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Abstract. In this paper, we address a problem of the exploration of
large-scale subterranean environments using autonomous ground mobile
robots. In particular, we focus on an efficient data representation of the
large-scale elevation map, where it is desirable to capture the shape of
the terrain to avoid areas not traversable by a robot. Subterranean envi-
ronments such as mine tunnel systems can be in units of kilometers large,
but only a relatively small portion of the environment represents observ-
able parts. Therefore, uniform grid-based elevation maps with resolution
in units of centimeters are not memory efficient, and more suitable are hi-
erarchical tree-based structures. However, hierarchical structures suffer
from the increased computational requirements of accessing particular
grid cells needed in determination of the navigational goals or evalua-
tion of the terrain traversability in planning safe and cost-efficient paths.
We propose a speed-up technique to combine the benefits of uniform
grid-based and tree-based representations. The proposed elevation map
representation keeps the memory footprint low using tree structure but
enables fast access to the grid cells corresponding to the robot surround-
ings. The efficiency of the proposed data representation is demonstrated
in an experimental deployment of the autonomous exploration of outdoor
and subterranean environments.

1 Introduction

Mobile robots can be deployed in hard to access and dangerous areas to reduce
possible risks for humans, specifically in search and rescue missions in under-
ground tunnels or collapsed buildings [17]. A human operator can teleoperate
robots, but a small communication range in underground tunnels limits opera-
tional radius. Therefore, autonomous exploration [27] is needed to search large
underground environments such as in the DARPA Subterranean Challenge [5],
where robots are requested to search for the artifacts such as survivors, extin-
guishers, drills machine, and cell phone, to name few.

Since an underground environment like mines and caves forms a net of cor-
ridors that can be very large (in kilometers), it is desirable to use a memory-
efficient map representation to cover the whole environment with sufficient res-
olution for traversability assessment. On the other hand, it is also desirable to
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keep the average access time to the map representation as low as possible because
frequent access to the map is common for exploration algorithms. An example
of exploration processes that access the environment map includes

– the insertion of the new measurements;
– traversability assessment;
– growing untraversable areas by the radius of the robot shape circumference;
– computation of the cost map;
– detection of possible goal locations;
– and path planning.

Therefore, efficient map representation can have a significant impact not only on
the memory requirements but also on the computational requirements and the
latency between the integration of new sensor measurements and a new decision.

Existing terrain models capable of covering large environments are based on
a tree structure to save memory requirements such as OctoMap [12]. However,
access time to the leaves of tree-like representations is slower than the access time
to the uniform grid due to the necessity to search the tree for the leaves. For rel-
atively large robots like Talon [19], or ClearPath Husky with sufficient payload
capacity, it is possible to overcome the access time by increasing computational
power and the required energy resources. However, for small robots like Micro
Tactical Ground Robot (MTGR) [18] or walking hexapod robots [7] with limited
payload, the computational resources are limited to small embedded computers.
Therefore, computational efficiency might play a significant role in the opera-
tional time. Thus, we studied memory-efficient terrain model representation to
capture large areas with sufficient precision for traversability assessment that
also enables fast access to the terrain representation. The main contribution of
the presented approach is considered in memory and computationally efficient
data representation of the elevation map suitable for mobile robot exploration.
The proposed solution is demonstrated on autonomous exploration with a small
hexapod walking robot equipped with the relatively limited computational power
of the onboard embedded computer. Besides, we report on experimental results
from a practical deployment of the developed solution in the mine environment.

The rest of the paper is organized as follows. A brief overview of the re-
lated work is presented in Section 2. The developed map representation and the
exploration framework are described in Section 3. The achieved results, includ-
ing map captured during the exploration and evaluation of the computational
requirements, are reported in Section 4. The concluding remarks and ideas for
future work are in Section 5.

2 Related Work

The robotic exploration is a problem to create a model of the environment by a
mobile robot. The frontier-based exploration introduced in [26] is a well-known
approach for spatial robot exploration widely adapted by existing exploration
approaches [22,1]. In frontier-based exploration, robots are navigated towards



waypoints determined at the borders of known and unknown parts of the envi-
ronment [11]. Besides, the navigation waypoints can also be determined using
entropy [4], or the exploration can be driven by decreasing uncertainty of the
terrain model being created, e.g., as reported in [21]. Nevertheless, the common
property of the exploration approaches is frequent access to the data representa-
tion of the model being created [8]. Since, we are focused on the memory-efficient
model representation, we consider relatively straightforward deployment of the
frontier-based exploration [2] to demonstrate utilization of the model and impact
of different memory representations.

Fig. 1. Example of the elevation map with the resolution 7.5 cm. The grid at the
backround has cell size 5m.

