inertial Measurement Unit (IMU). The authors of [27] and [4] re-
port on fusion of IMU measurements with the localization based on the LIDARs
data by Kalman filter. A complex navigation system for the six-legged walking
robot is proposed in [21], where the authors use the information filter that is
numerically equivalent to Kalman filter. Even though the authors of [21] report
on lower computational requirements of the information filter in comparison to
Kalman filter, the considered information filter is a more complex system than
a regular Kalman filter.

In addition to the fusion of IMU measurements with other signals, the IMU
data measurements can be directly utilized inside a localization method itself, for
example as in a variant of the Stereo Parallel Tracking and Mapping (S-PTAM)
method [19] proposed in [7]. However, such an approach requires changes to the
visual localization method and thus developing a new localization method, which
is not our main intention.

Regarding the presented overview of the existing methods and our previous
work [15], we choose ORB-SLAM2 in combination with the RGB-D camera as
the main visual localization system to overcome GNSS denied regions of the
vehicle operational environment. Besides, we chose Kalman filter approach for
data fusion because it is more straightforward than an information filter.
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2.1 Localization Metrics

In our work, we aim to improve the localization system, and therefore, we need
a method to measure and compare the precision of different localization sys-
tems. The general framework for measuring localization precision is described in
[22], where the authors measure the error of the localization from the trajecto-
ries obtained during the robotic experimental trial in a particular scenario. The
compared trajectories are the ground truth, which is provided by a reference
localization system, e.g., D-GPS, and a trajectory estimate provided by the ex-
amined localization system. The metrics to measure the error of the estimated
trajectory are the Absolute Trajectory Error (ATE) and Relative Pose Error
(RPE) [22], which are well-established and used in the literature.

The ATE is given by the equation:

Fi = Q−1
i S Pi, (1)

where the matrices Qi and Pi are SE(3) positions of the ground truth and es-
timated trajectory, respectively. The matrix S is a transformation between the
coordinate frames of the ground truth and trajectory estimate. The transfor-
mation is obtained from the minimization of the squared distances between the
corresponding positions of the trajectory estimate and the ground truth [22].

The RPE is given by the equation:

Ei = (Q−1
i Qi+∆)−1(P−1

i Pi+∆), (2)

where ∆ represents a fixed distance between two positions that are used during
the calculation [22] and it is ∆ = 1 in our case.

Once the ATE and RPE values are computed for the whole trajectory, the
computed error values are used to get a statistical indicator to evaluate the preci-
sion of the localization based on the whole trajectory. In [22], the authors suggest
to use the average value and the Root Mean Square (RMS) to the determined
statistical indicators as

ATEt =
1

n

n∑
i=1

‖ trans(Fi) ‖, RMS(ATEt) =

(
1

n

n∑
i=1

‖ trans(Fi) ‖

) 1
2

,

RPEt =
1

n

n∑
i=1

‖ trans(Ei) ‖, RMS(RPEt) =

(
1

n

n∑
i=1

‖ trans(Ei) ‖

) 1
2

,

(3)

where trans() computes the size of the translation from the SE(3) matrix. In
the herein reported results, we assume only the translation errors, because the
used fusion method fuses only the positions of the robot. Besides, the statistical
indicators that compute the average ATE and average RPE are utilized because
the RMS does not provide any additional information in our particular case.

3 Fusion of the GNSS with Vision-based Localization

We propose to use linear Kalman filter to overcome a loss of the GNSS signal that
is substituted by the incremental vision-based localization in the GNSS denied
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environments [11]. Kalman filter is a standard technique for a relatively com-
putationally inexpensive fusion of two or more sources of measurements, which
allows developing a system to uninterruptedly provide the requested estimation
of the vehicle position when a particular source is not available. Contrary to the
systems with SLAM based localization [26], we select an incremental vision-based
localization because we assume the GNSS signal is only temporarily unavailable.
Thus, it is not expected a full loop-closure is necessary, and therefore, we can
choose an existing SLAM system with low computational requirements.

The developed localization system is based on a linear Kalman filter to com-
bine an external GNSS localization with the incremental vision-based localiza-
tion. The system consists of two principal parts: Kalman filter, and a model of
the vehicle, which is derived from the motion equation of the robot body. Both
parts are described in the following paragraphs to make the paper self-contained.

