
On Building Communication Maps in
Subterranean Environments

Martin Zoula[0000−0002−3235−8176], Miloš Prágr[0000−0002−8213−893X]*, and Jan
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Abstract. Communication is of crucial importance for coordinating a
team of mobile robotic units. In environments such as underground tun-
nels, the propagation of wireless signals is affected by nontrivial physical
phenomena. Hence, both modeling of the communication properties and
the consequent task to estimate where communication is available be-
comes demanding. A communication map is a tool assessing the charac-
teristic of communication between two arbitrary spatial coordinates. The
existing approaches based on interpolation of a priori obtained spatial
measurements do not provide precise extrapolation estimates for unvis-
ited locations. Therefore, we propose to address the extrapolation of the
signal strength by a position-independent model based on approximat-
ing the obstacle occupancy ratio between the signal source and receiver.
The proposed approach is compared to the existing attenuation models
based on free-space path loss and spatial projection using a natural cave
dataset. Based on the reported results, the proposed approach provides
more accurate predictions than the existing approaches.
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1 Introduction

In multi-robot scenarios, reliable wireless communication between individual
units is an important feature, together with estimating the communication avail-
ability in cases where signal propagation is difficult due to natural or artificial
constraints. Our research is motivated by deployments of a multi-robot team in
communication denied subterranean environments such as cave systems, where
most of the signal obstructing mass is static. These environments suffer from
nontrivial signal propagation, which cannot be efficiently predicted using simple
attenuation models. Even though robots can collaborate without mutual com-
munication while using preset task division algorithms, on-line negotiation is
the key factor when reacting to dynamic events. Hence, it is desirable to reliably
predict whether and how well a communication channel can be established given
the current mission state. A signal propagation model could support tasks like
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building communication infrastructure using communication beacons [19]. Also,
fast and robust network repairs [4] and reconnection [16] can be maintained.
Furthermore, it is possible to predict changes in the network topology [20].

Communication models simulate and approximate the complicated phenom-
ena behind the physical media. The communication models range from statis-
tical Bernoulli or Gilbert-Elliot [7] models to complex raytracing-based physics
simulators [22]. The former class yields limited information about modeled com-
munication such as packet delivery probability, yet they are computationally
efficient. The latter class tends to involve computationally demanding opera-
tions, but yields precise and relevant results, e.g., about the total received power
since it accounts for various rigorously defined physical phenomena. Probably
the simplest case of physics-based communication models is the Free-Space Path
Loss (FSPL) attenuation model based on the Friis formula [25]. Note, these ap-
proaches rely on a priori known parameters such as signal wavelength or material
properties. Besides, setups using no communication model can be used [1], where
the robot in need of communication tries to establish a link with another robot
by a costly blind broadcast.

Given a communication model that encapsulates the underlying physical me-
dia characteristics into a prediction, a communication map is defined as a compu-
tational tool determining communication characteristics based on two arbitrary
spatial coordinates of the transmitting device and the receiving device. The pre-
dicted characteristics may be various, e.g., Received Signal Strength Indicator
(RSSI) or packet loss ratio. The communication map can be used by a robot to
assess the supposed difficulty of communicating to an arbitrary location in the
environment. The map can be implemented in various ways, e.g., utilizing self-
organizing maps in an acoustic setup as proposed in [6]. However, recent work
on communication maps is based on a Gaussian Process (GP) regressor, a soft
model that relies on training samples to serve as an interpolation corpus [3,18,2].
Due to the nature of GPs, the model also yields a predictive variance together
with the estimate. However, the existing spatial projection method [3] is limited
to interpolating the measured data and does not provide satisfiable measurement
extrapolations for the unvisited areas.

In this paper, we propose a more general approach to implementing com-
munication maps based on a new computational layer allowing the model to
comprehend basic structural properties of the environment. The key benefit of
the proposed approach is the ability to extrapolate previous measurements to
the so-far unvisited locations. Furthermore, the learned model for one specific
environment could be utilized for different environments with similar physical
properties. The proposed idea is based on a descriptor of the queried locations
that comprehend the spatial information of in-vivo measurements of signal char-
acteristics transformed into a low-dimensional vector according to the vicinity
of the queried points. The computed value of the descriptor is fed as the train-
ing data to learn a GP-based regressor. In particular, the RSSI metric is uti-
lized to model the signal characteristics. The proposed approach is compared
to the baseline approaches of the FSPL [25] and spatial projection (SP) based



on a GP regressor [3]. The reported results support the feasibility of the pro-
posed approach and show significant improvements in the prediction accuracy
in the extrapolation tasks.

