
Noname manuscript No.
(will be inserted by the editor)

Unsupervised Learning based Solution of the Close Enough Dubins
Orienteering Problem

Jan Faigl

Received: date / Accepted: date

Abstract This paper reports on the application of novel un-
supervised learning based method called the Growing Self-
Organizing Array (GSOA) to data collection planning with
curvature-constrained paths that is motivated by surveillance
missions with aerial vehicles. The planning problem is for-
mulated as the Close Enough Dubins Orienteering Problem
(CEDOP) which combines combinatorial optimization with
continuous optimization to determine the most rewarding
data collection path that does not exceed the given travel
budget and satisfies the motion constraints of the vehicle.
The combinatorial optimization consists of selecting a sub-
set of the most rewarding data to be collected and the sched-
ule of data collection. On the other hand, the continuous op-
timization stands to determine the most suitable waypoint
locations from which selected data can be collected together
with the determination of the headings at the waypoints for
the used Dubins vehicle model. The existing purely combi-
natorial approaches need to discretize the possible waypoint
locations and headings into some finite sets, and the solu-
tion is computationally very demanding because the prob-
lem size is quickly increased. On the contrary, the employed
GSOA performs online sampling of the waypoints and head-
ings during the adaptation of the growing structure that rep-
resents the requested curvature-constrained data collection
path. Regarding the presented results, the proposed approach
provides solutions to orienteering problems with competi-
tive quality, but it is significantly less computationally de-
manding.
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1 Introduction

In this paper, we address a variant of routing problem moti-
vated by surveillance and data collection missions performed
by aerial vehicles. The motivation problem is to maximize
the sum of the collected rewards from a set of target loca-
tions while respecting the limited operational time and mo-
tion constraints of the vehicles. Each target locations has as-
sociated a reward value that characterizes the importance of
the collected data. The reward is collected whenever the ve-
hicle passes the target location within the specified sensing/-
communication range, e.g., a snapshot of the area is taken
by a downward-looking camera in surveillance missions [1]
or data are read from wireless sensor networks [2,3]. More-
over, the requested data collection path has to respect motion
constraints of the vehicle that can be modeled by Dubins
vehicle [4] with a constant forward velocity and minimum
turning radius, which fits motion constraints of fixed-wing
aircraft.

The addressed data collection planning problem to deter-
mine the most rewarding data collection schedule respecting
the limited travel budget can be formulated as a variant of
the Orienteering Problem (OP) [5], which can be stated as
follows. For a given set of the target locations, each with
the associated reward, and specified initial and terminal lo-
cations of the vehicle, the OP stands to maximize the sum
of the collected rewards by a tour that does not exceed the
given travel budget. The OP can be considered as the Knap-
sack problem to choose the most rewarding locations com-
bined with the solution of the Traveling Salesman Problem
(TSP) to find the shortest tour connecting the locations, and
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thus assure the tour length does not exceed the limited travel
budget. The OP is at least NP-hard as it becomes the TSP
for the travel budget that allows visiting all the locations;
the OP becomes the TSP [5].

The standard formulation of the OP has been general-
ized for exploiting non-zero sensing range in [6,7], where
the problem is called the Orienteering Problem with Neigh-
borhoods (OPN). However, in the case of the disk-shaped
neighborhood defined by the particular sensing range, the
problem is similar to the Close Enough TSP (CETSP) that
has been introduced in [8] to address data collection plan-
ning for retrieving data about electricity, water or gas con-
sumption using wireless communication. Therefore, the prob-
lem is called the Close Enough Orienteering Problem (CEOP)
to emphasize that the disk-shaped neighborhood is consid-
ered in this paper. Motion constraints of aerial vehicles in the
solution of the OP has been addressed in [9] where the Du-
bins Orienteering Problem (DOP) is introduced. DOP has
been later generalized for non-zero sensing range in [10,11]
and the problem is called the Close Enough Dubins Orien-
teering Problem (CEDOP). In [9], the solution of DOP is
based on a variant of the combinatorial Variable Neighbor-
hood Search (VNS) meta-heuristic [12], which has also been
used for solving CEDOP in [10].

Although the VNS-based approach [9,10] provides a so-
lution of CEDOP, it is computationally very demanding be-
cause it explicit samples possible waypoint locations in ad-
dition to heading values at the waypoints to allow determin-
ing the optimal Dubins tour connecting the waypoints [13].
The size of such discretized problem quickly grows with
each possible waypoint location that can be, in general, se-
lected from an infinite set defined by the disk-shaped neigh-
borhood of each target location. The computational require-
ments of DOP and CEDOP have been addressed by unsu-
pervised learning approach based on Self-Organizing Map
(SOM) in [14] and [11], respectively.

In the current paper, the results of [14,11] are further de-
veloped using novel unsupervised learning procedure called
Growing Self-Organizing Array (GSOA) [15] that can be
considered as a simplified and consolidated work on the pre-
vious SOM-based algorithms for various routing problems.
The GSOA is inspired by the SOM approaches for data col-
lection planning with an underlying solution of the TSP, but
it provides a simplified notation specifically focused on a
combination of the sequencing part of the combinatorial op-
timization with continuous optimization such as selection
of the waypoints or headings from continuous sets asso-
ciated to each target location. Based on the presented re-
sults, the herein proposed GSOA-based solution to orien-
teering problems provides competitive and in most of the
cases better solutions than the existing unsupervised learn-
ing approaches but with noticeably less computational re-
quirements. Moreover, the developed solution allows con-

sidering specific sensing ranges for individual locations, and
it also allows solving problems for a team of data collection
vehicles. The paper contributions are considered as follows.

