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Abstract. Predicting mobile robots’ traversability over terrains is cru-
cial to select safe and efficient paths through rough and unstructured en-
vironments. In multi-robot missions, knowledge transfer techniques can
enable learning terrain traversability assessment the robots did not expe-
rience individually. The knowledge can be incrementally aggregated for
homogeneous robots since they can treat foreign knowledge as their own.
However, robots with different perceptions might experience the same
terrain differently, so it is impossible to aggregate the shared knowledge
directly. In this paper, we show how to learn a model that transfers the
experience between heterogeneous robots, enabling each robot to use the
whole sum of the experience of the multi-robot team. The proposed ap-
proach uses correlation to combine individual neural networks that assess
the traversability of individual robots. The presented method has been
verified in a real-world deployment of multi-legged walking robots with
different cost assessment policies.
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1 Introduction

The studied transfer learning is motivated by deployments of a heterogeneous
team of multi-legged walking robots, each exploring and perceiving various ter-
rain types. It is desirable to explore as quickly and efficiently as possible during
terrain exploration. As the robots are deployed, they collect a large amount of
information about the environment and experience the traversability cost of the
traversed terrain. The collected traversability information can be encoded into
a traversability cost model that can assess the cost; however, such a quality
assessment is limited to the experience collected by the individual. A group of
cooperating robots can improve their performance on a given task by sharing
their experiences. The knowledge of each robot can be enhanced by sharing the
obtained knowledge among the robots. Hence, it can enable the team to improve
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its overall performance. Motivated by groups of social animals learning experi-
ences from one another [17], we aim to implement such transfer learning patterns
into multi-robot systems.

Furthermore, missions such as exploration of unknown environments can be
speeded up by parallelization of the exploration process using a large group of
robots [23]. Thus, having multiple robots, we can explore transferring the col-
lected knowledge between the robots. For homogeneous teams with a single robot
type, the knowledge transfer that is called inductive transfer learning [14] can be
utilized [21]. Such a transfer is possible only when all robots have the same mor-
phology and sensor equipment; otherwise, the homogeneity of the team is lost.
Changes in morphology or equipment can lead to variation in the terrain percep-
tion. However, changes of the identical robots can be caused by damage to the
robot during the mission or hardware updates in later operational deployments.
With inductive transfer learning, changed robots would not contribute to the
shared knowledge nor benefit from it. In that perspective, heterogeneity seems
to be natural, highlighting the importance of transfer learning in multi-robot
heterogeneous team [13].

Fig. 1. The used hexapod walking robot in the experimental deployment of the pro-
posed method in the Bull Rock Cave, where it builds elevation map and collects the
dataset.



We propose a transfer learning method to share knowledge among hetero-
geneous robots to enhance their cost assessment capabilities. In the proposed
approach, the robots transfer their individually learned models implemented as
the Convolutional Neural Network (CNNs) regressor. For knowledge transfer
between two different robots, correlation of predictions on terrains traversed by
both robots is used to determine the relationship between the models, thus creat-
ing an augmented model. After the relation between models is learned, the robots
are ready to exchange the traversal experience they have already collected. The
proposed approach has been experimentally verified on data from the deploy-
ment of a real hexapod walking robot with adaptive locomotion control [5] in
a natural cave system, see Fig. 1. Based on the achieved results, the proposed
method allows two robots to share the knowledge and exploit the traversability
cost models experienced by the other robot.

The paper is organized as follows. Section 2 summarizes related work with the
emphasis on traversability assessment and transfer learning techniques deployed
in robotics. The proposed transfer learning method is introduced in Section 3. In
Section 4, we report on the experimental results of the proposed method using
real hexapod walking robots. The paper is concluded in Section 5.

2 Related Work

Traversability assessment is studied in various fields such as planetary explo-
ration [20,6], search and rescue missions [3], and agriculture, or off-road driv-
ing [8]. Two main classes of approaches can be identified in the literature:
traversability classification and prediction of traversability cost as a continuous
score. The simplest terrain classification can be a binary classifier to determine
whether the terrain is traversable or not [10]. However, the authors of [6] report
improved path planning results avoiding impassable terrain and also better-
optimized paths using a continuous score. Therefore, in this paper, we follow the
idea of traversability as a continuous score.