The rest of the paper is organized as follows. A brief overview of the related
work with the focus on multi-robot wireless communication is presented in Sec-
tion 2. The proposed approach for communication map building is introduced
in Section 3. Results of the experimental evaluation are reported and discussed
in Section 4, and the work is concluded in Section 5.

2 Related work

Communication in a group of mobile robots can be understood as an instance of
the Mobile Ad-Hoc Network (MANET). MANETs are networks with a topology
that changes over time as individual network nodes change their spatial coor-
dinates. Due to their nature, MANETs are often implemented using wireless
technology allowing for more flexible communication link management. In such
networks, fast and robust routing protocols [15] are needed to ensure timely
packet delivery with an overhead as low as possible. Since the network nodes are
dynamic, some knowledge about future signal properties need to be known in
advance; a communication map can be used to obtain it.

The effect and impact of network nodes’ mobility are investigated in [12],
showing the importance of the prior information about nodes’ behavior in multi-
hop message routing problems. The current state-of-the-art multi-robot applica-
tions use prior signal or motion models to predict future positions of individual
nodes and associated signal characteristics. The impact on the message rout-
ing decision-making is forthright; nodes known to leave communication range or
enter signal-denied region can be disqualified from the link establishing process.

Even though communication is crucial in multi-robotic tasks, to the authors’
best knowledge, the notion of the on-line building or learning a direct communi-
cation map approach is elaborated only sparsely. Most of the existing approaches
use a simple fixed signal propagation model to determine whether and how well
a communication link can be established between two spatial coordinates. Al-
though a thorough review of communication modeling methods can be found
in [1], a short overview of the related works is provided in the rest of this section
to provide background and context of the addressed problem.

The most straightforward approach to communication modeling is the con-
stant range method, e.g., used in [27]. It determines whether a communication
link can be established between two points by comparing Euclidean distance with
a threshold. Fixed-radius communication has been utilized for Kilobots [24] that
use a low-power ground-directed infrared channel characterized by a relatively
short and accessible communication range under the defined environmental con-
ditions. The line-of-sight method [26] assumes that a link can be established if
and only if a straight line segment connecting two spatial positions exists such
that it does not intersect any obstacle. Both the fixed radius and line-of-sight
methods can be combined [17].



Signal attenuation model [25] accounts for natural signal strength decay that
occurs with the growing distance from the signal source. Since obstacles are
not modeled, the model is called Free-Space Path Loss (FSPL). Its predictions
of relative signal decay Lp are computed given the distance between receiver
and transmitter d, their respective antennas directivities Dr, Dt, and the signal
wavelength λ:

Lp = 10 log10

(
DtDr

(
λ

4πd

)2
)
. (1)

Unlike the constant-range and line-of-sight methods, the signal attenuation model
returns a continuous value of signal strength instead of the binary predictions.
An extension of the attenuation modeling by considering obstacles present in the
environment is presented in [14]. However, explicit knowledge about signal and
material properties must be known beforehand. Thus both explorative deploy-
ments and the ability of on-line adaption to environment change are limited.

Another research path is led by Malmirchegini et al. [13], who proposed a
purely probabilistic model for estimation of signal characteristics with the notion
of some spatial dependence. Their model also provides mathematical reasoning
about the predictability of the communication parameters. However, since their
model lacks an explicit environment model, it cannot infer the attenuation there-
upon; it always needs some prior measurements in the area of interest.

More sophisticated models are based on raytracing the signal propagation
from the source by casting rays through the environment [22]. These models need
to comprehend phenomena such as multi-path signal propagation, waveguide ef-
fect, or reflections. Hence, the raytracing-based approaches require detailed geo-
metric environment models that include surface normals and carry information
about obstacle material properties. Further, such approaches are computation-
ally very demanding and sensitive to inaccurate or biased data about the envi-
ronment that make these approaches unsuitable for on-board deployments with
limited resources and field measurement devices.

