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Abstract. Rough terrain locomotion is a domain where multi-legged
robots benefit from their relatively complex morphology compared to the
wheeled or tracked robots. Efficient rough terrain locomotion requires the
legged robot sense contacts with the terrain to adapt its behavior and
cope with the terrain irregularities. Usage of inverse dynamics to esti-
mate the leg state and detect the leg contacts with the terrain suffers from
computational complexity. Furthermore, it requires a precise analytical
model identification that does not cope with adverse changes of the leg
parameters such as friction changes due to the joint wear, the increased
weight of the leg due to the mud deposits, and possible leg morphology
change due to damage. In this paper, we report the experimental study
on the locomotion performance with machine learning-based inverse dy-
namics model learning. Experimental examining three different learning
models show that a simplified model is sufficient for leg collision detec-
tion learning. Moreover, the learned model is faster for calculation and
generalizes better than more complex models when the leg parameters
change.

1 Introduction

Enhanced terrain traversability of multi-legged robots [15] stems from their rel-
atively complex morphology but comes at the cost of complex locomotion con-
trol [19]. A critical part of the multi-legged locomotion control is the robot state
estimation, including timely and reliable tactile sensing to detect the leg contact
with the ground or obstacles [10,4,2]. The leg contact detection and leg-state
estimation, i.e., assessing whether the leg is supporting the body or not, are
essential in maintaining the attitude of the robot in complex terrains [2,8], and
for the accuracy of the legged-odometry [10,3,4,12]. Further, the foot-contact
detection is utilized to synchronize oscillations in controllers based on neural
oscillators [1,5] or to trigger reflexive behaviors [5,7].

Model-based locomotion control methods [17] use inverse dynamics model
in a contact detection [9]. Their applicability in real-world mobile robotic ap-
plications may be cumbersome due to the difficulty of accurately determining



the various kinematic and dynamic parameters of such analytical models. It
can be especially expected in deployments with increasingly complex scenar-
ios [11,16], where robots might struggle in challenging environments, and their
characteristics might change significantly. Automated parameter identification
and online adaptation of models are beneficial strategies because they can cap-
ture non-stationarities in the mechanical properties of the robot [18]. Such non-
stationarities include the adverse changes of the leg parameters, e.g., friction
changes due to the joint wear, increased weight of the leg due to the mud de-
posits, or leg morphology change because of damage.

Fig. 1. Hexapod walking robot SCARAB (Slow-Crawling Autonomous Reconnaissance
All-terrain Bot) used for the experimental study of machine-learned inverse dynamics.

This work reports on the experimental study of the machine learning (ML)
based inverse dynamics model learning to the locomotion performance of a small
affordable hexapod walking robot SCARAB shown in Fig 1. The employed ML
approaches include linear regression, second-order polynomial regression, and
a three-layered neural network, each learned by the real motion data collected
using the experimental hexapod walking platform. The linear and polynomial
regression can be considered as statistical methods; however, in the experimental
evaluation, we prefer lightweight techniques suitable for online model learning
instead of methods that require extensive training datasets [14]. The performance
of the learned models has been examined with a focus on the following aspects.



1. Comparison of ML-based inverse dynamics models with the baseline analyt-
ical model [6].

2. Model performance w.r.t. the size of the training dataset.
3. Computational complexity of model learning and prediction.
4. Robustness of the learned model to a non-stationary environment.
5. Performance of the collision detection integrated with the ML-based model

compared to the baseline approach [6].

The main challenge of the addressed problem is to learn the leg inverse dy-
namics model to predict the future state of the leg using the current motion
command and the current leg state. The prediction is used to close the feed-
back loop in the leg-contact detection process via the leg state monitoring [9].
ML approaches are well applicable to the addressed problem, as the leg state
is influenced by numerous factors, including the previous trajectory of the leg.
The performed experiments indicate that the learned dynamic model provides
a similar performance of inverse dynamics regression and collision detection as
the baseline dynamic model [6], but it is computationally less demanding. The
results show a more reliable prediction of the learned model than the baseline
model when the leg parameters change, which supports the idea of ML-based
adaptive online incrementally learned locomotion controller.

The remainder of the paper is organized as follows. Section 2 details the
studied problem and briefly presents the baseline model [6] used in the evalu-
ation. The examined ML regressors are briefly described in Section 3. Results
on the experimental deployment are reported in Section 4. Finally, Section 5 is
dedicated to concluding remarks.