The traversability assessment can be based on proprioceptive and exterocep-
tive sensory signals, where the exteroceptive data processing approach can be
further categorized into geometry- or appearance-based [15]. Nevertheless, hy-
brid methods might benefit from combined approaches. The rest of this section
provides an overview of the most related traversability approaches to support
our traversability assessment choices.

Proprioceptive traversability assessment uses information captured by sen-
sors that measure the robot’s internal properties during the robot’s interaction
with the terrain, e.g., speed, tilt, shakiness, energy, or vibration. Thus, the pro-
prioceptive traversability assessment can estimate traversability only on cur-
rently traversed terrains. An example of traversability assessment based on the
energy expenditure is reported in [12].

The exteroceptive, geometry-based approaches use range measurements such
as LiDARs and RGB-D cameras to construct maps of the perceived environment.
The maps are then used to examine terrain properties such as roughness, edges,



slope, or features the robot might not be able to traverse. Obstacle extractions
from the maps using filtering and clustering are presented in [16]. On the other
hand, the visual appearance of the terrain can be studied using image-processing
and classification of terrain types into categories with defined properties [1].
Methods using appearance and geometrical properties might suffer from wrongly
classified terrains in cases where range sensing is not sufficient, e.g., unexpected
covered hole [22]. Therefore, we have chosen hybrid approaches to leverage the
advantages of the individual methods.

In addition to traversability assessment, transfer learning is assumed to im-
prove the assessment by exploiting individual experiences of the particular robots
in a team. Transfer learning can be defined as a machine learning approach to
boost the knowledge in the target domain by the transfer from the source do-
main [24]. Transfer learning is already established technique in the fields such as
text [7] and image [18] classification. In [24], the authors combine text and image
classification using the matrix factorization method to enhance image classifi-
cation by information extracted from their annotations, thus merging the two
tasks.

Similar to text and image classification, robotics is a domain where labeled
data are costly to obtain. Besides, it is relatively hard to train robots to adapt
to the demands of various environments. The knowledge transfer is a way to
benefit from deployments of multi-robot teams. The authors of [4] adopt transfer
learning to reduce the learning time of the particle swarm optimization for faster
optimization of robot’s gaits (walking patterns). Transfer learning applied in
the learning of humanoid robots to solve tasks by observing human behavior is
described in [11]. The idea is to transfer knowledge about a human motion to the
robot that is requested to perform a similar motion. In [19], learned navigation
patterns around obstacles are transferred into new environments to enhance
planning capabilities.

The aforementioned transfer learning approaches in the robotics domain pro-
vide supportive evidence of successfully deployed techniques. Therefore, we focus
on deploying transfer learning among heterogeneous robots that might yield dif-
ferent traversability assessments [9].

3 Method

The proposed method for transferring knowledge from one robot to another is
motivated to improve cost assessment capabilities by learning from one another.
Two roles of the robots can be distinguished: a provider of new information called
teacher T ; and receiving robot denoted student S. Each i-th robot collects a
datasetDi = {(ti1, ci1), (ti2, ci2), . . . } that consists of features (tij , cij) describing the
perceived terrain tij ∈ T and labels describing the cost of traversing a particular

segment of the terrain cij ∈ C. Hence, observations of the i-th robot are stored

in the dataset Di that represents the robot’s experience with the environment.
In this case, the two robots are in the roles of teacher and student, respec-

tively, and the experience with the same terrain, i.e., tS = tT , the observed



costs might not necessarily be equal, cS ̸= cT , because of different terrain per-
ception. The proposed approach targets to extrapolate individual datasets on
newly observed terrains. The extrapolation is realized through analyzing the re-
lation between the cost assessment of the student and the teacher. The relation
is then used to enrich the student’s extrapolation capabilities by the teacher’s
cost assessment.

The remainder of this section describes the proposed method for transferring
knowledge between the robots with heterogeneous terrain perceptions. First, the
proposed cost assessment learning model is introduced in Section 3.1, together
with the training procedure. The transfer learning framework is then introduced
in Section 3.2.

