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Abstract. In this paper, we report on the developed system for assess-
ment of ground unit terrain traversal cost using aerial reconnaissance of
the expected mission environment. The system combines an aerial vehicle
with ground robot terrain learning in the traversal cost modeling utilized
in the mission planning for ground units. The aerial vehicle is deployed
to capture visual data used to build a terrain model that is then used
for the extraction of the terrain features of the expected operational area
of the ground units. Based on the previous traversal experience of the
ground units in similar environments, the learned model of the traversal
cost is employed to predict the traversal cost of the new expected oper-
ational area to plan a cost-efficient path to visit the desired locations of
interest. The particular modules of the system are demonstrated in an
experimental scenario combining the deployment of an unmanned aerial
vehicle with a multi-legged walking robot used for learning the traversal
cost model.

1 Introduction

Mobile robots deployed in outdoor environments can encounter hard-to-traverse
areas which may hinder their motion efficiency and thus impede their assigned
missions. Therefore, the traversability of the encountered terrains should be
taken into account during mission planning to avoid parts of the environment
with difficult terrains. Such terrain evaluation systems may entice the robot to
avoid certain terrain types which have been learned from human labels [2], eval-
uate terrain geometry to avoid rough areas [18], or tradeoff the robot safety with
the predicted execution time [3].

In [13], the traversal cost learning has been proposed based on the proprio-
ceptive traversal cost experienced by the robot that is combined with the terrain
appearance and geometry captured by the robot. A deployment of the terrain
traversal cost learning and cost prediction has been reported within a path plan-
ning scenario [14] and an autonomous exploration mission [12]. On the other
hand, mission planning can take advantage of the overhead imagery of the oper-
ational area, e.g., using an Unmanned Aerial Vehicle (UAV). The authors of [8]
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use a convolutional neural network on the RGB aerial imagery to classify terrains
from the Estonian Land Board database. In [16], HSV locale-specific overhead
features are used to predict LADAR-based features characterizing ground unit
traversability. Kohonen’s Self-organizing Maps [9] are used in [4] to identify po-
tential invasion, unauthorized changes of land, and deforestation. Finally, over-
head imagery has also been deployed in various disaster scenarios. The authors
of [15] develop a UAV to map landslides; and in [17], a road network-based fea-
ture is used to localize aerial platforms over areas altered by earthquakes where
previously available landmarks may be missing.

In this paper, we consider overhead imagery to facilitate energy-efficient
multi-goal path planning for ground units represented by a small hexapod walk-
ing robot operating in an outdoor environment. A UAV is utilized to capture
the outdoor field environment, and the RGB overhead imagery is coupled with
the proprioceptive experience of the small hexapod walking robot. The Locally
Weighted Projection Regression (LWPR) [19] is used to predict energy-based
traversal cost from the overhead data. The traversal cost model is then coupled
with the Traveling Salesman Problem (TSP) solver to find the energy-efficient
multi-goal path to visits all the assigned goals.

The rest of the paper is organized as follows. The problem of multi-goal path
planning from aerial imagery is presented in Section 2. The proposed method-
ology for prediction of ground unit traversal cost from overhead imagery and
its use in multi-goal path planning is presented in Section 3. The experimental
deployment scenario with the aerial imagery and ground robot proprioception
dataset are described in Section 4. Finally, the paper is concluded in Section 5.

2 Multi-goal Path Planning from Aerial Imagery

The overhead imagery is utilized to facilitate energy-efficient multi-goal path
planning for a ground unit, which is represented by a small hexapod walking
robot shown in Fig. 1a. The robot is requested to visit a set of goal locations
and return to its starting position that is the multi-goal path planning problem
that can be formulated as the TSP [1]. The TSP is a well-studied problem
formulation with several existing approaches [5]; however, we need to determine
the individual costs of traveling from one goal location to another location. In
this work, we consider the traversal cost assessment based on the learned terrain
model as follows.

The prior experience with traversing various terrains is employed to select a
path that minimizes the overall energy exertion. The environment is represented
as a grid which corresponds to the overhead RGB image of the mission location,
such as the area shown in Fig 1b.