2 Problem Statement

addressed problem is to learn the robot leg inverse dynamics model to predict
the collision-free motion of the leg. In this section, a background of the robot
leg inverse dynamics model [6] is provided that is utilized in the experimental
verification of the studied ML-based models. Besides, the baseline locomotion
controller is briefly described in Section 2.2.

2.1 Leg Inverse Dynamics Model

The inverse dynamics can be modeled analytically using Euler-Lagrange for-
mulation [17] for the vector of the generalized n-dimensional coordinates q =
{θ1, θ2, · · · , θn}, corresponding to the leg joint angles

D(q)q̈ +C(q, q̇)q̇ +G(q) = τ , (1)

where D(q) is the inertia matrix of the chain of the rigid bodies, C(q, q̇) is a
tensor representing the centrifugal and Coriolis effects induced on the joints,
G(q) is the vector of moments generated at the joints by the gravitational ac-
celeration, and τ is the vector of actuation torques at the respective joints. All



the terms D(q),C(q, q̇), and G(q) depend on a set of parameters that has to be
identified. The most influencing parameters, w.r.t. the precision of the inverse
dynamic model, are the leg links inertia matrices and the estimated frictions
in the leg joints. Due to the complexity of the calculation and measurement of
the inertia matrices, simplified models such as point mass and rigid-rod models
are used for the model calculation, which introduces error into the prediction of
the inverse dynamics. Moreover, the inertia matrices are most influenced by the
non-stationarities that may occur during the robot deployment.

In our particular case of SCARAB, the servo motors provide only the position
feedback. Furthermore, the torque nor the electric current is measured, which can
be utilized for joint torque estimation. Therefore, an additional step in the inverse
dynamics modeling is necessary. The real behavior of the actuator composed of
the motor and reduction gear is modeled together with the underlying servo
motor controller. The dynamic model is given by

Jq̈M +Bq̇M + F (q̇M ) +Rτ = K V, (2)

where qM is the rotor position angle before the reduction, J is the rotor inertia,
B is the rotor damping, F is the sum of the static, dynamic, and viscous frictions
that depend on the current rotor speed, R is the gearbox ratio, τ is the servo
motor torque, K is the back electromotive force, and V is the motor voltage. The
appropriate values of J,B, F,R, and K have to be experimentally identified using
the real servo motor and the values specified in the manufacturer datasheet.

The servo motor controller is modeled as the P-type position controller, which
sets the voltage as V = kP · err, where kP is the controller gain, and err is the
difference between the set position and the current position of the actuator. The
controller operates with 1 kHz frequency. The complete model of the leg inverse
dynamics in the joint angles can be derived by substituting (2) into (1).

The major issue of the analytical inverse dynamic model is the numerous
joint-related and link-related parameters that have to be identified before using
the inverse dynamics model. The identification process and parametrization of
the baseline model are detailed in Section 4.

2.2 Hexapod Robot Locomotion Controller

The inverse dynamics model is utilized in the position tracking controller [6]
that executes the leg trajectory step-by-step. At each step, the controller reads
the current joint angles and compares them to the predicted values provided by
the inverse dynamic model. The actuator is iteratively commanded with a new
desired position θdes, and the tracking continues until the difference between
the real measured position θreal and the position estimated by the model θest is
above the threshold εthld that indicate a tactile event is recognized. This simple
principle allows for terrain negotiation and rough terrain locomotion even with
affordable multi-legged platforms with the position feedback only. However, the
performance of the locomotion controller tightly depends on the precision of
the inverse dynamics model and identification of its parameters. Therefore, we



aim to employed ML-based techniques for estimating the leg inverse dynamics
model to avoid the cumbersome identification of the parameters needed in the
analytical model. The ML-based methods considered in our experimental study
are described in the following section.

3 Learning-based Inverse Dynamics Models

The main motivation behind using the ML-based model of the leg inverse dynam-
ics is to overcome the cumbersome identification of the analytical model. For the
considered SCARAB, 18 sets of joint and 18 sets of link parameters have to be
found. Additional parameter changes are introduced by the non-stationary elec-
trical and mechanical characteristics of the servo motor that change due to the
heating up, gearbox wear-out, and variations in the link shape and mass caused
by imperfect 3D printing and also environmental effects. A robust robotic sys-
tem should overcome parameter variations, but the analytical inverse dynamic
model lacks such ability as it requires an online parameter identification step
of the adaptive control [17]. Therefore we prospect ML techniques to learn the
model.