– Novel GSOA-based approach to the CEDOP generalized for
– the CEDOP instances with individual sensing range;
– and multi-vehicle CEDOP instances.
– Novel learning rule that improves solutions of the evaluated

instances of the orienteering problem in comparison to the
previous SOM-based approaches.

The paper is organized as follows. An overview of the
related work is presented in the following section. All the
addressed variants of the orienteering problem are formally
introduced in Section 3 together with an overview of the Du-
bins vehicle model. The GSOA-based unsupervised learn-
ing for CEDOP is proposed in Section 4. Achieved results
and comparison with the previous approaches are reported in
Section 5. Concluding remarks are dedicated to Section 6.

2 Related Work

The CEDOP is a variant of the orienteering problem with
two important generalizations of the regular OP [5]. First,
in CEDOP, it is allowed to collect the reward within some
specified distance from the target, which may considerably
reduce the total tour length [16]. Without the limited travel
budget, such a routing problem is known as the TSP with
Neighborhoods (TSPN) and specifically with the disk-shaped
neighborhood as the Close Enough TSP (CETSP) [17,18].
However, none of the previous approaches has been directly
employed in solving the OP with Neighborhoods (OPN) [19,
20] despite several approaches including approximation and
heuristic algorithms for the TSPN have been proposed, in-
cluding prior work on unsupervised learning [21,22]. Proba-
bly the only approach already deployed to the OPN is based
on the SOMs [6,7], where the preference of highly reward-
ing target locations is addressed by a duplication of the tar-
gets according to their rewards and repeated adaptation of
the network to such targets. The duplication increases the
computational requirements that have been addressed by im-
proved adaptation procedure [23], which provides compet-
itive results but it is significantly less computationally de-
manding.

The second generalization is related to the curvature-
constrained path that is modeled as Dubins vehicle [4]. The
main difficulty of routing problems with Dubins vehicle is
that the length of the path depends not only on the distance
between the waypoint locations but also on the particular
heading angles of the vehicle at the waypoints. Thus, a solu-
tion of the Dubins TSP (DTSP) [24] combines challenges of
the combinatorial optimization of the underlying TSP with
the determination of the most suitable heading values which
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can be arbitrarily selected from the interval [0, 2π). An im-
portant result has been shown for a given sequence of way-
point locations. High-quality solutions, i.e., almost optimal
values of the headings at the waypoints, can be found us-
ing lower bound solution [25] by iterative refinement of the
possible heading values [13]. However, the sequence is not
known in the DTSP. Moreover, even the waypoint locations
themselves can be chosen from the neighborhood defined by
non-zero sensing range, which better fits properties of real
vehicles in surveillance missions. Then, the DTSP becomes
the DTSP with Neighborhoods (DTSPN) [26,27], where the
most suitable waypoint locations have to be determined in
addition to the heading angles.

Computational challenges of the DTSPN have been ad-
dressed by approximation [28], heuristics [29–31], and sam-
pling-based [32] algorithms, but also by evolutionary meth-
ods [33,27], and recently proposed unsupervised learning-
based approaches [34,35]. On the other hand, the opera-
tional time of unmanned aerial vehicles is often limited, and
therefore, finding a cost-efficient path to visit all locations
may not provide feasible data collection schedule that re-
spects the limited travel budget Tmax of the vehicle. Thus
the problem is to determine a path not exceeding Tmax such
that the vehicle visits the most important target locations and
safely returns to the defined terminal location, e.g., for refuel
or battery replacement.

Even though many approaches for the Dubins TSP and
TSPN have been proposed in the literature, only a few works
can be found for the generalization of the Orienteering Prob-
lem for planning with Dubins vehicle, i.e., the Dubins Ori-
enteering Problem (DOP). A possible way to solve DOP can
be based on the decoupled approach in which a subset of the
target locations to be visited by the vehicle is determined as
the regular Euclidean OP. Then, the final data collection path
can be found as a solution of the DTSP for such a subset.
However, such a tour may exceed the given travel budget,
and therefore, a direct solution of DOP is preferred.

The first direct approach to DOP has been proposed in [9],
where the randomized variant of the Variable Neighborhood
Search (VNS) metaheuristic [12] has been employed to deal
with the constraints of Dubins vehicle. The algorithm fol-
lows sampling-based approach for the DTSP, and possible
headings at each target location are sampled into a discrete
set of headings, e.g., 16 heading values have been used for
the results presented in [9], and the problem is solved as
purely combinatorial optimization.

The VNS-based approach [9] can be generalized to con-
sider possible locations from which data can be retrieved
and thus solve CEDOP. For each target location, a discrete
set of possible locations can be sampled, and the problem
can be solved in a very similar way as the original solution
of DOP [9]. However, it is necessary to consider particular
headings for each such sampled location, and thus the prob-

lem size quickly grows with the number of samples. Based
on the early results reported in [10], the VNS-based solution
seems to be very computationally demanding.

The studied CEDOP can be formulated as the recently
proposed generalization of the OP called the Set Orienteer-
ing Problem [36], but it is computationally demanding sim-
ilarly to the VNS-based approach as the size of discretized
CEDOP is quickly increasing because, for each discretized
possible waypoint location, several samples of heading val-
ues are needed to find a solution of the satisfiable quality [10].

