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Abstract. In this paper, we concern learning of terrain types based on
the traversal experience observed by a hexapod walking robot. The ad-
dressed problem is motivated by the navigation of unmanned ground
vehicles in long-term autonomous missions in a priory unknown envi-
ronments such as extraterrestrial exploration. In such deployments, the
robotic vehicle needs to learn hard to traverse terrains to improve its
autonomous performance and avoid possibly dangerous areas. We pro-
pose to utilized Growing Neural Gas for terrain learning to capture the
robot experience with traversing the terrain and thus learn a classifier of
individual terrain types. The classifier is learned using a real time-series
dataset collected by a hexapod walking robot traversing various terrain
types. The learned model can be utilized to predict the traversal cost of
newly observed terrains to support decisions on where to navigate next.

1 Introduction

Traversal of different terrains is one of the main concerns for unmanned ground
vehicles in long-term deployments such as data gathering, environment moni-
toring, search-and-rescue, or exploration missions. For example, the Mars rover
Spirit got stuck in soft sand despite being navigated with human oversight [2].
Ground robot system deployments range from terrain classification approaches
that use human terrain type labels [1,22] or distinguish non-traversable obsta-
cles [13]; to self-supervised systems that autonomously learn terrain type clas-
sifiers [8]. Alternatively, the terrain traversability might be computed directly
as a function of terrain appearance and geometry [24], measure robot perfor-
mance [12], or evaluate the foothold configuration of a multi-legged robot [15].

Our particular research on terrain traversability is focused on deployments
without a priory learning of the traversal costs, and we aim to support instant de-
ployments of online learned models. In [20,21], we develop a robotic system that
incrementally learns to predict power consumption-based traversal costs that
are experienced by the robots over various traversed terrains. Besides, in [19],
we deploy a robotic system that incorporates fully autonomous spatial explo-
ration of the terrain with a simultaneous exploration of the underlying traversal
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cost model of the traversed terrains, such that the learned cost model is instan-
taneously utilized in autonomous navigation to avoid costly terrains. Moreover,
we investigate self-organizing neural network approaches in terrain classification
and traversal cost prediction [5,4,18], namely variants of the Growing Neural Gas
(GNG) [7], Self-Organizing Map (SOM) [11], and Improved Self-Organizing In-
cremental Neural Network (ISOINN) [23]. Although the previous results provide
particular solutions experimentally verified in a series of deployments, they are
limited to aggregated cost data that are driven by a spatial grid-based represen-
tation of the operational environment. However, the traversal cost is computed
from a sequence of measurements. Therefore, the cost prediction can be based on
direct employment of the input time series of the considered proprioceptive, but
also exteroceptive measurements. Thus, in this paper, we report on our further
research on terrain learning explicitly based on time series.

Time series data are already employed in many domains ranging from medicine
[14,26] through handwriting [25] and gestures [17] to classification of physical
activities [27]. Recently, machine learning approaches such as Support vector
machines [9] and Deep convolutional neural networks [27] has been employed
in time series classification. From the existing approaches, One-nearest-neighbor
(1-NN) is a simple yet popular approach. When it is utilized with time-series
data, the 1-NN can calculate the distance between time series measurements us-
ing the Dynamic Time Warping (DTW) [16], although the authors of [10] report
in favor of the Euclidean distance. In [25], a semi-supervised 1-NN time series
classifier is presented, and the authors of [26] demonstrate the speedup of 1-NN
using numerous reduction. A combination of the k-NN with Growing Neural Gas
(GNG) is presented in [17] to classify multi-channel time series.

In this paper, we report on the deployment of the GNG-based 1-NN terrain
classifier that is learned using a time series dataset, and the proposed approach
is compared to the baseline non-time series setup. Moreover, the learned clas-
sifier is employed in the prediction of the energy-based traversal cost. Finally,
we investigate the representation of the robot proprioception as an aggregated
cost computed over time series segments. In this case, the influence of the sub-
sampling rates is investigated, and we report the computational efficiency of the
proposed concise representation.

The paper is organized as follows. In Section 2, the utilized terrain traversal
dataset is described in the context of the terrain classification and traversal
cost prediction problems. The used GNG algorithm is described in Section 3,
while Section 4 reports on the achieved results. The concluding remarks are in
Section 5.

