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Abstract. In this paper, we report on the experimental evaluation of the
embedded visual localization system, the Intel RealSense T265, deployed
on a multi-rotor unmanned aerial vehicle. The performed evaluation is
targeted to examine the limits of the localization system and discover its
weak points. The system has been deployed in outdoor rural scenarios
at altitudes up to 20 m. The Absolute trajectory error measures the
accuracy of the localization with the reference provided by the differential
GPS with centimeter precision. Besides, the localization performance is
compared to the state-of-the-art feature-based visual localization ORB-
SLAM2 utilizing the Intel RealSense D435 depth camera. In both types
of experimental scenarios, with the teleoperated and autonomous vehicle,
the identified weak point of the system is a translation drift. However,
taking into account all experimental trials, both examined localization
systems provide competitive results.

1 Introduction

A precise and reliable localization system is necessary for many robotics and re-
lated applications, including mapping, augmented reality, and fully autonomous
deployments of mobile robots. In this work, we consider the mobile robotics
domain with the primary focus on localization systems for Unmanned Aerial
Vehicles (UAVs) in applications such as autonomous navigation, exploration, or
perimeter monitoring, where a full 6 DOF localization is required. The existing
localization solutions can be broadly divided into two classes. The first class
contains systems that require external infrastructures, such as the Global Nav-
igation Satellite System (GNSS) [13] or optical systems operating on the line
of sight [6,17,7]. The great advantage of these localization systems is the lim-
ited accumulation of localization errors, even in large-scale scenarios. However,
these methods are limited by the needed infrastructure, particularly not suitable
for large scale indoor environments without prior preparations or scenarios with
many obstacles shading signal or line of sight. On the other hand, systems of the
second class rely only on sensors mounted on the robot. These methods are much
more suitable for unknown environments, where external infrastructure cannot
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Fig. 1. The unmanned aerial vehicle DJI Matrice 600, which was deployed during the
experimental evaluation.

be prepared in advance. Such localization systems mainly use Light Detection
and Ranging (LiDAR) sensors [22] and different types of cameras [11].

In recent years, sensors for visual localization have been introduced, includ-
ing the Intel RealSense T265 tracking camera [15] that is referred to as the T265
for short in the rest of the paper. The T265 provides image data, and it is also
capable of processing the data by its embedded visual processing unit Movidius
Myriad 2.0, capable of doing all the computations needed for visual localiza-
tion. The power effectiveness is a great advantage of embedded solutions for the
localization since the visual localization algorithm might run on dedicated com-
putational resources of the camera itself, saving the main onboard computational
resources of the UAV. The saved computational power can be thus utilized for
navigation and real-time mapping tasks, or even more sophisticated tasks like
autonomous exploration. The features and benefits of embedded solutions based
on the T265 and recent successful deployments on the ground legged walking
robots [4,16] motivate us to examine its performance for localization of small
UAV, see Fig. 1. Thus, we evaluate the T265 as a vision-based localization sys-
tem that uses affordable off-the-shelf lightweight cameras. Besides, we compare
the performance to the state-of-the-art localization method ORB-SLAM2 [20].

The rest of the paper is organized as follows. Principles and related evalua-
tions of the visual localization methods are presented in Section 2. The evaluation
method utilized for the evaluation of the visual localization is overviewed in Sec-
tion 3. The resulting localization precision measured during the deployments is
reported in Section 4. The concluding remarks on the achieved localization pre-
cision and limits of the embedded localization system are presented in Section 5.



2 Related Work

Two recent compact sensors for vision-based localization are available on the
market nowadays: the ZED mini [27] and Intel RealSense T265 [15], shown in
Fig. 2a. Both of them are passive fisheye stereo cameras. ZED mini primary
targets augmented reality applications, and it requires external computational
power for GPU-based acceleration of the visual localization algorithms. On the
other hand, the T265 runs all the computations onboard using a power-efficient
visual processing unit, which can save the computational and power resources
such, e.g., as reported in [4]. The T265 is thus a suitable choice for embedded
localization for small robotic vehicles such as multi-rotor UAVs.

(a) Intel RealSense T265. (b) Intel RealSense D435.

Fig. 2. Cameras used for the visual localization.

The parameters of the T265 are promising, but the experimental evaluation
is important for the verification of the localization performance in real-world
scenarios because the real localization performance is affected by multiple factors
that are related to the

– precision of the localization algorithm itself;
– properties of the environment;
– sensory equipment;
– computational resources (if limited);
– and motion of the platform with the sensors.