The recent advancements on the SOM-based solution to
the OP [37,7,23] and DTSPN [34,35] provide the ground-
work to address challenges of CEDOP by the unsupervised
learning. The main advantage of the unsupervised learning
to Dubins routing problems is that the heading values are
sampled during the learning. Thus, it may provide Dubins
paths of similar length with a lower number of considered
samples of the vehicle headings. Regarding the results re-
ported in [11], it is significantly faster than explicitly con-
sidered headings samples in the VNS-based approach.

The first SOM-based attempt to DOP has been proposed
in [14] and further generalized to CEDOP in [11]. The herein
presented results are based on these early achievements us-
ing SOM, but they are further developed considering novel
unsupervised learning based procedure for routing problems
called Growing Self-Organizing Array (GSOA) [15]. Even
though the GSOA is inspired by the previous successful de-
ployments of the SOM-based approaches to various TSP-
like routing problems, it simplifies the notation, and it uses
a growing array of nodes. The learning procedure explic-
itly considers a determination of the waypoint locations as
non-zero sensing range is a practical assumption and its ex-
ploitation saves the travel cost by avoiding precise visitation
of the target locations [22]. Regarding [15] and [38], the
GSOA provides better solutions with lower computational
requirements than the previous SOM-based approaches, and
therefore, its considered in this paper.

The GSOA for the OP is generalized to the CEDOP and
further extended by a novel approach for selecting the subset
of targets to be visited. The proposed solution is compared
with the previous SOM-based solutions of the OP, CEOP,
and DOP to show benefits of the proposed novel GSOA-
based algorithm. Finally, the proposed approach allows to
consider specific sensing ranges per each particular target,
and it also enables a solution of the OP with a team of vehi-
cles, i.e., the Team Orienteering Problem [20]. Feasibility of
the proposed CEDOP algorithm in a solution of these vari-
ants of orienteering problem is demonstrated for selected in-
stances to support the applicability of the proposed GSOA-
based approach to other routing problems.
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3 Problem Statement

The addressed Close Enough Dubins Orienteering Problem
(CEDOP) is a variant of the Orienteering Problem (OP) with
the disk-shaped neighborhood at which the reward of the
corresponding target location can be collected and where the
requested tour respects the motion constraints of Dubins ve-
hicle. The particularly addressed variants of the OP are for-
mally introduced here to show the main challenges of the
Close Enough OP and curvature-constrained path of Dubins
vehicle.

The motivation of the studied problem is data collection
and surveillance missions where the problem is to deter-
mine a cost-efficient curvature-constrained path to retrieve
the most valuable measurements from a set of sensors S
such that, the total tour length does not exceed the given
travel budget Tmax. Each sensor si ∈ S has associated re-
ward ri that can be remotely collected by the vehicle within
the distance δ. The initial and terminal locations of the vehi-
cle are prescribed as s1 and sn and their associated rewards
are zero, r1 = rn = 0, where n is the total number of the
locations S, n = |S|, as in the regular OP [39]. The sen-
sors are placed in a plane and to simplify the notation, the
location of the sensor si is denoted si ∈ R2.

Because of the limited travel budget Tmax, it may not
be possible to collect data from all the sensors, and thus a
subset Sk of k sensors Sk ⊆ S has to be determined such
that the sum of the collected rewards is maximized and the
path for collecting the rewards from the selected subset Sk
does not exceed Tmax. The initial and terminal locations are
prescribed which in turns means s1 ∈ Sk and sn ∈ Sk, and
therefore, we need to determine the data collection schedule
as a sequence of visits to the sensors Σ = (sσ1

, . . . , sσk),
where 1 ≤ σi ≤ n, σ1 = 1, and σk = n. For δ = 0, the
data collection path directly connects the selected sensors
Sk, and its length has to respect Tmax. The problem becomes
the regular OP that can be formally defined as Problem 1.

Problem 1 (Orienteering Problem (OP))

maximize
Σ,k,Sk

R =

k∑
i=1

rσi

subject to
k∑
i=2

∥∥(sσi−1
, sσi)

∥∥ ≤ Tmax,
Σ = (σ1, . . . , σk), 1 ≤ σi ≤ n
2 ≤ k ≤ n, σ1 = 1, σk = n

Sk = {sσ1
, . . . , sσk}, Sk ⊆ S

sσ1
= s1, sσk = sn

(1)

whereR is the sum of the collected rewards and
∥∥(sσi−1 , sσi)

∥∥
is Euclidean distance between the locations sσi−1

and sσi .

If the reward can be determined within δ > 0 range, it
is also requested to determine a waypoint location pi ∈ R2

for each selected sensor si ∈ Sk such that ‖(pi, si)‖ ≤ δi.
A waypoint to collect data from si is in the disk-shaped
neighborhood centered at si with the radius δi. The initial
and terminal locations of the vehicle are strictly prescribed,
and therefore, s1 and sn are always selected and considered
without the sensing range, i.e., δ1 = δn = 0. Hence, the
first and last waypoints of data collection path are always
p1 = s1 and pn = sn, respectively. Note that if the path
connecting s1 with sn exceeds the budget Tmax, the prob-
lem does not have a feasible solution. The problem is to de-
termine Sk, the sequence of visits to the sensors Σ together
with the respective waypoint locations P = (pσ1

, . . . ,pσk)

such that data from sσi can be retrieved from pσi and the
path connecting P respects Tmax. The problem can be for-
mulated as the Close Enough OP (CEOP) that can be for-
mally defined as Problem 2.