The methods mentioned above tend to yield pessimistic but guaranteed re-
sults when used under particular assumptions in an austere environment. How-
ever, in sites that suffer from waveguide effect, non-trivial reflections, or non-
trivial attenuation, these basic methods can return wrong predictions even in
the close vicinity of the queried points. Only one group of existing approaches
for communication map building is, to the best of our knowledge, based on pure
machine learning without relying on any strong prior knowledge of the physi-
cal properties of the environment. In [3], a communication map is built using
a spatial GP, where the core idea is to interpolate samples of communication
link quality gathered in-vivo. The GP provides the most likely regression of the
initially unknown signal strength function, and it interpolates the input samples
together with the variance of the predicted estimates. It can thus be used to
determine the most probable link quality with the confidence estimate. Con-
sequently, the GP-based model can be utilized in active perception tasks such
as [11] because information about predictive variance can be used as a valuation
of the model uncertainty for the given configurations. If the whole space of all



spatial pairs is sampled with sufficiently high resolution, it is possible to predict
the signal characteristics perfectly. Even though the efforts are being made to
sample the whole space in [3,18], such sampling is a problem with the complexity
that can be bounded by O(n4) because we need to sample all (two-dimensional)
coordinate pairs, which can be too costly or unfeasible. Therefore, we consider
GP-based modeling to address this drawback and develop a more general model
that scales better with the environment size without dense sampling before a
particular deployment in the same environment.

3 Proposed Communication Map Model

The proposed approach to communication modeling follows the communication
map M defined as a data structure with the accompanied procedure to pre-
dict a characteristic value of the communication channel for two given arbitrary
positions of the transmitter and receiver placed in the environment. Thus, we
formalize a generic communication map asM : P → R, where p =

(
a1, a2

)
∈ P

is a pair of two spatial coordinates a =
[
ax, ay, az

]T ∈ R3, r ∈ R is a value char-
acterizing the communication quality; a1 is the position of the transmitter, a2
of the receiver. We assume w.l.o.g. r is a scalar R ⊆ R for the sake of simplicity
in this paper; in particular, r is a value of the RSSI.

The mapping M is realized by a descriptor function δ chained to the GP
regressor[21] G|X . Formally, M = δ ◦ G|X , where X is a set of the training
data. Since the GP output provides the predictions associated with predictive
variance, the GP-based regression is suited for active perception scenarios, where
the learner improves its model by adding new samples for configurations with
high predictive variance. Hence, we follow the GP-based approach [3]. However,
the key novelty is in the proposed descriptor function that provides data such
as distance between the queried locations or obstacle occupancy metric. Thus,
unlike the approach [3], the proposed method provides low-variance predictions
also in spatially unexplored locations given the corresponding descriptor value
is correlated to some previously sampled measurement’s descriptor.

3.1 Gaussian Process

We use GP regressors in each model to infer the signal strength from samples
transformed by respective descriptors. In this section, we briefly describe the GP
regression to make the paper self-contained. First, let the function of interest
f(x) be observed with Gaussian noise ε

y = f(x) + ε, ε ∈ N (0, σ2). (2)

The GP is then a distribution over all possible functions [21]

f(x) ∼ GP(m(x),K(x, x′)), (3)



where m(x) and K(x, x′) are the mean and covariance, respectively, defined as

m(x) = E [f(x)] , (4)

K(x, x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] . (5)

The latent values f∗ of testing data X∗ are computed given training data X as

µ(X∗) = K(X,X∗)
[
K(X,X) + σ2I

]−1
y,

(σ(X∗))
2 = K(X∗, X∗)

−K(X,X∗)
T
[
K(X,X) + σ2I

]−1
K(X,X∗),

(6)

where K(X,X ′) is the covariance function. Two distinct covariance functions
were used in individual descriptors; the first is the squared exponential kernel

K(x, x′) = σ2 exp

(
−‖x− x

′‖2
2l2

)
, (7)

where σ2 is the output variance and l is the lenghtscale. The second covariance
function is the Matern 3/2 kernel

K(x, x′) = σ2 21−3/2

Γ (3/2)

(√
3
‖x− x′‖2

l

)3/2

L3/2

(√
3
‖x− x′‖2

l

)
, (8)

with σ and l defined analogously as before, Γ being the gamma function and
L3/2 the modified Bessel function of the second kind.