In robotic exploration, the traditional terrain model representation is the
occupancy grid [6] that covers the space by a uniform grid, where each cell is as-
sociated with the probability that the space represented by the cell is occupied.
The occupancy grid is a suitable model for flat terrains with easily distinguish-
able obstacles that are represented as cells with a high value of the occupancy
probability. However, a subterranean environment is often not flat, since the
shape of the terrain is usually uneven. The extension of the occupancy grid to
full 3D representation is presented in [24], where the authors represent the map
by a uniform 3D grid. The disadvantage of [24] is the memory ineffectiveness,
which is addressed by tree-like structured map representation known as the Oc-
toMap [12]. Since the OctoMap is based on the octree, the complexity of the
access to the tree leaves can be bounded by O(log(n)), where n is the number
of tree nodes. Thus the access to the octree is significantly slower than the ac-
cess time to the terrain model represented by the uniform grid, which has the
constant access time O(1).

If we assume only a single layer of the terrain, the elevation map [20] can be
employed to model the shape of the terrain by estimating the height of the ter-



rain at each cell of the grid. The advantage of the elevation map is its simplicity
because cell heights can be stored in the 2D grid, which is more memory efficient
than the 3D grid [24]. Due to the simpler structure [9], the access is also faster
than for 3D maps stored in tree structures. Besides the uniform 2D grid, e.g.,
used in [20], the elevation map can also be stored in a tree structure (quadtree)
similarly to the occupancy mapping technique described in [15]. Then, the ele-
vation map becomes even more memory-efficient representation than 3D grids
at the cost of the access time because of the tree-like structure.

The presented work is motivated by an outdoor exploration scenario with a
small hexapod walking robot and a wheeled robot (see Figure 3) in the Tunnel
Circuit event of the DARPA Subterranean Challenge [25]. The selected deploy-
ment scenarios with long tunnels allow us to assume only a single terrain layer.
Hence, the terrain model is based on the memory-efficient elevation map stored
as a quadtree. The fast access to the tree-like structure is supported by the
proposed caching mechanism that significantly reduces the access time. The de-
veloped memory representation is demonstrated within a complete exploration
framework, where particular processes access to the terrain model. Therefore, the
reported experimental results represent realistic computational requirements of
the practical deployments in exploration missions.

3 Autonomous Exploration Framework

The proposed terrain model representation is integrated into the autonomous
exploration system that consists of five main modules: sensors and localization,
mapping, exploration, path following, and robot controller. The modules and
their connections into the system architecture are visualized in Figure 2. The
exploration framework is developed in C++ using the ROS middleware [23].
The utilized sensors provide range measurements, and the localization system
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Fig. 2. Architecture of the developed autonomous exploration system.

provides a pose of the robot that are both used by the mapping module to build



the spatial model of the environment. The map is further used to determine
possible goal locations to explore unknown parts of the environment. The next
navigational goal is determined from the possible goal locations using the em-
ployed exploration strategy. The path following module ensures the robot follows
the path planned to the selected navigational goal by steering the robot by the
velocity. The individual modules are further described in the rest of this section
to provide a complete overview of the utilized autonomous exploration system,
and the proposed map representation is detailed in Section 3.1.

Sensors depend on the particular sensory system of the robot, but in this
paper, we utilize two robotic platforms showed in Figure 3 for the experimental
verification of the proposed exploration system. The first is the hexapod walking
robot that uses the RGB-D camera Intel RealSense D435 [13] as the source of
range measurements. The localization of the hexapod walking robot is provided
by the small embedded localization module, the Intel RealSense T265 [14], that
runs onboard visual SLAM from the fisheye stereo camera enhanced by sensory
fusion with the inertial measurement unit. The wheeled robot can carry a more
massive payload, and therefore, a laser range finder is used to obtain 3D scans
of the robot environment. The localization of the wheeled robot is based on the
Iterative Closest Point algorithm [3] combined with odometry.

(a) Hexapod walking robot (b) Wheeled robot

Fig. 3. Robotic platforms used for the experimental verification of the developed au-
tonomous exploration system.

Mapping module builds the elevation map from the captured point clouds
synchronized with the estimated robot pose. Although the representation of the
proposed map is a tree-like structure, we describe the map as the uniformly
sampled grid to improve the clarity and readability of the processes dealing with
the map. Thus, each map sample (i, j) represents a height h and height variance
σ2
h of the corresponding terrain place. From incoming point clouds, points that



do not belong to the top modeled surface of the terrain are filtered out. The
filtered point cloud is then fused with the elevation map using one dimensional
Kalman filter [9].