In the experimental evaluation, we focus on lightweight ML techniques that
do not require extensive training datasets like deep-learning-based techniques [14].
We consider three ML approaches: (i) Ordinary Least Squares regression (OLS)
further referred to as the linear regressor ; (ii) Ordinary Least Squares regression
with second-order polynomial features denoted the polynomial regressor, and (iii)
three-layer feedforward neural network with Rectified Linear Unit (ReLU) acti-
vation function further referred to as ReLU regressor. The used learning input
is formed from the n most recent triplets of the discrete position measurements
accompanied by the triplets of the desired positions set to the servo motors
further considered with the known baud rate. The regressors are trained to pre-
dict the leg dynamics for m steps to the future. The second-order differential
equations (2) are used for the robot leg dynamics. The value of the dynamic
variables can be estimated from at least three recent position samples, but we
use n = 4 the most recent measurements. The expected leg position is predicted
two-steps-ahead m = 2, as possible delay can occur in the data flow pipeline,
and predictions into a more distant future are losing accuracy.

The regressors have been implemented in Python with the Scikit-learn li-
brary [13] for the linear and polynomial regressors, whereas the ReLU regressor
uses Chainer framework [20] with 100 neurons in the hidden layer and Leaky
ReLU activation function. The ReLU regressor hidden layer size has been se-
lected randomly as the hyper-parameter search would require extensive testing.
The main aim of this work is to experimentally validate the concept of inverse
dynamics learning for the small legged robot. The performance of regressors
compared to the baseline analytical model [6] is reported in the following sec-
tion.



4 Experimental Evaluation

The performance of the three regressors of the leg inverse dynamics has been
validated in the experimental deployment scenarios with the hexapod walking
platform SCARAB shown in Fig. 1. SCARAB is an affordable six-legged robot
with 18 controllable degrees of freedom, actuated by 18 Dynamixel AX-12A
servo motors. Three servo motors per each leg are named according to the ento-
mology nomenclature (from the body to foot-tip): coxa, femur, and tibia. Each
Dynamixel AX-12A actuator enables position control with the internal P-type
controller and provides reading its current position at the limited rate of 1000 Hz.
All the experiments have been performed using the laptop computer with the
dual-core Intel Core i5-3320M CPU @ 2.60 GHz, 16 GB RAM without GPU ac-
celeration, running Ubuntu 18.04 Bionic Beaver operating system with the ROS
melodic.

Table 1. Mechanical properties of SCARAB

Product Variable Measurement Unit Description

Coxa ac 52 mm Coxa link length

CoM 1 acc 25 mm Coxa link center of mass position

Mass 1 mc 20 gm Coxa link mass

Femur af 66 mm Femur link length

CoM 2 acf 20 mm Femur link center of mass position

Mass 2 mf 115 gm Femur link mass

Tibia at 132 mm Tibia link length

CoM 3 act 50 mm Tibia link center of mass position

Mass 3 mt 62 gm Tibia link mass

The baseline analytical model [6] is parameterized using mechanical proper-
ties as in Table 1 utilized to calculateD,C, andG of (1). The rigid rod simplified
model has been used to calculate the inertia matrices. The dynamic model de-
fined by (2) has been parameterized by values from experimental identification
based on measured two reference positions for the actuator moving forth and
back without load for different control voltage. The identified minimum voltage
is vmin = 0.5 V that defines the maximal static friction as F ' (k/Ra)vmin, where
k = 3.07 · 10−3N m A−1 is the back EMF constant, and Ra = 6.5 Ω is the motor
resistance, which can be found together with the gearbox ratio R = 1/254 in the
actuator datasheet. The values of the parameters have been estimated using the
minimum square root method with Euler’s method employed in the solution of
(2). The identified parameters of the Dynamixel AX-12A are listed in Table 2.

The experimental examination of the regressors is based on the off-line pro-
cessed datasets collected using SCARAB. A single leg data has been utilized as
all the legs share the same morphology apart from minor differences in the servo



Table 2. Dynamic model parameters of the Dynamixel AX-12A

Parameter Value Unit

J 1.032 · 10−7 kg m2

B 3.121 · 10−6 N m s

F 2.369 · 10−4 N m

R 3.937 · 10−3 -

K 3.912 · 10−3 N m A−1

motor orientation and offset angles. Nine datasets have been collected, captur-
ing different leg movements with various induced non-stationarities that alter
the leg parameters. The individual datasets listed in Table 3 and the made leg
modifications are depicted in Fig. 2.