2 Time-Series Dataset and the Terrain Learning Problem

We address learning of terrain type classifiers using a dataset of terrain fea-
ture descriptors and multi-legged robot proprioceptive signals. The dataset is
organized as time series sampled with 10Hz. The time series is cut in 10 s long
segments, where each segment represents a single locomotion gait cycle of the



robot. Hence, there are 101 data points in each segment. The segments are re-
ported with 1Hz to account for the different possible offsets with regards to the
gait cycle. Furthermore, the baseline non-time series approach is represented as
non-time series data points, where each non-time series data point corresponds
to one time series segment.

Each data point (regardless of whether it is a part of the segment or a stan-
dalone, not time series point) comprises descriptors of the terrain shape and
appearance coupled with the proprioceptive measurements of the robot power
consumption. The terrain descriptors are based on the previous work [20], and
each terrain descriptor characterizes the area of 0.2m radius around the ground
projection of the robot’s body center of mass. The shape descriptors are de-
termined from the eigenvalues of the covariance matrix of the surface points in
the area as (f5, f6, f7) presented in [13]. The appearance descriptors are the ab
channel means of the Lab color space representation of the surface points in the
area.

The instantaneous power consumption [12] signal is determined as

Pin = V · I [W], (1)

where V is the battery voltage and I is the instantaneous current measurement,
which is sampled with 10Hz. Besides the raw power consumption signal, the
aggregated traversal cost c is determined as the total energy consumed over the
given interval. The aggregated cost c over the interval between two consecutive
power measurements is computed using the trapezoid integration rule

c(ti, ti−1) = (ti − ti−1)
Pin(ti−1) + Pin(ti)

2
[J], (2)

where ti and ti−1 are the corresponding sampling times, and Pin(ti) and Pin(ti−1)
are the respective power consumption measurements. Given the additive nature
of the integration, it holds that

c(ti+1, ti−1) = c(ti+1, ti) + c(ti, ti−1) [J]. (3)

Therefore, the traversal cost c(T ) over a segment T with 101 power measurements
sampled with 10Hz is defined as

c(T ) =

100∑
i=1

c(ti+1, ti)|{ti}101i=1 ∈ T [J]. (4)

In the considered dataset, we can distinguish two types of time series seg-
ments or non-time series points. The first type includes the time series segments
Tts with power measurements replaced by the aggregate traversal cost, which
may be sampled at a lower frequency. Since each two subsampled points at
t′j+1, t

′
j correspond to k + 1 points (ti, ..., ti+k) in the raw 10Hz time series,

where t′j+1− t′j = ti+k− ti, the cost for the interval (t′j+1, t
′
j) between the points

in Tts is computed using (2) and (3) as

c(t′j+1, t
′
j) =

i+k−1∑
l=i

c(tl+1, tl) [J]. (5)



(a) (b)

Fig. 1. (a) The utilized hexapod walking robot on the cubes terrain with turf terrain
in the background; (b) and the overhead view of cubes covered with black terrain.

Therefore, the cost of the segment Tts is the sum

c(Tts) =

|Tts|−1∑
j=1

c(t′j+1, t
′
j)|{tj}

|Tts|
j=1 ∈ Tts [J], (6)

where |Tts| is the number of points in the subsampled time series. The second
type is the non-time series data points, which represent the robot power con-
sumption as the mean over the 10 s segment Tpoint

P̂ (Tpoint) =
1

101

101∑
i=1

Pin(ti)|{ti}101i=1 ∈ Tpoint [W], (7)

and the aggregate cost over the 10 s long segment is thus approximated as

c(Tpoint) = 10P̂ (Tpoint) [J]. (8)

The latter type has been utilized in our previous research reported in [4,20], and
therefore, it is considered as the baseline approach.

The time-series dataset is collected by the small battery-powered hexapod
walking robot shown in Fig. 1a that is controlled by adaptive locomotion con-
trol [3] capable of crawling rough terrains. The robot is guided over a set of
human-labeled terrains that can be categorized as flat office ground, artificial
turf -like carpet, black fabric, and wooden cubes of uneven height and slope. Two
further terrain types are created as cubes covered with turf and cubes covered
with black fabric, see Fig. 1b. Thus, each time series segment or its corresponding
non-time series point T is accompanied by a human terrain label. The perfor-
mance of the terrain classifier C can be determined as the number of correct
classifications further denoted as correctness:

correctness(T , C) = 1

|T |
∑
T∈T

{
1 if classify(T, C) = label(T )

0 otherwise
100%, (9)



where T is the test set of time series segments T with hidden labels label(T ).
The traversal cost predictor I is evaluated with regards to the RMSE

RMSE(T , I) =

√∑
Tterrain∈T (predict(Tterrain, I)− c(T ))

2

|T |
, (10)

where the terrain descriptor segment Tterrain is the queried time series segment
T stripped of the proprioceptive measurements; and c(T ) is its ground truth
traversal cost computed computed over the testing data using (4).