3.2 Descriptor Functions in GP-based Communication Map

The GP can be coupled with a descriptor function characterizing the input data;
three different functions are considered. The first descriptor (9) is the spatial
projection utilized in [3] further denoted also as δspatial(p), where the descriptor
is a four-dimensional vector created by truncating the z-axis coordinates of the
pose vectors aa, ab

δspatial(p) = δspatial

a1xa1y
a1z

 ,
a2xa2y
a2z

 =


a1x
a1y
a2x
a2y

 . (9)

The second examined descriptor δFSPL is based on Euclidean distance be-
tween the two pose vectors in p. It follows the FSPL [25] signal attenuation
model under the assumption that both the signal transmitter and receiver are
omnidirectional and the environment is without obstacles. However, when it is
combined with the GP regressor, it provides the estimate of the mean signal
strength and its variance. The descriptor is defined as

δFSPL (p) =
[
‖p‖2

]
, (10)



where ‖p‖2 is the three-dimensional Euclidean distance

‖p‖2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
a1xa1y

a1z

 ,
a2xa2y
a2z

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
a1x − a2xa1y − a2y
a1z − a2z

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (11)

Finally, the third proposed descriptor is called the Projected Free Space Ratio
(PFSR) denoted δPFSR. It extends the FSPL-based descriptor by examining
obstacles between the connection of two locations using the available map of the
environment. The descriptor δPFSR is a two-dimensional vector, where the first
dimension corresponds to δFSPL. The second dimension is defined as the ratio of
the occupied and free space along the straight line connecting the queried points
a1 and a2. However, since the exact volumetric computation is not practical due
to data noise, we use a robust off-line estimation of the environment.

The environment map is based on point cloud built from depth measurements
of RGB-D or LiDAR sensors localized to the same reference frame as the pose
vectors a. For model learning and inference, the point cloud is discretized into
an equally-sized spatial grid summed along the vertical axis. The resulting two-
dimensional grid is normalized by the maximum value and thresholded to create
a binary occupancy grid. After that, Canny edge detector [9] with eight-fold
image erosion and dilation gap-filling technique is performed. Then, given two
query points, a1 and a2, a set of grid cells intersected by the straight-line B(p)
between the points’ ground plane projections is generated using Bresenham’s
line algorithm [8].

The proposed PFSR descriptor δPFSR is defined as

δPFSR(p) =

[
‖p‖2
O(p)

]
, (12)

with the occupied ratio O(p) computed as

O(p) =

∑
b∈B(p) occupied(b)

|B(p)|
, (13)

where occupied(b) returns 1 if the cell b is occupied and 0 otherwise.

4 Results

The prediction of the signal strength using all three introduced descriptors em-
ployed in GP-based regression has been examined with real experimental data.
We also compare the GP-based models with pure FSPL model [25] as defined
in (1). All the methods have been implemented in C++ using Limbo [10]. The
GP-based regressor with the descriptor δspatial(p) has been used with the expo-
nential kernel (7) as in [3]. The same kernel is also utilized with δFSPL(p) because
of the identical dimension as for δspatial(p). However, Matern three-halves func-
tion (8) has been used with δPFSR(p) because better results have been achieved



Table 1. Utilized hyperparameters in GP-based communication models.

Descriptor δspatial(p) [3] δFSPL(p) δPFSR(p)

Kernel function Exponential (7) Exponential (7) Matern 3/2 (8)

Prior constant mean −45.00 −45.00 −45.00

l 1.17 0.50 10.00

σ 0.01 0.37 0.05

than with the exponential kernel. We used a grid-search method to find the in-
dividual hyperparameters; the best performing values in the cross-validation are
listed in Table 1.

The training and testing dataset has been collected using measured RSSI
in the Bull Rock cave system using communication nodes with RFM69HCW
transceiver [23] with an output power of 100 mW operating at 868 MHz that
exhibits better around-corner propagation in comparison, e.g., to 2.5 GHz and
5.0 GHz [28]. The module uses a quarter wavelength long whip antenna and
frequency-shift keyring (FSK) modulation schema. Direct measurement of the
RSSI is provided via the internal module circuitry. The RSSI value is numerically
equal to the measured received signal power in units of dBm, rounded to the
nearest integer. The RSSI measurements are accompanied by spatial information
from the Leica TS16 total station. The used environment map for the descriptor
δPFSR(p) has been built using a point cloud assembled from eight full-dome scans
captured by Leica BLK360; each scan contained roughly five million points.