3.1 Cost Assessment Learning Model

The individual robot’s cost assessment model M = (r, a) is trained using its
dataset D. The model comprises the regressor r : T → C, which returns the cost
estimation, and certainty evaluation a : T → U , where u ∈ U = R denotes the
certainty of the model over the particular terrain segment t ∈ T .
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Fig. 2. The elevation map is segmented and sent into the model M . The model M
is composed of a regressor (orange) providing the cost prediction r and autoencoder
(olive) from which the certainty a is computed. The input of the model is an 8 × 8
segment of elevation map, which is processed by the neural networks. The depicted
architecture of the neural networks shows the convolutional (conv), flattening (flat),
deconvolution (decon), and fully connected (fc) layers with their dimensions. For cer-
tainty evaluation, the log of reconstruction error log(e(t; g)) computation is indicated
by the e-node.

Both the functions r and a are implemented with separate neural networks,
where the terrain t is represented as a set of elevation map segments, each
encoded by n×n matrix of real values, t ∈ T = Rn×n. Topological dependencies
between the matrix values are the same as in images; therefore, convolutional
layers are used similarly to image processing. Thus, for processing the elevation



map segments, convolutional layers are added to the neural networks for the
regressor r and certainty evaluator a. The learning architecture is depicted in
Fig. 2.

The certainty evaluation a is trained indirectly with a convolutional autoen-
coder. The autoencoder g : T → T maps given segments t to reconstructed
segments g(t), where the reconstruction error e(t; g) = ||t − g(t)|| is minimized
during the training. Trivially, the reconstruction error would be zero for all
t ∈ Rn×n if the map g is an identity function. However, due to the bottleneck
architecture of the autoencoder, the map g cannot be an identity function; so,
the segments have different reconstruction errors. Here, we assume the trained
autoencoder has a low reconstruction error on segments presented in the dataset
and a higher reconstruction error for other segments. The certainty of the model
is thus represented by the log of the reconstruction error a(t) = log(e(t; g)),
where higher values correspond to the terrain segments that are dissimilar to
segments the model has been trained on.

3.2 Transfer Learning Framework

The proposed framework uses trained modelsMS andMT where the student uses
the teacher’s knowledge by considering the relation κ. Similar features are used to
obtain comparable predictions to determine the relationship between the models.
We assume that if the teacher and the student traversed through the same region,
the features collected in that region are similar for the teacher and the student.
Additionally, both models should be certain about the previous observation of
the terrain with similar (if not equal) certainty. Hence, at least one similar terrain
observation Tsim, where both robots are certain about the previous observation
of the terrain, is necessary to learn the relation κ successfully.

Using a set of similar terrain observations Tsim containing n samples of ter-
rain observations, predictions of MS and MT models about the cost C = (ci)

n
i=1

and certainties U = (ui)
n
i=1 are obtained. The indicator of the certainty A =

(αi)
n
i=1 is created as

αi =

{
0 if uS

i < θ ∨ uT
i < θ

1 otherwise
. (1)

The individual indicator is zero for samples where one robot’s certainty about
the terrain observation is less than the empirically set threshold θ. The relation
κ between student’s and teacher’s cost assessment models is determined by the
average of the oriented differences between corresponding cost predictions c ∈ C

κ =
1∑n

i=1 αi

n∑
i=1

αi(c
S
i − cTi ), (2)

where the certainty indicator αi is used to remove samples where the robot model
is not certain enough.



The obtained relation κ is used to enhance student’s future predictions about
the newly observed terrain cost cp to facilitate better path planning decisions.
With the next terrain observation tnew, both models MS and MT of the student
and teacher, respectively, are used to predict the cost and certainty (c, u) =
M(tnew). Then, the certainties are compared and the prediction with the higher
certainty is selected. If the teacher’s prediction is selected, the cost cT is corrected
by the relation between the models κ as

cp =

{
cS , if uS > uT

cT + κ, otherwise
. (3)

The feasibility of the proposed cost models and transfer learning framework
has been empirically validated using real datasets. The achieved results are re-
ported in the following section.

4 Results

The proposed method has been verified in an experimental deployment using
a real hexapod walking robot shown in Fig. 1. The robot is equipped with the
Intel RealSense D435 RGB-D and T265 tracking cameras, and terrain’s features
are stored into an elevation map [2]. During the deployment, the robot collects
datasets further used in the model learning, knowledge transfer, and evaluation of
the learned traversability cost assessment models. In particular, the used dataset
has been collected in the Bull Rock Cave, Czech Republic, and the proposed
method has been evaluated as follows.