Problem 2 (Close Enough Orienteering Problem (CEOP))

maximize
Σ,k,Sk,P

R =

k∑
i=1

rσi

subject to
k∑
i=2

∥∥∥(pσi−1
,pσi)

∥∥∥ ≤ Tmax,
Σ = (σ1, . . . , σk), 1 ≤ σi ≤ n
2 ≤ k ≤ n, σ1 = 1, σk = n

Sk = {sσ1
, . . . , sσk}, Sk ⊆ S

P = (pσ1
, . . . ,pσk),

∥∥(pσi , sσi)∥∥ ≤ δi
δσ1

= δσk = 0, pσ1
= s1, pσk = sn

, (2)

where P is a sequence of waypoints from which data from
the respective sensors Sk are collected. If all the sensing
ranges are the same (except for s1 and sn which are always
without the neighborhood) a single value δ is considered in
the rest of this paper to simplify the notation.

In data collection planning for Dubins vehicle, the path
connecting the waypoints has to respect not only Tmax but
also motion constraints of Dubins vehicle, i.e., the minimum
turning radius ρ. Therefore the data collecting path has to
be found as a sequence of Dubins maneuvers. The state of
Dubins vehicle can be described as q = (x, y, θ) where p =

(x, y) is the vehicle position in the plane p ∈ R2 and θ

is the vehicle heading θ ∈ [0, 2π), i.e., θ ∈ S1, and thus
q ∈ SE(2). The model of Dubins vehicle [4] assumes the
vehicle is moving with a constant forward velocity v and its
minimum turning radius is ρ. For the control input u, the
vehicle motion can be described as ẋẏ
θ̇

 = v

 cos θ

sin θ

u · ρ−1

 , |u| ≤ 1. (3)
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Based on that, a waypoint qi = (pi, θi) for retrieving data
from the sensor si consists of the waypoint location pi and
the expected heading θi of data collection vehicle modeled
as Dubins vehicle.

The optimal curvature-constrained path respecting (3)
that connects two states qi, qj ∈ SE(2) is a straight line
segment (S) or consists of S and arcs with the curvature ρ
that can be one of two types: left (L) and right (R); and it
can be computed analytically as one of six possible Dubins
maneuvers: LSL, LSR, RSL, RSR, LRL, and RLR [4]. Thus,
in the solution of the orienteering problem, it is requested to
determine the subset of sensors Sk, the sequence of visits Σ
to Sk together with the respective waypoint locations, but it
is also needed to determine the optimal headings at the par-
ticular waypoints such that the sum of the lengths of Dubins
maneuvers visiting the waypoints respects Tmax and the sum
of the collected rewards is maximized. Such a problem can
be formally defined as Problem 3.

Problem 3 (Close Enough Dubins Orienteering Problem
(CEDOP))

maximize
Σ,k,Sk,P,Θ

R =

k∑
i=1

rσi

subject to
k∑
i=2

L(qσi−1
, qσi) ≤ Tmax,

Σ = (σ1, . . . , σk), 1 ≤ σi ≤ n
2 ≤ k ≤ n, σ1 = 1, σk = n

Sk = {sσ1 , . . . , sσk}, Sk ⊆ S
qσi = (pσi , θσi), qσi ∈ SE(2)

Θ = (θσ1
, . . . , θσk), θσi ∈ [0, 2π)

P = (pσ1
, . . . ,pσk),

∥∥(pσi , sσi)∥∥ ≤ δi
δσ1

= δσk = 0, pσ1
= s1, pσk = sn

, (4)

where L(qσi−1
, qσi) is the length of Dubins maneuver from

qσi−1
to qσi [4].

CEDOP can be considered as a combination of two com-
binatorial optimization subproblems and two continuous op-
timization subproblems. The combinatorial optimization is
in determining the subset of sensors Sk ⊆ S to be vis-
ited and the determination of the permutation of their vis-
its Σ. The continuous optimization parts are the determina-
tion of k − 2 waypoint locations (because of s1, sn ∈ Sk)
within the continuous disk-shaped neighborhood of the re-
spective sensors together with the determination of the k op-
timal headings of Dubins vehicle (3) at the waypoints. How-
ever, to determine the optimal path connecting two states in
CEDOP, we need to determine the respective locations of
such waypoints pi,pj ∈ R2 and also the particular head-
ings θi, θj ∈ S1 of the vehicle at the waypoints.

4 Proposed Unsupervised Learning for the Close
Enough Dubins Orienteering Problem

The proposed solution of CEDOP follows early results on
SOM-based approach [14,11], but the novel unsupervised
learning procedure called the Growing Self-Organizing Ar-
ray (GSOA) [15] is employed. The GSOA is an iterative
learning procedure where the solution is represented as grow-
ing array of nodes N = (ν1, . . . , νM ), where each node
νi is associated with a particular location νi ∈ R2, sensor
s ∈ S, and waypoint location ps at which the sensor s can
be covered within the sensing range δ, i.e., ‖(ps, s)‖ ≤ δ.
The learning is organized into a fixed number of learning
epochs, and during each learning epoch, N is sequentially
adapted to all sensors S that are picked in a random order to
avoid local optima.

In GSOA for TSP-like routing problems [15], a single
adaptation of N towards s ∈ S consists of determining a
new winner node ν∗ together with its waypoint location ps
for covering s, and a movement of the winner node ν∗ and
its neighbouring nodes towards ps using the neighbouring
function similarly as in SOM. Since n new winner nodes
can be added to N in every learning epoch, the nodes from
the previous epoch are removed at the end of each learn-
ing epoch, and only the new winner nodes are preserved for
the next epoch. Hence, a solution of the routing problem
is available after each learning epoch using the associated
waypoint locations to the nodes. Thus, the solution is ex-
tracted by traversing the array N and using the waypoints
associated with the preserved nodes.