Fig. 1. Visualization of the created environment model of the testing area in the Bull
Rock cave system. The localized point cloud is shown in black color, and a part of the
localized RSSI measurements is depicted in the yellow-purple color map. The yellow
color represents full received signal strength; purple samples are those with a more
attenuated signal. The figure presents a situation with the transmitter position near
the cave entrance.



The whole dataset contains about 4500 samples of the RSSI with the posi-
tions of both transmitter and receiver registered to the global reference frame.
The samples have been collected by fixing the transmitter at five different loca-
tions and moving the receiver through the testing area. A visualization of the
created model of the environment is depicted in Fig. 1. An example of the cre-
ated grid map utilized for computing occupied(b) in (13) is shown in Fig. 2. The
communication models are evaluated in two setups assessing interpolation and
extrapolation capabilities, respectively.

200 220 240 260 280 300
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Fig. 2. A cutout of the relevant area of the occupancy grid with an instance of dataset
in extrapolation setup. Training part is depicted in the red and testing dataset in the
blue.

Table 2. Cross-validation results of RSSI prediction in the interpolation setup.

Method FSPL [25] δspatial(p) [3] δFSPL(p) δPFSR(p)

MAE [dBm] 8.99 4.05 8.19 6.51

RMSE [dBm] 11.31 5.46 10.01 8.93

Monte Carlo cross-validation schema has been used for evaluation in the
interpolation setup. The dataset has been randomly divided into a training set
and testing set 10 times with the train-to-test set size ratio 1 : 9, producing
mutually independent data. The results of the interpolation cross-validation are
summarized in Table 2, where MAE stands for the Mean Absolute Error and
RMSE for the Root Mean Squared Error.



Table 3. Cross-validation results of RSSI prediction in the extrapolation setup.

Method FSPL [25] δspatial(p) [3] δFSPL(p) δPFSR(p)

MAE [dBm] 9.08 16.62 7.71 7.88

RMSE [dBm] 11.42 21.30 9.77 10.37

For the evaluation of the methods in the extrapolation setup, one represen-
tative transmitter location with associated measurements has been utilized as
the test set; the rest of the dataset has been utilized as the training set. The
evaluation results are reported in Table 3. Although the reported results are not
statistically significant due to the size of the dataset, the proposed method with
δPFSR(p) can learn with similar results to δFSPL(p), still beating the FSPL [25].
It is particularly important because the results support the fact that the pro-
posed method can overcome an inherent drawback of the spatial GP [3] in its
inability to spatially extrapolate as indicated for δspatial(p) in Table 3, where the
results are even worse than the simple FSPL model.
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Fig. 3. RSSI predicted while utilizing δFSPL(p) as a function of the distance only and
its prediction variance. The FSPL model assumes omnidirectional antennas, and it is
parametrized with the nominal frequency 868 MHz.

In addition to the cross-validation, we further investigate the examined de-
scriptor functions. The descriptor space of δFSPL(p) can be understood as regres-
sion of the FSPL [25] applied in an obstructed environment. The prediction plot
is shown in Fig. 3. Analogously, the descriptor space of δPFSR(p) is depicted in
Fig. 4. Expectedly, the values predicted by the GP are greatly outlying in areas
where sparse or no samples have been taken as it can be seen in the top right
part of the plot.



Fig. 4. Predicted RSSI mean values with variances in the descriptor space of δPFSR(p).
The plots are clipped to the interval [−20,−100] dBm because the underlying GP
predicts highly outlying values in unobserved feature-value regions with high variances.

Fig. 5. Illustration of extrapolated communication map for fixed transmitter δFSPL(p).

Finally, we provide examples of the extrapolated predictions for the δFSPL(p)
and δPFSR(p) descriptors in Fig. 5 and Fig. 6, respectively. The figures illustrates
that the proposed descriptor δPFSR(p) is able to account for obstacles whereas
δFSPL(p) accounts only for the distance.
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Fig. 6. Illustration of extrapolated communication map for fixed transmitter δPFSR(p).

5 Conclusion

In this paper, we report on building communication maps using a GP-based
framework with three different descriptor functions. We propose a novel descrip-
tor function that characterizes the area between the signal source and receiver.
The proposed approach extrapolates the RSSI values with accuracy an order
of magnitude better than the state-of-the-art method based on the spatial GP
regressor. For future work, we aim to improve the prediction by designing more
informative descriptor functions. Besides, we also aim to collect a larger repre-
sentative dataset by exploiting novel self-localizing handheld device [5].
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