The robot proprioceptive experience is represented by the robot power con-
sumption measurements, where the instantaneous power consumption [10] is

Pin = V · I [W], (1)

where V is the current battery voltage, and I is the instantaneous current mea-
surement sampled with 200 Hz. Due to the sampling, we can represent the time



(a) Hexapod walking robot (b) RGB overhead image

Fig. 1. The (a) hexapod walking robot and (b) overhead image of the mission area.

interval T as a sequence of n time stamps T = (t1, . . . , tn). The energy consump-
tion over T can be then computed as

E(T ) =
n−1∑
i=1

(ti − ti−1)
Pin(ti−1) + Pin(ti)

2
[J], (2)

where ti and ti−1 represent time stamps of two consecutive power consumption
measurements. Finally, the robot traversal cost experience over the time interval
T is the power consumption per distance traveled over the duration of T and
can be defined as

c(T ) =
E(T )

d(T )
[Jm−1], (3)

where d(T ) is the distance traveled by the robot over the interval T .
In the presented results, we solve the instances of the TSP by the LKH

solver [6] since it is known to be a fast heuristic providing a solution close to
the optimum. However, in comparison to optimal solvers, the asymptotic time
complexity of the LKH solver can be bounded by O(n2.2), which is sufficient
even for quick updates of mission plans with tens of goal locations.

The TSP solver utilizes the distance matrix D where each element Di,j rep-
resents the energy exertion needed to travel from the location i to the location
j. Therefore, the needed energy is determined as the path planning problem to
find a path P ∗ from the corresponding grid cell ng to the desired cell n′g with
the minimal energy exertion E(P ∗) as

P ∗ = argminP E(P ) = argminP

|P |−1∑
i=1

E(ni, ni+1) with n1 = ng, n|P | = n′g (4)

where the path P is as a sequence of grid cells P = (n1, ..., n|P |), |P | is the
number of cells of the path P , and E(ni, nj) is the energy to traverse from the
grid cell ni to nj in its 8-neighborhood that is computed as

E(ni, nj) = ‖(ni, nj)‖cmodel(ni, nj) [J], (5)



where ‖(ni, nj)‖ is the Euclidean distance between ni and nj ; and cmodel(ni, nj)
is the traversal cost prediction to traverse from ni to nj . The cost learning and
prediction is further detailed in the following section.

3 Proposed method

In this section, we describe how the overhead imagery is used to learn the model
of the traversal cost that is utilized in the robot energy-efficient path planning
according to (5). First, the overhead image of the mission environment is trans-
formed into feature descriptors of the terrain by applying the Gaussian blur filter
with Σ = λI, where the parameter λ = 5 is selected with regards to the overhead
image resolution. Thus, a particular terrain appearance descriptor dt = (r, g, b)
is defined as the RGB colors at the terrain’s respective coordinates (pixels) in the
blurred image. Then, such a particular terrain appearance descriptor is utilized
either for the traversal cost learning; or traversal cost assessment. For the cost
learning, the terrain descriptor is paired with the robot experience to learn the
traversal cost model. For the cost assessment, the descriptor of a priory untra-
versed terrain is used with the model to predict the traversal cost, and thus the
energy exertion over such terrain.

The experienced traversal cost is computed according to (3) for 10 s long
intervals, which roughly span the gait cycle duration of the utilized hexapod
walking robot. The intervals are then manually paired with the robot trajectory
in the overhead image. Thus, each interval is assigned a terrain descriptor dt,
which is combined with the experienced cost c to create the experience descriptor
dc = (r, g, b, c). The traversal cost model is learned by the LWPR algorithm [19]
from a random permutation of the training set that consists of the terrain de-
scriptors accompanied by the recorded traversal cost. The learning is repeated
10 times. The LWPR is parametrized with the initial distance metric Dinit = 10I
and the distance metric learning rate αinit = 10.