There are two main challenges to employ the GSOA learn-
ing procedure in a solution of the orienteering problems with
Dubins vehicle. The first challenge is in addressing the se-
lection of the subset of sensors Sk that can be covered within
the limited travel budget Tmax, where it is necessary to de-
cide which sensor should be visited and which should be
preferably avoided. The second challenge is also related to
Tmax and the problem is how to satisfy the motion constraints
of Dubins vehicle (3). In particular, we need to determine
heading values for the currently determined waypoint loca-
tions and validate if Dubins path connecting the waypoints
is feasible and its length does not exceed Tmax. The advan-
tage of the GSOA is in explicit consideration of waypoints,
which also simplifies the procedure in comparison to the
previous SOM-based approach [11].

The rest of this section is organized as follows. The main
concepts of generalizing the GSOA for the CETSP [15] to
orienteering problems with Dubins vehicle as a solution of
CEDOP is presented in the following section. Solution rep-
resentation and summary of the used notation are provided
in Section 4.2. The proposed GSOA unsupervised learning
for CEDOP is described in Section 4.3. Computational com-
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plexity analysis is reported in Section 4.4 and an example of
solutions with a team of vehicles is shown in Section 4.5.

4.1 Extension of the GSOA for CEDOP

Selecting a subset Sk of S sensors – Since the array of
nodesN describes not only the order but also the waypoints,
a data collection tour is almost instantly available during the
learning procedure. A new winner node ν∗ is determined
as the closest point of the data collection path PC(N ) rep-
resented by the current array of nodes N . Besides, also the
particular new waypoint is determined for each winner node,
and therefore, the prolongation of PC(N ) can be computed
for the case the new waypoint is visited by the path. If the
length of such a path would exceed Tmax, it probably does
not make sense to include the particular sensor in the solu-
tion. However, when PC(N ) is saturated regarding Tmax, no
new winner node and thus sensor would be included in the
solution. Therefore, the idea of removing nodes from N in
benefit of collecting data from more rewarding sensors intro-
duced in the previous unsupervised learning approaches [23,
14,11], is here generalized to removing up to lmax winner
nodes of the current epoch. The nodes are considered in the
order of increasing ratio ς(νi) that is computed as

ς(νi) =
r(νi.s)

‖(νi, νi.ps)‖
, (5)

where νi.ps is the waypoint location to cover the sensor
νi.s associated to the node νi, r(νi.s) is the reward of that
sensor, and νi is the current location of the node νi. The
distance ‖(νi, νi.ps)‖ can be prolonged during the adapta-
tion to a new waypoint location. Therefore, the neighboring
nodes are also adapted towards their waypoint locations to
support a selection of rewarding sensors. If the length of the
path PC(N ) with the new node ν∗ and removed lmax nodes
is still over the budget Tmax,N is reverted to the state before
removing the nodes, ν∗ is not added toN , and the particular
sensor is not included in the subset Sk.

Satisfying motion constraints of Dubins vehicle – For the
Euclidean OP, the data collection path PC(N ) can be di-
rectly constructed using the waypoint locations P associated
to the winner nodes. However, for Dubins vehicle, we need
particular heading values of the vehicle at the waypoint lo-
cations. Even though N provides a sequence of waypoint
locations and the requested headings can be determined as
a solution of the so-called Dubins Touring Problem (DTP)
by an iterative refinement procedure [13], it would be com-
putationally demanding because of too many path length
queries are needed during the learning. Therefore, similarly
as in SOM for Dubins planning [35,14,11], additional head-
ing values are associated to each node νi ∈ N . Then, the

ν1.ps

θ11

θ12

...

θ1nh

ν2.ps

θ21

θ22

...

θ2nh

ν3.ps

θ31

θ32

...

θ3nh

νm.ps

θm1

θm2

...

θmnh

. . .

Fig. 1 The length of Dubins path represented by the current winner
nodes (ν1, . . . , νm) is determined by a forward search procedure in a
graph with m layers corresponding to the m winner nodes, where each
layer consisting of nh nodes according to the heading values associated
with the node. The solution of the OP always starts at the initial loca-
tions s1 and terminates at sn. Therefore the graph always has at least
two layers, and thus at least 2nh vertices. The connections between the
vertices of two consecutive layers represent particular optimal Dubins
maneuvers [4] between the corresponding states defined by the way-
point location νi.ps of the node νi and the particular heading values
θij , 1 ≤ j ≤ nh. Since the path is open, the optimal solution for the
given sequence and particular values of the headings is determined in
O(mn2

h). The waypoint locations and heading values are determined
during the unsupervised learning of the GSOA.

length of Dubins path represented by the current winner
nodes PC(N ) is determined as a solution of the DTP for
a fixed set of headings per each waypoint by the forward
search method schematical described in Fig. 1. Further de-
tails about solution of the DTP can be found in [13] or [14].