The measurements of the terrain height zk and its variance σ2
z,k from the

new k-th input point cloud are fused with the corresponding heights with the
map according to the equations

hk =
σ2
z,khk−1 + σ2

h,k−1zk

σ2
z,k + σ2

h,k−1
(1)

σ2
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σ2
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2
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h,k−1
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Parts of the map which were not affected by the new measurements are consid-
ered unknown.

The proposed elevation map is further used for the traversability assessment
based on the height difference of the neighboring cells as follows. If the local
height difference gh(i, j) defined by (3) is higher than the threshold gmax, the
cell is considered untraversable; otherwise, the cell is traversable. The value of
gmax is estimated based on the kinematics of the particular robot. Since the
planner plans the path for the center of the robot body, the physical dimensions
of the robot are incorporated to the map by growing the untraversable cells by
the radius of the robot shape circumference. Moreover, we generate the cost map
to penalize robot states close to the untraversable cells by utilizing the distance
transform [10]. The cost d(i, j) of each cell is thus based on its distance to the
closest untraversable cell, or it is labeled as unknown if measurement about the
corresponding area is not available.

gh(i, j) = max({|h(i, j)− h(i− 1, j)|,
|h(i, j)− h(i+ 1, j)|,
|h(i, j)− h(i, j − 1)|,
|h(i, j)− h(i, j + 1)|})

(3)

Exploration module determines the next navigational goal based on the iden-
tified frontiers [26]. The frontier cells are determined in the elevation map as
traversable cells that are incident with unknown cells. The total number of fron-
tier cells depends on the resolution of the map. In general, for a high-resolution
map, the number of frontier cells can be large, and it would be computation-
ally very intensive to select possible goal locations from all the frontier cells.
Thus, we followed the approach [16] and employed the clustering of the frontier
cells. The nearby frontier cells are clustered into similarly sized sets, and a single
representative of each set (cluster) is determined as the possible goal location.

The next navigational goal is selected as the goal location with the lowest
cost of the path from the current robot pose. The path is determined by the
A* algorithm with the heuristic function computed as the Euclidean distance
to the goal location. The travel cost between two neighboring nodes n and n′ is



computed as the distance on the eight-neighborhood (D8) that is increased by
the cost d(n) to penalize robot presence near the obstacles. d(n) is non-negative
cost decreasing with D8 distance from the closest untraversable cell [10]. The
selection of the next navigational goal is focused on the nearby area of the robot,
i.e., we consider a limited planning horizon. Therefore, a possible goal location
is considered unreachable if a path between the robot pose and the goal location
is not found in less than 20 000 expansions of the A* algorithm.

The robot is then navigated along the path to the selected goal location
by the path following module. A new goal location is determined if the current
waypoint is reached or after Texp = 8 s. The exploration terminates if there is
not a reachable goal location.

Path following module ensures that the robot follows the path planned by the
exploration module. The path is represented as a sequence of waypoint locations
that are progressively processed. The forward and angular velocities for the robot
controller are generated based on the distance and angular displacement of the
recent waypoint of the path. The next waypoint from the sequence is processed
if the robot gets less than 1 cm far from the recent waypoint.

3.1 Map representation

Since we suppose exploration of the environment with tunnels, we represent the
map by a quadtree structure, see Figure 4, to reduce the memory requirements.
The disadvantage of the tree-like representation is the access time to the tree
leafs that can be bounded by O(log n), where n denotes the number of the map
cells that depends on the size of the map, which is slower than the access time for
the map represented by a uniform grid that can be bounded by O(1). Complex
access to the tree-like representation increase computational requirements, and
for limited computational power, it slows down map processing. It is specifically
distinctive when the elevation map is processed by multiple methods, which
happens in the exploration mission during the integration of new measurements,
obstacle growing, determination of frontier cells and goal locations, and also
during path planning.

We propose to overcome the issue of the high complexity of repetitive access
to the map by an additional data structure that works as a cache. We suppose
that new measurements do not affect all the cells of the elevation map, but
only cells that are close to the robot since the range of the sensors is limited.
Hence, the proposed cache stores the references to all the quadtree leafs close
to the robot. In Figure 4, it can be seen that the cached area overlaps the area
affected by measurements, which ensures the consistency of the area changed by
the measurements with the rest of the map. The quadtree map representation
enables us to represent the unknown space efficiently, while still, the operations
like convolution can run almost as quickly as on the map stored in a uniform
grid. The cost of maintaining the cache is its computation, which is needed
when the new point cloud updates the map. The real impact of the proposed
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Fig. 4. Elevation map representation.

hybrid representation has been evaluated during real exploration missions, and
the achieved results are reported in the following section.