A priory unknown traversal cost c∗ for a particular terrain descriptor dt can
be then predicted as

c∗ = cLWPR(dt). (6)

Further, the traversal cost prediction cmodel(ni, nj) to traverse from the grid cell
ni to its neighbor nj is defined as the mean of the LWPR predictions at the two
respective grid cells

cmodel(ni, nj) =
cLWPR(dt(ni)) + cLWPR(dt(nj))

2
, (7)

where dt(n) is the terrain descriptor corresponding to the grid cell n.

4 Results

The proposed approach has been experimentally verified in the outdoor environ-
ment shown in Fig. 1b. The resolution of the used overhead image is 960×544 pix-
els. The Python bindings of the LWPR implementation [11] have been utilized



to compute the LWPR models, and the available implementation of the LKH [7]
has been used to solve instances of the TSP. The hexapod walking robot has
traversed four different terrains; see Fig. 2. Every terrain has been traversed in at
least three trials, each few gait cycles long. The concrete and gravel terrains are
relatively easy to traverse, and the robot exhibits the lowest traversal cost. The
grass is harder to traverse, and the cost is high. Finally, when traversing the veg-
etation, the robot is almost stuck and moves very slowly. Therefore, the traversal
cost over the vegetation is the highest. In total, the learning set comprises 1094
traversal cost measurements paired with terrain descriptors. On average, it takes
is 2.31 s (the wall time determined as the mean of 10 trials) to learn the LWPR
model using the Intel Core i5-4460 CPU with 16 GB memory. The mean time to
predict the traversal costs for the whole 960×544 pixel overhead image is 1.82 s.

(a) Concrete (b) Gravel

(c) Grass (d) Vegetation

Fig. 2. The hexapod walking robot traversing various terrains during the experimental
deployment.

The approach is tested in three scenarios over the same mission area to
demonstrate solutions with a different number of goal locations. In Scenario 1,
the robot needs to plan a visit of 10 locations, which are mostly selected near,
but not necessarily on, areas labeled as easily traversable according to human
expertise. In Scenario 2, 10 points are spaced more evenly over the mission area.



Finally, 42 locations need to be visited in Scenario 3. The LKH solutions for
Scenarios 1, 2, and 3 are computed in 0.12 s, 0.12 s, and 0.25 s, respectively.

The traversal cost predictions and the paths computed for the individual
scenarios are projected onto the overhead image, see Fig. 3, Fig. 4, and Fig. 5.
Notice, even though the same learning set is used in each scenario, each time
the traversal cost model is relearned with a different random permutation of the
dataset to show an effect of the traversal cost learning which depends not only
on the available learning data but also on the learning procedure itself. Thus,
the predicted traversal costs slightly differ in the individual scenarios; however,
the overall course of the planned path follows the rough distinction between the
hard and easy to traverse terrains.

(a) RGB (b) Cost prediction
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Fig. 3. The planned path in Scenario 1 projected onto the overhead image.

(a) RGB (b) Cost prediction
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Fig. 4. The planned path in the Scenario 2 projected onto the overhead image.

In Scenario 1 and Scenario 2, the computed paths often follow the concrete
and gravel terrains, as these are the most energetically efficient terrain types.
However, in some instances, the robot may choose to plan over the rougher
terrain if such a path is significantly shorter despite higher traversal cost. In



(a) RGB (b) Cost prediction
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Fig. 5. The planned path in the Scenario 3 projected onto the overhead image.

Scenario 3, the effect of traversal cost is much less prevalent because the higher
density of points forces the robot to visit virtually every available terrain type.
Regardless, even in this case, the path seems to avoid the rough areas to a lesser
extent.

5 Conclusion

In this paper, overhead imagery is combined with traversal cost learning to
predict energy-based traversal cost of the multi-goal path in an outdoor mission
with a hexapod walking robot. The traversal cost model that predicts the energy
exerted per meter from RGB features in overhead imagery is learned using the
LWPR algorithm. The proposed system is experimentally verified in an outdoor
scenario using a small UAV and hexapod walking robot. The herein presented
results support the feasibility of the proposed approach and suggest that the
approach has been deployed successfully. In our future work, we aim to extend the
presented approach to online learning using real-time communication between
the ground and aerial vehicles.
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