4.2 Solution Representation and Notation

The following notation is used to distinguish the nodes, nodes
locations, and the waypoints associated with the nodes. The
nodes are organized in an array of nodes denoted N =

{ν1, . . . , νM}, where M is the current number of nodes in
the array. Each node νi ∈ N is associated with the point νi
that is in the same space as the sensor locations. The node is
also associated with the sensor s ∈ S for which it has been
selected as the winner node. Besides, each node is further
associated with the particular waypoint location ps to cover
s within δ distance. Finally, up to 2h+1 heading values are
associated to the node from which up to 2h+1 possible way-
points (at the location ps) are used in constructing the graph
for solving the associated DTP, see Fig. 1. In the herein ad-
dressed problem, sensors are located in a plane, and thus the
location of the sensor s ∈ S is s ∈ R2 and the node, and
waypoint locations are ν,p ∈ R2. The sensor, its location,
and the waypoint location are also denoted as νi.s, νi.s, and
νi.ps to explicitly describe with which node they are associ-
ated to. The notation and the used symbols are summarized
in Table 1.
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Table 1 Notation and Symbols Used

S Set of n sensors to be visited / covered
s Sensor s ∈ S
s Location of the sensor s, s ∈ R2

s1 Prescribed initial location, i.e., the sensor s1
sn Prescribed terminal location, i.e., the sensor sn
ri or r(si) Reward ri associated to the sensor si, ri ≥ 0
δi or δ(si) Sensing/communication range of the sensor si ∈ S
Tmax Given travel budget

Sk Requested subset of sensors to be visited Sk ⊆ S
Σ Requested order of visits to Sk
P Sequence of waypoint locations P ⊂ R2

Θ Headings at the waypoints for each θ ∈ Θ and θ ∈
S1

R Sum of the rewards collected by visiting/covering Sk
N GSOA array (sequence) of nodes
M Current number of nodes in N , M = |N |
νi Node of the GSOA, νi ∈ N
ν1 First node of N , always corresponding to s1
νM Last node of N , always corresponding to sn
νi Location of the node νi ∈ N , νi ∈ R2

ν.s Sensor s ∈ S associated to ν ∈ N
ν.s Location of the sensor s ∈ S associated to ν ∈ N
ν.ps Waypoint location ps ∈ R2 associated to ν ∈ N
θ or ν.θ Heading value associated to ν with the waypoint lo-

cation ν.ps that forms the waypoint q = (ps, θ) of ν
L(N ) Length of Dubins path represented by N
ς(νi) Ratio computed as (5) associated to νi
r(νi.s) Reward of the sensor s ∈ S associated to νi ∈ N
σ, µ, α Parameters of the unsupervised learning: learning

gain σ, learnig rate µ, and gain decreasing rate α

h Number of supporting headings on one side of the
Dubins maneuver defined by two consecutive nodes

lmax Maximal number of winner nodes removed from N
in benefit of new sensor to be visited

imax Maximal number of learning epochs

4.3 The GSOA Unsupervised Learning for CEDOP

The learning procedure always starts with two nodes ν1 and
νM that correspond to the prescribed initial and terminal lo-
cations. Thus ν1 and νM are always in the arrayN and they
are always associated with the locations s1 and sn. These
nodes are never removed nor adapted during the learning to
assure the initial and terminal locations are part of the so-
lution. Besides, they are always considered as winner nodes
regardless of learning epoch. Except for these two specific
nodes,N is evolved during the learning and adapted towards
the selected sensor locations. However, the requested data
collection path has to respect the minimum turning radius ρ
of Dubins vehicle (3). Therefore, the array N is condition-
ally adapted towards the particular sensor only if the win-
ner nodes of the array represent Dubins path connecting the
waypoints with the length L(N ) not exceeding Tmax. The
Dubins path is determined as a solution of the DTP using
the waypoint locations associated to the winners and set of
supporting heading values associated to the nodes as it is
shown in Fig. 1.

The solution of the DTP provides the most suitable head-
ing values from the set of sampled headings associated with
the winner nodes. The headings from the DTP solution are
used as the new main headings of the nodes. The new main
heading is also used to update the supporting headings around
the main heading as follows. For each node, h heading val-
ues are determined in the interval [0, π) on each side of a
single Dubins maneuver defined by the waypoints associ-
ated to the corresponding nodes, see Fig. 2.1 Thus, the total
number of heading values (including the main heading) as-
sociated with the node (and its waypoint) is nh = 2h+ 1.

If Tmax is satisfied for Dubins path with a newly inserted
waypoint of the current winner node, the array adaptation is
performed as a movement of the winner node and its neigh-
boring nodes in the array towards the waypoint location of
the winner node. The solution of the problem is defined by
the selected sensors (i.e., those associated with the winner
nodes of the current learning epoch) and the corresponding
waypoints. Besides, the solution progress and information
about the searched part of the solution space is encoded in
the distance of the winner nodes to their respective way-
points. The distance is further used to remove not promising
sensors from the solution as a part of the ratio (5).

An overview of the complete GSAO for solving CEDOP
is depicted in Algorithm 1. Detail description of the win-
ner node determination is provided in Section 4.3.1 and the
adaptation is described in Section 4.3.2 that is followed by a
comment on the solution extraction in Section 4.3.3.

4.3.1 GSOA Winner Node Determination

For a currently considered sensor s ∈ S \ {s1, sn}, a new
winner node ν∗ together with the particular waypoint loca-
tion ps and also heading values are determined. The current
winner nodes of N are utilized to construct Dubins path us-
ing the associated waypoints with the main heading found
as a solution of the related DTP. Notice, the first node ν1
and the last node νM are always the winner nodes because
of the initial and terminal locations, see Fig. 2. Then, the
closest point of Dubins path to the sensor location s is de-
termined as the point c. The Dubins path is a sequence of
Dubins maneuvers, and each maneuver consists of a straight
line segment and parts of a circle [4], and therefore, such a
point c can be found analytically.