The dataset is organized into six sequences called trails, where each trail
corresponds to one terrain. The individual segments or non-time series points in
each trail are ordered as the robot has experienced them. Therefore, the dataset
mimics the order of data in incremental learning. The learning set is created as
the first two-thirds of each trail, and the last third is reserved for testing with
regards to (9) and (10).

3 Time Series Learning Growing Neural Gas

A Growing Neural Gas (GNG) scheme [7] is employed to learn a classifier of
terrain traversal time series segments. The baseline non-time series classifiers
are also learned using this scheme, i.e., they are considered to be time series
with one point. For the sake of brevity, the herein presented description of the
GNG is limited to the use of the GNG in the classification scheme, which is
summarized in Alg. 1. We kindly refer the reader to [7] or [6] for a detailed
description of the GNG algorithm.

The herein reported results are based on the Online Semi-Supervised Multi-
Channel Growing Neural Gas (OSSMGNG) [17]. Similarly to the OSSMGNG,
the proposed approach utilizes separate GNG structures learned for each of
the particular classes. However, the dataset presented in Section 2 comprises
time series segments with a fixed size, and there is no need to map unknown
dimensions as in [17]. Thus, we employ the Euclidean L2-norm to compute the
distance between the time series segments, because unlike the therein used DTW
scheme, the Euclidean norm can be computed in O(d), where d is the data
dimensionality. In the case when some of the dimensions of the segment are
missing, i.e., during the inference, the distance is computed using only the known
dimensions.

The GNG is updated in supervised way, i.e., the time series segment is ac-
companied by the terrain label, and the respective class network is updated
with εwinner = 0.1, εneighbor = 0.01, αsplit = 0.5, αerror = 0.99, amax = 50, and
λ = 30, see Supervised Update procedure in Alg. 1. Unlabeled segments are
classified by finding the class of its nearest neighbor among nodes from all the
GNGs (Classify procedure in Alg. 1).

Finally, the learned classifier is used to infer missing dimensions of the seg-
ment Tterrain using the 1-NN approach as follows. First, Tterrain is classified;
then, the nearest neuron within the respective GNG class is found, and the



Algorithm 1: Time series learning Growing neural gas

ISupervised Update (T, label,G)
Input: T – time series segment, label – segment label, G - set of GNG models

for the individual terrain classes
G← G[label] // Select the respective GNG model for label.1
update(G,T ) // Update G using the time series segment measurement T.2

IClassify (T,G)
Input: T – time series segment, G - set of GNG models for the individual

terrain classes
N ← all_neurons(G) // Get all neurons in all GNG models.1
neighbor ← nearest(N , T ) // Find 1-NN neuron to T among N.2
return label(neighbor) // Report the label of the neighbor’s GNG.3

I Inference (Tterrain,G)
Input: Tterrain – time series segment stripped of cost measurements, G - set of

GNG models for the individual terrain classes
label← classify(Tterrain,G) // Label Tterrain ignoring power dimension.1
neighbor ← nearest(G[label], Tterrain) // Find nearest neuron in label GNG.2
return cost(neighbor) // Report the missing cost dimension of neighbor.3

missing dimensions are determined from its reference vector. Further, the mech-
anism is used to predict the traversal costs over the observed terrain by inferring
the missing aggregate cost dimension and then applying (6) or (8), respectively,
to compute the cost. The procedure is denoted Inference in Alg. 1.

4 Results

We report on the achieved results on time series segment classification and traver-
sal cost inference using the time series segment dataset described in Section 2.
Two particular setups are considered as follows: 10 s segments with the aggre-
gate costs denoted according to the number of subsampled points as time series
100, 50, 25, or 5, i.e., the segments are subsampled with 10, 5, 2.5, and 0.5 Hz,
respectively; and the baseline non-time series setup with the mean power over
the 10 s period is denoted mean value. In the following parts, we report on the
terrain classification, cost prediction, and a short discussion of the results.