Various cost perceptions are simulated using different cost calculation meth-
ods instead of deploying heterogeneous robots. The student’s costs are computed
as an angular distance of the pitch and roll from the leveled position of the
robot. On the other hand, the teacher’s costs are computed as the robot’s rela-
tive slowdown compared with the commanded velocity vcmd, which characterizes
the difficulty of the terrain as a resistance difference from regular walking. An in-
dividual terrain segment i holds the information about the robot’s state changes
between two consecutive feature collection places. The cost of the i-th segment
is defined as the median over multiple traversed consecutive segments

cT = median{csk}nk=1 (4)

for csi = vcmd∆ti/si with the segment duration ∆ti and length si.
The student and teacher models are trained as described in Section 3.1. The

cost regressor is trained using 2000 epochs, and the autoencoder is trained for
100 epochs. It is presumed that the autoencoder is uncertain in the previously
unobserved terrains. Therefore, the model benefits from overfitted autoencoder.
The architecture of the regressor and autoencoder neural networks is as in Fig. 2,
and for each layer, ReLU activation functions are utilized.

Datasets have been collected in three parts of the Bull Rock Cave with dif-
ferent traversability properties. The student’s model is trained on data collected



(a) Chiffon (b) Room (c) Hall

Fig. 3. Different terrains of the Bull Rock Cave used in the evaluation of the proposed
method.

in the Chiffon and Hall parts of the cave, while the teacher’s dataset is collected
in the Room and Hall parts. Terrains in both Room and Hall consist of similar
leveled, packed surfaces. In Chiffon, the robot has experienced a slightly sandy
surface, which makes the robot’s movement marginally slower due to its legs
sinking into the sand during motion. The visual appearances of the terrains are
displayed in Fig. 3.

Since both the teacher’s and the student’s models are trained on datasets
collected on the Hall terrain, both models should have certain predictions for
the respective terrain, which is ideal for demonstration of the transfer learning.
Hence, the Hall dataset is selected as the training dataset for the transfer relation
κ with the uncertainty threshold set to θ = 3 that has been found empirically.
The relation between the models is determined to be κ = −0.52, indicating
that the teacher’s cost assessments are, on average, by 0.52 higher than the
student’s assessments. Therefore, 0.52 is subtracted whenever the student uses
the teacher’s prediction.

The Room dataset is selected as the testing environment for the scenario,
where the teacher’s knowledge enhances student’s predictions. In this setup, the
teacher should be able to make better cost predictions than the student because
the teacher previously observed the terrain in the Room. The results presented in
Fig. 4 show that during the evaluation phase, the teacher’s cost assessments are
used more often because the teacher is more certain about the terrain sample.
In most cases, transfer learning improved the cost assessment. The values of the
Mean Square Error (MSE) using the transfer learning are depicted in Table 1,
where we can also observe the negative transfer.

Only the student is trained in Chiffon, and therefore, the student accumu-
lated better knowledge about the Chiffon terrain. From Fig. 4, we can observe
that the teacher’s and student’s predictions are used almost equally by the trans-
fer learning component. The comparable prediction usage might be caused by
the fact that the flat terrain in Chiffon is partially similar to the teacher’s train-
ing domain of Hall and Room. However, teacher’s cost assessments rarely im-
prove the student’s knowledge, thus resulting in a decrease in cost assessment
capabilities using the transfer learning in this scenario, which is further shown
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Fig. 4. Results of the transfer learning performed in Room (top row) and Chiffon (bot-
tom row). The left column shows the amounts of usage of the transfer learning cost
assessments versus the default estimations made by the student’s model. The numbers
of positive and negative improvements achieved by transfer learning assessments com-
pared to the student’s estimation are illustrated in the right column.

in Table 1. The sparse improvement of the cost assessment using the transfer
learning is likely caused by the sandy surface being fairly similar to the packed
surfaces in Hall and Room. Note that the real cost of moving over the sandy
terrain is higher than on packed surfaces.