The particular waypoint location ps is found as a point
on the straight line segment (c, s) that is within the δ dis-
tance from s

ps =

{
s+ (c− s) δ−ε

‖(c,s)‖ for ‖(c, s)‖ > δ

c otherwise
, (6)

1 Together with the determination of the main heading from Dubins
path represented by the array N , the supporting headings implement
online sampling of the heading values during the learning.
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Algorithm 1: Unsupervised learning of the Growing Self-Organizing Array (GSOA) for solving CEDOP
Input: S = {s1, . . . , sn} – the locations of sensors to be covered, each sensor s ∈ S has particular disk-shaped δ-neighborhood and

reward ri ≥ 0
Input: s1, sn – the prescribed initial and terminal locations with δ = 0
Input: Tmax – the given limited travel budget
Input: (σ, µ, α) – the initial value of the learning gain σ = 10, the gain decreasing rate α = 0.0005, and learning rate µ = 0.6
Input: (h, lmax) – the number of supporting headings per each waypoint location (node) h at each side of Dubins path passing the

waypoint and the maximal number of possible removed winner nodes lmax in benefit of added new winner node to N , values
h = 3 and lmax = 3 are utilized for the results reported in this paper

Input: imax – the maximal number of learning epochs and imax = 150 is used
Output: (Σ,Sk,P , Θ) – Σ defines the order of visits to the selected subset of the sensors Sk ⊆ S, P is the sequence of waypoint locations

to visit the sensors Sk with the particular headings Θ
B Initialization
N ← {ν1, νM} – initial and terminal locations of the array, ν1.s = s1, ν1.sp = s1, ν2.s = s2, and ν2.sp = sn. Initial h heading values1
are set around the heading corresponding to a straight line segment connecting s1 and sn. Notice the nodes ν1 and νM are never adapted
nor removed from N to assure the initial and terminal locations are part of the solution. // it is assumed Tmax ≥ ‖(s1, sn)‖
(Σ,Sk, P,Θ)← (Σ = (1, n), Sk = {s1, s2}, P = {s1, sn}, Θ = (θ1, θn), where θ1 and θn corresponds to the segment (s1, sn)2
R← 0 // set the initial sum of rewards to 0 because of r1 = rn = 03
imax ← min(imax, 1/α) // ensure σ will always be above 04
i← 0 // set the learning epoch counter5
while i ≤ imax do6

B Learning epoch
foreach s in a random permutation of S \ {s1, sn} do7
N ′ ← N // save the current array of nodes8
N iwin ← {ν ∈ N \ {ν1, νM} : ν is a winner node in the i-th epoch and r(νs) > r(s)} // the current winner nodes9
ν∗(ν∗, ν∗.sp, θ)← determine winner(N , s, δs) // Determine winner node according to Fig. 410
N ← insert winner(N , ν∗)11

B Check the travel budget Tmax

l← 112
while L(N ) > Tmax and l ≤ lmax do13

νmin ← argminνi∈N iwin
ς(νi) // select the node with the lowest ratio ςi according to (5)14

N iwin ← N iwin \ {νmin}15

N ← N \ {νmin}16
l← l+ 117

B Conditional adapt
if L(N ) ≤ Tmax then18

foreach node ν ∈ N in the d-neighborhood of the node ν∗ such that 0 ≤ d ≤ 0.2M do19
Adapt ν towards ν∗.sp using (7) and the neighbouring nodes that have been added to the array in the current epoch are20
also adapted using (8); both adaptations with the neighbouring function (9)

else21
N ← N ′ // Revert the changes to the array and do not adapt towards s22

B Update the best solution found so far
N ← {ν ∈ N : ν is the winner node of the current epoch i} // Remove all not winning nodes from N23
σ ← (1− iα)σ // decrease the learning gain24
i← i+ 1 // update the epoch counter25
Traverse the array N , extract the selected sensors S′k and construct the sequence of visits Σ′ with the corresponding waypoint26
locations P ′ and the best heading values Θ′ (regarding the solution of the associated DTP as in Fig. 1)
R′ ←

∑
si∈S′k

r(si) // Compute the sum of the collected rewards27
if R′ ≤ R then28

(Σ,Sk, P,Θ)← (Σ′, S′k, P
′, Θ′) // update the best solution found so far29

return (Σ,Sk, P,Θ)30

where a small constant ε, e.g., ε = 0.001, is subtracted from
δ to avoid possible numerical imprecisions. The heading θ of
Dubins vehicle on Dubins path at the location c is used as the
main heading of the newly determined waypoint (ps, θ) and
2h additional supporting heading values are sampled around
θ. The winner node ν∗ is then inserted between the nodes
of N that correspond to the particular Dubins maneuver on
which c has been determined. However, the location of the

winner node ν∗ is set as the closest point of the segment
represented by the two consecutive nodes, and thus the dis-
tance ‖(ν∗,ps)‖ can be considered as a “learning error” that
is being minimized, but it is mainly utilized in determining
the nodes (sensors) to be removed from the solution to fit
Tmax using the ratio (5).

An example of the first winner node determination for
the configuration depicted in Fig. 2 is visualized in Fig. 3.
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Initial
location s1

s
δ

ν1 νM

Terminal
location  sn

The main and supporting headings

Fig. 2 Example of the initial Dubins path represented by ν1 and νM
that correspond to the initial and terminal locations s1 and sn, respec-
tively. The main headings of ν1 and νM are defined from the straight
line segment (s1, sn) and h = 3 supporting heading values are placed
on each side of Dubins maneuver.

sn

Dubins path
represented
by the array

Heading value θ

Currently presented
sensor to the array

s
δ

νM
ν* coincides with c

Winner node
location ν*

ps - waypoint location
Main heading

Supporting 
headings
(h=3)

s1
ν1

Fig. 3 Example of the winner node determination for N = (ν1, νM ).
Because only two nodes are in N , Dubins path represented by N is a
straight line segment (s1, sn) and the closest point c of Dubins path to
s is coincident with the winner node location ν∗. Once the winner node
ν∗ is inserted into N together with the determined waypoint location
ps and corresponding heading values, the array of nodes N represents
a new Dubins path connecting s1 with sn over the waypoint (ps, θ).