4.1 Terrain Classification

The classification correctness computed according to (9) is reported in Table 1.
The best classification is achieved using the time series segments with 25 points
and the respective confusion matrix is presented in Table 2. The time series
segment with 5 points and the baseline non-time series mean value setup provide
the worst performance among the evaluated classifiers. However, even the worst



Table 1. Classification correctness

Human Label Mean value Time series with # pts
(Baseline) 5 25 50 100

flat 63.60 % 58.45 % 84.19 % 75.73 % 71.69 %
cubes 52.83 % 51.34 % 57.61 % 57.91 % 57.31 %
cubes covered with black 75.21 % 67.64 % 79.83 % 80.25 % 78.99 %
black 87.18 % 84.37 % 90.00 % 93.43 % 92.50 %
turf 76.44 % 85.09 % 98.07 % 98.55 % 98.07 %
cubes covered with turf 57.65 % 81.08 % 61.26 % 60.36 % 58.55 %

All 69.47 % 69.33 % 78.97 % 78.30 % 76.81 %

Table 2. Classification confusion matrix for the segments with the time series sub-
sampled to 25 points

Human Label

Predicted Label
flat cubes cubes black turf cubes

covered with covered with
black turf

flat 229 0 32 11 0 0
cubes 24 193 114 4 0 0
cubes covered with black 39 2 190 7 0 0
black 32 0 0 288 0 0
turf 0 0 0 0 204 4
cubes covered with turf 0 0 0 1 43 68

classifiers may achieve satisfiable performance over specific terrains. For example,
time series with 5 points is the most precise classifier of cubes covered with turf .

Overall, the most of the confusion between the individual terrains appear to
be between the visually similar terrains such as turf and cubes covered with turf ,
or between the terrains that might exhibit similar shape property or propriocep-
tive experience. In Fig. 2, the terrain classification is projected onto the selected
terrains. Notably, a portion of the terrains that are considered hard to traverse
based on human expertise is classified as flat , suggesting that the human labels
may not be consistent with the robot proprioceptive experience.

4.2 Traversal Cost Prediction

The performance of the traversal cost prediction evaluated using RMSE com-
puted according to (10) is reported in Table 3. The results are similar to the
classification since the time series with 25 points provides the best prediction,
and the time series with 5 points provides the worst performance. It is interest-
ing to note that except flat , the highest RMSE is over the terrain types black



(a) Time series 25 classification on cubes. (b) Baseline mean value classification on cubes.

(c) Time series 25 classification on cubes covered
with turf.

(d) Baseline mean value classification on cubes
covered with turf.

Fig. 2. Terrain classification projected over the selected terrains.
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Fig. 3. Overall results for the (a) classification correctness, (b) RMSE of the traversal
cost prediction, and (c) the measured execution wall time per one time series segment
or non-time series data point using the Intel i5-4460 CPU, 16 GB memory, where the
reported values are means of 10 runs.

and cubes covered with black with the relatively high classification correctness
as reported in Table 1.

4.3 Discussion

The results, aggregated in Figs. 3a and 3b, suggest that the time series segments
subsampled with 25 points learn better classifiers and predictors than both the



Table 3. Traversal cost prediction RMSE

Human Label Mean value Time series with # pts
(Baseline) 5 25 50 100

flat 14.43 14.96 11.63 12.65 10.78
cubes 7.91 8.02 7.90 8.36 8.47
cubes covered with black 12.06 10.77 7.89 9.18 8.42
black 12.68 16.47 11.78 12.09 12.70
turf 5.12 4.95 4.79 5.07 4.78
cubes covered with turf 6.44 5.62 6.19 6.22 5.89

All 10.82 11.77 9.21 9.83 9.46

most dense time series with 100 points and the baseline non-time series mean
values. According to the wall execution times reported in Fig 3c, the subsampled
time series are less computationally demanding than the time series with 100
points, but they are more demanding than the baseline non-time series mean
values.

Finally, the reported confusion between the individual terrains in Table 2, and
the high RMSE in Table 3 suggest that each terrain label may comprise multiple
different robot proprioceptive experience. Therefore, human labels might not be
sufficiently descriptive; they are downright misleading. The found observations
thus support the results previously reported in [4].

5 Conclusion

In this paper, we investigate the time series representation of the hexapod walk-
ing robot terrain traversal dataset. A Growing Neural Gas (GNG) schema is
used to classify the traversed terrains and predict energy-based traversal cost.
The baseline non-time series setup is outperformed by the proposed time series
of terrain descriptors and robot proprioception characterized as the aggregate
traversal cost when it is subsampled with at least 2.5 Hz. Overall, the time se-
ries subsampled with 2.5 Hz learn the best classifiers and cost predictors among
the evaluated classifiers. Moreover, they provide better computational efficiency
than time series sampled with higher frequencies, albeit the baseline non-time se-
ries method is the fastest one. Finally, the herein presented results also support
the previous conclusion that human terrain labels might be misleading when
reasoning about the robot traversal experience.
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