The experimental evaluations (to the best of the authors’ knowledge) have
been reported only for indoor conditions or carried by humans [23,2,18,5,1]. In
these scenarios, the T265-based localization system is reported to with satis-
factory performance. Thus, in the herein presented results, we aim to push the
localization system to its limits. We deploy the system in real-world outdoor
scenarios with the DJI Matrice 600 operating in a rural-like environment. The
precision of the localization is measured as in [23] using the well-established
metric of the Absolute Trajectory Error (ATE) [28].

Besides, a state-of-the-art vision-based localization method has been selected
to provide a baseline solution for the selected scenarios using a traditional ap-
proach with cameras and data processing on dedicated standard computational
resources. There are many different visual localization approaches mentioned in
the literature. One of the differences between the methods is in the required
sensory equipment. Techniques such as [9,10,21] use monocular cameras. Other



Fig. 3. Examples of image features detected by ORB-SLAM2 [20].

approaches use stereo cameras [29,24] and RGB-D cameras [8,30]. The stereo
and RGB-D cameras can be considered more sophisticated than monocular cam-
eras regarding the sensory equipment, and their advantage is the reduced drift
of the map scale. Besides, the map initialization is easier as bootstrapping is
avoided [12]. Thus, we focus on the stereo and RGB-D localization methods
capable of being used with various sensors.

A representative approach is the ORB-SLAM2 [20], a state-of-the-art publicly
available localization method, reported to perform well on datasets [19,28,26] and
often used as the baseline for comparing different localization approaches [2].
Based on our previous work [4,3], we have chosen to use the feature-based lo-
calization method ORB-SLAM2 together with the RGB-D camera Intel Re-
alSense D435 [14], shown in Fig. 2b. An example of the detected ORB features
used by ORB-SLAM2 is in Fig. 3.

3 Evaluation Method for Localization Systems

In the literature, the localization systems are compared by the precision of trajec-
tories obtained during an experiment. A comparison of the localization systems
solely based on the trajectories allows us to compare black-box localization sys-
tems like the T265, where a detailed description of the particular algorithms is
not provided. For such purposes, there is a well-established metric of the Ab-
solute Trajectory Error (ATE) [28]. A ground truth trajectory and trajectories
estimated by the localization systems under the examination are required to
compute the ATE. Besides, it is also necessary to have the trajectory estimate
and ground truth with poses that correspond to the same timestamps. Therefore,
the trajectories have to be time-synchronized using interpolation or by finding
the nearest neighbor [28] if the ground truth trajectory is provided with a differ-
ent frequency than the trajectory estimate. In this work, the linear interpolation
of the positions and Linear Quaternion Interpolation (LERP) of the orientation
represented by the quaternions is utilized.



Once the trajectories are time-synchronized, they are processed by the ATE
metrics. The ATE is defined in [28] by the equation

Fi = Q−1
i SPi, (1)

where the matrices Qi and Pi are SE(3) pose of the ground truth and estimated
trajectory, respectively. The matrix S is a transformation between the coordi-
nate frames of the ground truth and trajectory estimate. According to [28], the
transformation is obtained by minimizing the squared distances between the
corresponding positions of the trajectory estimate and the ground truth.

The average value is used to generate a statistical indicator from the error
for the whole trajectory

ATEt =
1

n

n∑
i=1

‖ trans(Fi) ‖, (2)

where trans() computes the size of the translation from the SE(3) matrix. In
the results reported in Section 4, we assume only the translation errors because
the ground truth is provided in 3 DOF only.

4 Results

The UAV has been experimentally deployed in the outdoor environment of the
rural deployment scenario shown in Fig. 4. The UAV was flying in the exper-
imental setup at different altitudes: 5, 10, 15, and 20m driven manually by a
human operator and autonomously by the DJI autopilot, to verify the ability
of the localization system to work with the absence of close objects while being
exposed to different motions. Two pairs of the Intel RealSense cameras were
mounted on the UAV. The first pair is pointed to the front tilted by 45◦, the
second pair is oriented to the rear side and tilted as well, see Fig. 5.

Data from all the sensors were collected using the ROS middleware [25]. The
localization from tracking cameras is captured directly during the experiments
together with the RGB-D data. The localization provided by the ORB-SLAM2
was generated by processing the RGB-D data from the rosbag dataset cap-
tured during the experiment. The ROS rosbag captures data incoming from
the sensors as provided by the sensors. It also enables processing the data at
different speeds to simulate different computational power. Thus, the RGB-D
data were processed by the ORB-SLAM2 at two different speeds. The first pro-
cessing speed is to simulate online processing, and it is denoted online-speed.
The second speed is denoted half -speed, and it corresponds to two times more
computational time for processing the captured images than processing them
in real-time. The ORB-SLAM2 was run on the regular computer with the Intel
i5-5257U processor running at 2.7GHz with 4 GB of memory. The Differential
GPS provided the ground truth trajectory with a centimeter precision at 10Hz.