Table 3. List of collected datasets

#
Dataset Dataset

Induced modifications
name size [n]

1 Vanilla 55 333 No modifications

2 halved(t) 27 859 Weight of tibia link reduced by 12 g (see Fig. 2a)

3 weight(t) 27 033 Weight of tibia link increased by 31 g (see Fig. 2b)

4 weight(f) 27 603 Weight of femur link increased by 31 g (see Fig. 2c)

5 loosen(t) 26 994 Tibia link freely moving regardless of tibia servo position

6 rubber(t) 27 277 Tibia joint load increased with rubber band (see Fig. 2d)

7 rubber(f) 27 273 Femur joint load increased with rubber band (see Fig. 2e)

8 rubber(f,t) 27 493 Merge of rubber(t) and rubber(f) setups (see Fig. 2f)

9 collision 100 Different obstacles placed in the pathway of the leg to in-
duce leg collisions

The datasets 1 and 2–8 have been collected using 2000 and 1000 randomly
chosen target points within the leg’s operational space, respectively, and in-
terpolating the path between the targets with the maximum allowed step size
of 0.4 mm, which is transferred into the joint coordinates using inverse kinemat-
ics. The path in joint coordinates is then executed in the open-loop by command-
ing the leg servo motors with the desired joint angles. For all the datasets, the
desired joint angle θdes and the real (measured) joint angle θreal were collected
from the daisy-chained leg servo motors at the highest possible sampling rate
of 100 Hz. The Ordinary Least Squares method is used for training linear re-
gressor and polynomial regressor, whereas the ReLU regressor has been trained
using backpropagation.

The performance of the learned regressors is studied in five benchmarks fo-
cused on: (1) model precision, (2) model generalization to the cases with the



(a) halved (t) (b) weight (t) (c) weight (f)

(d) rubber (t) (e) rubber (f) (f) rubber (f,t)

Fig. 2. Leg modifications to simulate non-stationarities and alter leg parameters.

induced non-stationarities, (3) size of the training set, (4) computational re-
quirements, and (5) the final deployment in the leg contact detection scenario.
In each benchmark, the trained regressors are requested to process the collected
time-series testing data per individual sample. The testing error is calculated
as the difference θerr = |θest − θreal| between the one-step look ahead regres-
sor prediction and the corresponding real measured error. The cumulative mean
absolute error (MAE) is then used to report the results.

Table 4. Cumulative mean absolute prediction error

Method Cumulative Mean Absolute Prediction Error [rad]

Baseline dynamic model 0.0170

Linear regressor 0.0069

Polynomial regressor 0.0068

ReLU regressor 0.0075
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Fig. 3. Example of the estimated leg trajectory in joint angles (left column) and the
corresponding prediction accuracy calculated as θerr = |θest − θreal| (right column) for
considered regressors. In the presented example, the leg follows a random trajectory.
The MAE of θerr is used to report the results.

Model precision has been studied on the regressors learned on the vanilla dataset
and compared to the base analytical model. The vanilla dataset has been divided
into training and test data with a 0.5:0.5 ratio. The cumulative mean absolute
errors are depicted in Table 4, and an example of the estimate positions and
the prediction error is shown in Fig. 3. The results indicate that considered
ML approaches cope better with the leg position estimation than the baseline
model [6].

Generalization ability has been examined using regressors learned using the
vanilla dataset that has been then utilized for prediction using the datasets
2 to 8 collected on a modified leg mimicking parameter changes. For each sce-
nario, the cumulative mean absolute error over all three servo motors has been
computed to examine how regressors generalize leg dynamics and handle changes
in its parameters. The results presented in Fig. 4 indicate that the ML-based
approaches perform better compared to the baseline model.

Size of the training set influences the quality of the prediction. Besides, a new
dataset can be collected when the model becomes inaccurate during the deploy-
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Fig. 4. Mean absolute prediction error of the regressors learned using the vanilla
dataset in scenarios with differently modified leg morphology.

ment, and the regressor can be retrained in an online learning fashion. Learning
from a relatively small batch of data is desirable to enable relearning from data
collected in the field. We examine the mean prediction accuracy based on the
size of the training set. Since the servo motor joint angle is periodically read at
the rate ∆t = 10 ms, it is possible to directly compute how long it takes to col-
lect a dataset with a particular number of samples. Hence, the size of the vanilla
dataset has been utilized to create a sequence of logarithmically increasing time
intervals of training data corresponding to the period 0.1 s to 30 s. For each such
time interval of m samples, a random starting point has been selected within the
range [0, n−m], where the n is the number of samples in the dataset. Following
m samples have been selected from the vanilla dataset to learn the regressors
initialized at random. Ten independent trials have been performed to examine
the cumulative mean absolute prediction error. The five-number summary shows
the minimum value, lower quartile, median value, upper quartile, and maximum
value. The cumulative error per trial is computed using prediction error for all
three servo motors of the leg. The influence of prediction error on the training
set size is shown in Fig. 5.