Kalman filter for a linear and discrete-time model of the system described by
the state equation

xk+1 = Axk + Buk (4)

can be defined by the set of the following equations [23]:

µk = Akµk−1 + Bkuk (5)

Σk = AkΣk−1A
T
k + Rk (6)

Kk = ΣkH
T
k (HkΣkH

T
k + Qk)−1 (7)

µk = µk + Kk(zk −Hkµk) (8)

Σk = (I−KkHk)Σk, (9)

where µk, Σk are mean, and covariance of the system states predicted based
on the last estimated mean µk of the system states xk. The predictions can be
used asynchronously with the correction phase represented by (7), (8), and (9)
in the case we need the robot position in an arbitrary time. However, in this
paper, we extract the position of the robot synchronously with the correction
phase from µk. Σk represents the covariance of the system states xk and the
matrix Rk represents the uncertainty of the model of the system. The vector zk
is the measurement obtained according to

zk = Hkxk + δk, (10)

where δk is the Gaussian noise with the zero mean and covariance Qk. The more
detailed description of the vehicle model and the related matrices is as follows.

The model of the vehicle is based on the body motion model that can be de-
scribed as [

pk+1

vk+1

]
=

[
I3×3 ts · I3×3

03×3 I3×3

] [
pk
vk

]
+

[
t2s
2m · I3×3
ts
m · I3×3

]
fk, (11)
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where fk is the force that moves the vehicle, pk and vk are the position and
velocity of the vehicle, respectively, ts is the time, and m is the vehicle weight.

Let suppose that we use the position from the incremental localization as the
position pk during the filtration. The problem is that the incremental localiza-
tion drifts, and thus its uncertainty grows to infinity. Moreover, if the uncertainty
of the incremental localization increases to a certain level, the contribution of
the incremental localization would vanish. On the other hand, the incremental
localization provides relatively precise estimates of the transformations between
the consecutive robot positions, and a precision of these transformations is not
affected by the position drift. Therefore, we can incorporate differences of the
consecutive positions to the vehicle model. The straightforward way to incorpo-
rate these differences is to substitute the vehicle velocity using the equation

vk =
qk − qk−1

ts
=
∆qk

ts
. (12)

Then, the model of the system (11) changes to[
pk+1

∆qk+1

]
=

[
I3×3 I3×3

03×3 I3×3

] [
pk
∆qk

]
+

[
t2s
2m · I3×3
t2s
m · I3×3

]
fk. (13)

In the case of the used MAV, the force fk, which moves the vehicle, is usually
not hard to obtain. In other cases, when the force is laborious to obtain, it is
possible to follow the tracking scenario [24], which is considered in the rest of
this section. The model of the vehicle can be expressed without the force as[

pk+1

∆qk+1

]
=

[
I3×3 I3×3

03×3 I3×3

] [
pk
∆qk

]
, (14)

where the matrices of the state equation (4) used in Kalman filter are

xk =

[
pk
∆qk

]
, A =

[
I3×3 I3×3

03×3 I3×3

]
, B = 06×1.

There is not an input to the model (14) because the model only updates the
position of the robot by the last value of ∆qk. Thus, the position of the robot
provided by the model is uncertain and has to be corrected by new measure-
ments. The model uncertainty is described by the covariance matrix Rk, see (6).

The measurements used to correct the position of the robot estimated by
the model (14) are: (i) the position data provided by the external localization
that corrects the state pk; and (ii) differences of the consecutive measurements
provided by the incremental localization correct the states ∆qk. The precision
of the measurements is described by the covariance matrix Qk, which represents
Gaussian noise δk in the measurement equation (10). The matrices Hk and Qk

of the measurement equation are composed as follows.

H = Hk=1,2,... = I6×6, Qk =

[
Qp,k 03×3

03×3 Q∆q,k

]
,

where Qp,k and Q∆q,k represent the uncertainty of the external localization and
the uncertainty of the incremental localization, respectively.
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4 Experimental Results

The developed localization system has been experimentally verified with the real
MAV shown in Fig. 1 in a practical field experimental deployment. The exper-
iments took place in the environment where the GNSS was available because
we used a precise GPS as the reference localization system to evaluate the per-
formance of the developed solution with the available ground truth. Thus, the
ground truth and RGB-D data from the visual localization have been collected
using ROS [20] in four flights with the vehicle operating at the height between
5 and 10 meters above the terrain. The reference localization has been provided
by the localization system that combines a precise GPS with a laser altimeter,
and the IMU onboard of the MAV.
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Fig. 2. Accuracy of the provided trajectory localization for the unreliable GNSS, ORB-
SLAM2, and the localization fusion.