4 Results

We have designed two exploration experiments to show the speedup of the map-
ping due to the proposed cache, and demonstrate how the proposed memory-
efficient solution represents a large-scale subterranean environment. The first
experiment has been done using the small hexapod walking robot employed in
the exploration of the outdoor rough grassy terrain. The second experiment re-
ported is a deployment of the autonomous exploration in one trial during the
Tunnel Circuit event of the DARPA Subterranean Challenge in August 2019,
where the wheeled robot autonomously explored the entry part of the under-
ground tunnel.

4.1 Exploration with Small Hexapod Walking Robot

During the experimental deployment of the exploration framework with the small
hexapod walking robot in the scenario shown in Figure 5, we have captured data
from the onboard sensors using the ROS rosbag tool. The captured sensor data
can be played back at the same frequencies as they were generated by the sen-
sors, which enables us to benchmark mapping performance with and without
the proposed cache using different computational environments. In particular,
the evaluation of the mapping processes has been performed with two comput-
ers. The first computer is equipped with the Intel i5 3320M processor clocked
at 2.6GHz and 8GB RAM. The second computer is small embedded computer



(a) Outdoor experimental setup (b) Resulting elevation map with resolution
7.5 cm with the visualization grid of the size
5 m at the background

Fig. 5. Exploration experiment with the hexapod walking robot used as a benchmark
for mapping process using different memory representations of the map.
Odroid-XU4 with Octa-core CPU Samsung Exynos 5422 (four A15 cores run-
ning at 2.0GHz and four A7 cores running at 1.4GHz), and 2GB memory. Both
computers have sufficient computational power for autonomous exploration with
the hexapod walking robot. The computational times for the particular map-
ping steps (including insertion of new sensor measurements) are summarized in
Table 1 and Table 2. The input point clouds contain more than 60 000 measure-
ments, and the depth camera produced the point clouds at the frequency 5Hz.
The robot traversed 46m in 44 minutes during the experimental deployment.

Table 1. The mean computational time for mapping steps

Process name Intel i5 CPU Odroid-XU4
No cache With cache No cache With cache

Cache update 0.0 5.2 0.0 9.9
Traversability assessment 17.5 1.8 30.5 3.2
Growing untraversable areas 19.1 1.8 32.4 4.7
Cost map building 17.4 5.8 34.6 22.3
Frontier detection and clustering 4.8 0.4 8.6 0.9
Total mapping time 76.1 32.0 146.4 76.7

All reported times are in milliseconds.

Table 2. Utilization of the computational resources

Mapping Intel i5 CPU [%] Odroid-XU4 [%]

Mapping without the cache 38 92
Mapping with the cache 18 52

Although the results indicate that both computational platforms are suffi-
cient for the exploration even without the proposed cache, the cache reduces the



computational requirements about two times, which might further support the
deployment of more sophisticated exploration strategies. Note that the power
consumption of the computational environment with the Odroid-XU4 is about
two times less than for the setup with the Intel i5.

4.2 Exploration of Subterranean Environment

The second experimental deployment is based on the exploration of the 130m
long mine entrance during the Tunnel Circuit event of the DARPA Subterranean
Challenge, see Figure 6. We have measured the size of the created elevation map,
and compare it to the size of the uniform grid map needed to cover the same
area. The resulting memory requirements summarized in Table 3 support that
the developed memory representation of the terrain map is memory efficient.
Even though the memory requirements per each cell are larger for the proposed
representation (because of the quadtree structure) than for the uniform grid,
the results show that the memory footprint of the proposed map representation
with the uniform grid-like cache is still lower than for the uniform grid only.

(a) Wheeled robot is entering the tunnel

(b) Resulting elevation map with market robot trajectory

Fig. 6. Wheeled robot in the tunnel of the Safety research course during the Tunnel
Circuit event of the DARPA Subterranean Challenge.

Note that the results in Table 3 are calculated for the 130 m long entrance
to the mine, the total length of the tunnels in the mine is several kilometers.



Table 3. Memory requirements of the map representation

Map representation Map cell size [B] Total map size [MB]

Grid based representation 9 58.0
Proposed quadtree representation 64 4.8

5 Conclusion

In this paper, we report on the experimental results of the developed autonomous
exploration system with the proposed memory representation of the elevation
map. Although the proposed hybrid memory representation based on the quadtree
tree with a uniform grid cache is straightforward and relatively easy to imple-
ment, it provides noticeable benefits in the reduced memory and computational
resources. The presented results support the memory and computational effi-
ciency of the developed solution and enable autonomous exploration using a
relatively small robotic platform with limited computational resources. The ex-
ploration system has also been successfully deployed in the Tunnel Circuit of the
DARPA Subterranean Challenge. In the future, we aim to generalize the idea of
the memory representation for the full 3D map of the explored environment.
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