The reported results suggest that the size of the training set required to
surpass the baseline model by the learned regressor significantly depends on the
particular regressor as both the error and its variance decrease with the size of
the training set. The ReLU regressor seems to be unsuitable for online learning
because a competitive performance with the baseline model is achieved with
the considerably large training dataset, which is likely caused by the size of the
hidden layer. On the other hand, for the linear and polynomial regressors, it
takes only a few seconds of the collected data to surpass the laboriously crafted
baseline dynamic model [6].
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Fig. 5. Cumulative mean absolute prediction error for training set of different size.
The shown five-number summary is computed from ten independent trials. Note both
axes are in the logarithmic scale.
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Fig. 6. Required computational time to train the examined regressors based on the size
of the training set. The real computational time is shown as the five-number summary.

Computational requirements are essential when the method is deployed onboard
of the walking robots as computational-demanding methods increase power con-
sumption and decrease the operational time. The required computational time
for learning the changed-parameter leg dynamics increases the training time and
slows down the average robot speed in online learning. The time spent in pre-
diction might increase the gait control period and thus also decrease the robot
speed. The training depends on the size of the training set. Therefore, the re-
quired computational time for regressors training has been examined using the



vanilla dataset with logarithmically increasing time intervals of the training data
starting at 0.1 s to 30 s. The plot of the five-number summary of the required
computational time is depicted in Fig. 6. The mean required computational time
for prediction using the baseline model and learned regressors is listed in Table 5.

Table 5. Mean required computational time for position prediction

Method Prediction time [µs]

Baseline dynamic model [6] 6.7

Linear regressor 0.5

Polynomial regressor 13.8

ReLU regressor 9.5

The results indicate that real computational requirements are insignificant
even for relatively large input data in the linear and polynomial regressors. The
ReLU regressor is about several orders of magnitude more demanding because
of the underlying backpropagation.

Contact detection represents a practical use case of the position prediction that
enables the legged robot to negotiate the terrain. In this setup, the leg follows a
circular trajectory with the diameter 10 cm, regularly sampled to 100 data points,
with period 1 s. The trajectory has been performed in six trials. During the first
trial, denoted T1, the leg followed the trajectory freely without any collision.
The collected data has been then used for the detection of leg contact with an
obstacle. The contact is detected whenever the prediction error θerr = |θest−θreal|
is above the predefined threshold value ethld = 0.052 rad. An obstacle has been
placed into the leg trajectory for all other trials causing the leg to collide at
different trajectory parts. For the trials T2, T3, and T4, only the foot-tip has
been in contact with the obstacle. For T5 and T6, the collision occurred with
the femur link. The course of the position error θerr shown up to the collision
detection is visualized in Fig. 7.

The presented results suggest that the linear and polynomial regressors pro-
vide similar performance to the baseline dynamics model. In the descending part
of the trajectory, these regressors predict the collisions using a few samples of
the baseline model. The linear regressor reports the collision sooner than the
baseline model. During the ascending phase of the circular movement, the errors
of the regressors’ prediction exceed the threshold a few samples late than the
baseline. On the other hand, the ReLU regressor failed in all scenarios, which
is most likely because the vanilla dataset size is not large enough to train the
ReLU model with its 100 neurons in the hidden layer properly, albeit the main
prediction error is lower than the baseline model, as shown in Table 4 and Fig 5.
As the comparison in Table 4 is based on the mean absolute error, it may cover
up erroneous behavior that will only become apparent in the collision detection
experiment.
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Fig. 7. Plots of the prediction accuracy calculated as θerr = |θest − θreal| of each leg’s
joints for the particular trials shown up to the collision detection using the threshold
value ethld = 0.052 rad. The first trial T1 is an obstacle-free trajectory. An obstacle has
been placed at a different part of the trajectory in the five other trials T2, . . . , T6. The
annotated vertical lines represent the contact of the corresponding regressor and trial
with the respective color-coding.

5 Conclusion

Three learning-based approaches for inverse dynamics model learning of hexapod
walking robot have been examined and compared with the baseline analytical
dynamic model. Based on the reported results from five evaluation scenarios, the
performance of the learned models is competitive to the baseline model, which
requires laborious identification of the proper values of the model parameters.
The learned models achieved higher precision than the baseline approach, and
all the regressors demonstrate generalization to changes in the leg properties.
The linear and polynomial regressors further show satisfactory performance for
the practical deployment in the collision detection scenario. As our future work,
we plan to deploy the regressors for online learning in real-life environments.
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