The RGB-D data provided by the Intel RealSense D435 [3] have been pro-
cessed by the ORB-SLAM2 [13] to get trajectory estimation solely based on the
visual localization. The captured data have been processed at the same frequency
as they have been captured by the onboard RGB-D camera using ROS. In par-
ticular, the ORB-SLAM2 was running on the computer with the dual-core Intel
i5-5257U CPU running at 2.7 GHz with 4 GB of memory. The used computa-
tional environment has similar computational power as the onboard computer at
the used MAV to reflect requirements on the onboard processing. The conditions
under we used the visual localization are almost identical to the on-line deploy-
ment on the vehicle, and the ORB-SLAM2 provides localization at the average
frequency of 6.67 Hz. Notice that even though the ORB-SLAM2 can perform
a large loop closing, which may improve the localization precision significantly,
this feature has been disabled to demonstrate the ability of the proposed filter
to address the localization drift.
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An unreliable GNSS-based localization has been substituted by adding the
Gaussian noise with the standard deviation of 0.5 m in all three axes to the
ground truth trajectory. Moreover, we selected approximately 20% of the tra-
jectory, where the localization signal was disabled entirely to simulate temporal
unavailability of the GNSS. The developed Kalman filter was used for fusing the
localization provided by the ORB-SLAM2 and the simulated unreliable GNSS.

4
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Localization comparison

0

-5

x [m]

420-2-4

z 
[m

]

y [m] Trajectory start
Ground truth
Unreliable GNSS
ORB-SLAM2
Fused localization

Fig. 3. Trajectory localization provided by the evaluated localization systems: the
ground truth, unreliable GNSS localization, the ORB-SLAM2, and the developed fu-
sion of the vision-based localization. Notice the gap in the GNSS poses in the left part
of the plot where the green triangles are missing. For this part of the trajectory, the
GNSS is temporarily unavailable.

Before the fusion, we estimate the matrices Qp,k, Q∆q,k, and Rk that describe
the uncertainty of the localization systems and the uncertainty of the MAV
model. The matrix Qp,k has been estimated from the parameters of the unreliable
GNSS localization with the added noise, and it reflects the GNSS availability as
well. If the unreliable GNSS is disabled, Qp,k is increased 40 times. The matrix
Q∆q,k has been estimated so that it models the uncertainty of the position error
between two consecutive positions. Finally, the matrix Rk has been tuned as
the diagonal matrix, which forces the filter to not rely on the velocity estimates
provided by the model but on the robot position.

Four flight trials have been performed by the vehicle which follows approx-
imately square shaped trajectory using the model predictive trajectory track-
ing [1]. For each trial, we obtained one trajectory by the ORB-SLAM2, and 500
different trajectories from the artificially created unreliable GNSS signal. Thus,
the localization fusion has been performed 500 times per each experimental trial.
All fused trajectories have been evaluated using the average of the errors com-
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Fig. 4. Detail of the localization drift observed for the ORB-SLAM2.

puted by (3). In particular, we suppose the orientation of the vehicle is known at
the beginning of each trial, which is utilized to synchronize the coordinate frame
of the localization provided by the ORB-SLAM2 with the other localization sys-
tems. Since the fusion method fuses only the position of the robot and not its
orientation, we add the orientation to the resulting fused trajectory from the tra-
jectory provided by the ORB-SLAM2; so, we can use the evaluation metrics (1)
and (2). The results are summarized in Fig. 2 and the ground truth, unreliable
GNSS, ORB-SLAM2, and the achieved trajectory estimations provided by the
fusion method are depicted in Fig. 3.

Fig. 2a indicates that the method performed as expected because the error of
the localization method that employs fusion is lower than the error for both input
sources of the localization, which in fact is the expected behaviour. However, the
ATE of the third trial shows that the error of the resulting localization is affected
by the huge drift of the incremental localization, which is further detailed in
Fig. 4. On the other hand, the localization obtained by the proposed fusion
method has almost 50% higher RPE than the trajectory provided by the ORB-
SLAM2. Nevertheless, the RPE of the developed localization is still significantly
lower than the RPE of the unreliable GNSS.

5 Conclusion

The presented results indicate the developed solution of the localization fusion
provides an improved estimation of the robot pose with the ATE lower than the
localization provided by the unreliable GNSS and also the pose estimation solely
based on the visual localization. On the other hand, the localization obtained by
the fusion method has higher the RPE than the trajectory provided by the visual
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localization method. The reported results support the feasibility of the method
that seems to be a vital approach to deal with a temporary absent GNSS and
also with the drift of the visual localization method.

In the presented experimental scenario, the drift of the visual localization is
high mainly in the position estimation. However, we expect that for a very high
drift in the robot orientation, the fusion method would probably fail. Therefore,
we plan to extend the solution by an additional sensor for measuring the vehicle
orientation to handle the orientation drift of the visual localization.

Acknowledgement

This work has been supported by the Technology Agency of the Czech Republic
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