Discussion – The results show that the knowledge transfer from the teacher
improved the student’s ability to assess cost in the case of the terrain previ-
ously observed by the teacher. The positive transfer learning is represented by
the transfer over the Room terrain. However, there can be confusion in the
model selection during the transfer learning phase, which can be observed for
the Chiffon scenario. Nevertheless, in Chiffon, both models performed similarly
well, producing lower MSE than in Room. The negative transfer might be solved
by making the transfer learning component more strict and enforcing stricter
requirements on the teacher’s estimation.



Table 1. Mean square errors of the predictions compared to the ground truth and
percentage improvement of the transfer learning model.

Scenario
Positive transfer Negative transfer

Room Chiffon

Default (MSE) 6.19 2.70
Transfer (MSE) 4.10 2.98
Percentage improvement 33.76% −10.00%

5 Conclusion

In this paper, we show a method to accomplish transfer learning across robots
with heterogeneous terrain perception. The proposed transfer learning approach
is based on creating cost assessment models for the individual robots using convo-
lutional neural networks. The cost assessment models are then used to estimate
cost and uncertainty for terrains observed after the models are created. The
transfer learning is addressed by an augmented model created using a correla-
tion between the students and teachers models established on a training terrain
dataset. The feasibility of the proposed approach is validated on experimental
data collected in real cave terrains. The results indicate that the approach is vi-
able, and terrain cost assessment can be improved by transfer learning. Different
cost assessment models are used to simulate heterogeneous robots. In our future
work, we plan to experimentally evaluate the method using robots with different
morphology and sensory equipment. Besides, we also aim to deploy the learning
method directly during the exploration task. It is expected to improve the in-
dividual robot’s performance by avoiding hard to traverse areas experienced by
the other robots.
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learning in dogs: the effect of a human demonstrator on the performance of dogs
in a detour task. Animal Behaviour 62(6), 1109–1117 (2001). doi: 10.1006/ANBE.
2001.1866

18. Quattoni, A., Collins, M., Darrell, T.: Transfer learning for image classification with
sparse prototype representations. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1–8 (2008). doi: 10.1109/CVPR.2008.4587637

19. Saha, O., Dasgupta, P., Woosley, B.: Real-time robot path planning from simple
to complex obstacle patterns via transfer learning of options. Autonomous Robots
43(8), 2071–2093 (2019). doi: 10.1007/S10514-019-09852-5

20. Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., Schwehr, K.:
Recent progress in local and global traversability for planetary rovers. In: IEEE
International Conference on Robotics and Automation (ICRA). vol. 2, pp. 1194–
1200 (2000). doi: 10.1109/ROBOT.2000.844761

21. Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning per-
spective. Autonomous Robots 8, 345–383 (2000). doi: 10.1023/A:1008942012299

22. Tennakoon, E., Peynot, T., Roberts, J., Kottege, N.: Probe-before-step walking
strategy for multi-legged robots on terrain with risk of collapse. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). pp. 5530–5536 (2020).
doi: 10.1109/ICRA40945.2020.9197154

23. Tribelhorn, B., Dodds, Z.: Evaluating the roomba: A low-cost, ubiquitous platform
for robotics research and education. In: IEEE International Conference on Robotics
and Automation (ICRA). pp. 1393–1399 (2007). doi: 10.1109/ROBOT.2007.363179

24. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A
comprehensive survey on transfer learning. Proceedings of the IEEE 109(1), 43–
76 (2021). doi: 10.1109/JPROC.2020.3004555

http://dx.doi.org/10.1006/ANBE.2001.1866
http://dx.doi.org/10.1006/ANBE.2001.1866
http://dx.doi.org/10.1109/CVPR.2008.4587637
http://dx.doi.org/10.1007/S10514-019-09852-5
http://dx.doi.org/10.1109/ROBOT.2000.844761
http://dx.doi.org/10.1023/A:1008942012299
http://dx.doi.org/10.1109/ICRA40945.2020.9197154
http://dx.doi.org/10.1109/ROBOT.2007.363179
http://dx.doi.org/10.1109/JPROC.2020.3004555

	
	Introduction
	Related Work
	Method
	Cost Assessment Learning Model
	Transfer Learning Framework

	Results
	Conclusion