Fig. 4. The deployment scenario in the rural-like environment.

Fig. 5. The sensory equipment used during the experiments attached to the UAV; the
first pair of the Intel RealSense cameras is pointed to the front. The second pair is
pointed to the rear side.

4.1 Localization error

The mean ATE for all experimental trials is summarized in Table 1. Each ex-
perimental trial contains several circular flights that are illustrated on Trial 1 in
Fig. 6. The results show that the ORB-SLAM2 provides the best results with the
front camera in Trial 1 and Trial 3. On the other hand, the T265 provided better
results in Trial 2 and Trial 4. In the case the UAV was teleoperated manually,
the angular velocity of the helicopter was always under 30 ◦ s−1. In Trial 2, the
UAV flew autonomously between preselected waypoints. On each waypoint, the
UAV turned with an angular velocity above 30 ◦ s−1, which induced failure of
the localization based on the ORB-SLAM2 in combination with the front D435
camera. Trial 2 is visualized in Fig. 7. It is possible to overcome the localization
failure using more computational power, which can be observed for half -speed



Fig. 6. Trial 1: Two circular flights.

results. However, the drift at the corners of the trajectory is still very high;
see Fig. 7b. Contrary, the effect of the high rotational speed on the localization
quality is not observed for the T265.

The relatively small localization error provided by the T265 can be observed
for Trial 4 shown in Fig. 8, where the UAV flew at altitudes of 10m, 15m, and
20m. Based on the deformation of the trajectory estimated by the T265, shown
in Fig. 7a and Fig. 8, it can be observed that the localization suffers mostly from
the translation drift, not the orientation drift.

Table 1. The mean absolute trajectory error for front and rear setup in all four ex-
perimental trials.

Trial Flight mode
Length T265

ORB-SLAM2
online-speed half -speed

[m] Front Rear Front Rear Front Rear

Trial 1 Manual 174 3.01 4.01 0.75 2.41 0.69 2.38
Trial 2 Autonomous 170 1.57 4.63 lost 4.12 7.12 4.58
Trial 3 Manual 596 3.84 6.37 1.92 4.09 1.63 3.07
Trial 4 Manual 1175 0.91 6.14 1.96 4.92 4.51 3.77

All results provided by the ORB-SLAM2 were evaluated on a computer with the Intel
i5-5257U and 4 GB of memory. Half -speed means that the ORB-SLAM2 has twice more
time to process the incoming data than in the online case.



(a) Intel RealSense T265

(b) ORB-SLAM2

Fig. 7. Trial 2: UAV trajectories obtained during the autonomous flight.

4.2 Remarks on Practical Usage of the Intel RealSense Cameras

The deployed sensor system contained the two T265 and two D435 cameras,
connected to a single Intel NUC computer. Generally, the USB 3 bandwidth of
various NUC computers is sufficient to stream data from more than two pairs
of Intel RealSense cameras. However, the camera driver for Ubuntu with the



(a) Side view of the whole trajectory.

(b) Altitude 10m. (c) Altitude 15m. (d) Altitude 20m.

Fig. 8. Trial 4: Visualization of the localization drift for different altitudes during the
long UAV flight. The places where the T265 induced fast changes of the estimated pose
are visible at the altitude of 20m; this phenomenon is observed from 10m altitude for
the rear T265 camera.

ROS1 requires a particular launch sequence to detect all the cameras correctly.
The cameras have been therefore launched one-by-one in a fixed order with more
than 20 s delay. Besides, resetting USB hubs before starting the launch sequence
has been found necessary.

5 Conclusion

The examined embedded localization system Intel RealSense T265 provided com-
petitive results in the realistic outdoor deployment scenario to the state-of-the-
1 Available at https://github.com/IntelRealSense/realsense-ros.

https://github.com/IntelRealSense/realsense-ros


art localization method ORB-SLAM2. In half of the experimental trials, the T265
performed even better than the ORB-SLAM2. Especially in the trial, where the
UAV was controlled autonomously with an angular velocity above 30 ◦ s−1 at
corners of the trajectory. The effect of the high angular velocity of the UAV has
not been observed for the T265, which makes it superior to the ORB-SLAM2 in
applications where such motions are required. Moreover, the flight altitude effect
on the localization performance was for the front T265 camera observed only at
altitudes above 15m. On the other hand, in half of the trials, T265 suffered from
translation drift. For both localization systems, the front UAV cameras provided
better results in nearly all cases.

Most of the localization error is accumulated at the start of the trajectory.
Therefore, we aim to investigate the impact of the takeoff on the localization
system and the consequences of the camera orientation in future work.
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