Dubins path represented byN is a straight line segment con-
necting s1 and sn and the closest point c of Dubins path is
coincident with the winner node location ν∗. The winner
node ν∗ is inserted between the ν1 and νM nodes as they
are the only nodes of the arrayN . In this particular case, the
heading value θ determined as the heading at c fits the short-
est Dubins path connecting ps, but in general, another head-
ing value from the supporting headings can be more suitable
for the shortest Dubins path.

A little bit more complex situation for the array with
three nodes N = (ν1, ν2, νM ) is visualized in Fig. 4. In
this case, the node ν2 is already associated with its waypoint
location ν2.ps to cover the sensor ν2.s and Dubins path vis-
iting the locations s1, ν2.ps, and sn consists of two Dubins
maneuvers. The closest point c of Dubins path does not co-
incide with the winner node location ν∗ that is the closest
point of the straight line segment (ν2,νM ) to the sensor
location s. The new Dubins path visiting the locations s1,
ν2.ps with the newly determined waypoint location ν∗.ps
and the terminal location sn is determined as the solution
of the DTP (see Fig. 1) using the heading value θ with the
additional supporting heading values. Also, in this case, the

δ
s
δ

s1 sn

Dubins path represented
by the array (ν1, ν2, νM)

ν*

ν1 νM

ν2.s

ν2

Supporting headings
(h=3)

ν2.ps

Main heading θ

Supporting
headings
(h=3)

Currently presented
sensor to the array

Main heading θ

ν*.ps

Closest point c
of the array to s

Dubins path represented
by the array (ν1 , ν2 , ν*, νM )

Fig. 4 Example of the winner node determination for the array with
three nodes N = (ν1, ν2, νM ). Dubins path represented by N con-
sists of two Dubins maneuvers connecting s1 with the waypoint loca-
tion ν2.ps and further with sn. The closest point c of the array to s
is not coincident with the winner node location ν∗ that is the closest
point of the segment defined by two consecutive nodes to s, which is
the segment (ν2,νM ) in this case. Dubins path visiting the waypoint
ν∗.ps is visualized as dashed red curve.

main heading θ seems to provide the shortest Dubins path
connecting ps. If the length of the determined Dubins path
does not exceed Tmax, e.g., eventually after removing up to
lmax winner nodes, the new winner node ν∗ is adapted to-
wards ν∗.ps to decrease the distance of the winner node to
its waypoint.

4.3.2 GSOA Adaptation of the Winner Node

Contrary to the winner node determination where Dubins
path connecting the waypoints is considered, the adaptation
is performed in the Euclidean space similarly as in the SOM-
based solution of the TSP [15] or solution of the OP [23].
The main intention of the adaptation is to “learn a prefer-
ence” of selecting possible highly rewarding sensors. The
distance between the node location ν to the location of its
waypoint ν.ps is used in removing nodes (Lines 12–17, Al-
gorithm 1) using the ratio (5). Because the ratio depends on
the distance, and the power of the adaptation corresponds
to the reward associated with the sensors, the adaptation is
stronger for highly rewarding sensors.

For a new winner node ν∗, the adaptation of the arrayN
is a movement of the locations of the winner node ν∗ and its
neighboring nodes towards the new waypoint location ν∗.ps
associated with ν∗ that can be expressed as

ν′ = ν +Rsµf(σ, d)(ν
∗.ps − ν), (7)

where µ is the learning rate (µ = 0.6), Rs is the ratio of
the reward r(s) of the sensor s and the maximal reward of
the sensors in the set S, σ is the learning rate, and d is the
distance (in the number of nodes) of the node ν from the
winner node ν∗ in the array N . In addition to controlling
the power of adaptation by the value of Rs, the neighbour-
ing nodes added to the array in the current epoch are also
adapted towards their waypoint locations in the herein pro-
posed GSOA-based solution of the OP. The adaptation of the
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neighboring node ν can be expressed as

ν′′ = ν′ +Rν.sµf(σ, d)(ν.ps − ν′), (8)

where d has the same meaning as in (7), but the neighbor-
ing node ν adjusted towards ν∗.ps by (7) is adapted towards
its waypoint location ν.ps usingRν.s computed from the re-
ward r(ν.s) of the sensors ν.s associated to the neighboring
node ν of the new node ν∗. Hence, the node ν first moves
away from its waypoint location to the position ν′ and then
a bit back to the position ν′′. This way, the distance of the
nodes associated with highly rewarding sensors is less pro-
longed than the distance of the nodes associated with low
rewarding sensors, which can be then more likely removed
because of a low value of (5). The same neighboring func-
tion used in the unsupervised learning of SOM is utilized in
the GSOA

f(σ, d) =

{
e
−d2

σ2 for d < 0.2M

0 otherwise
, (9)

which decreases the power of adaptation of the neighbouring
nodes to the winner neuron ν∗ with increasing distance d.

The adaptation is performed only if the current winner
nodes ofN represent Dubins path which length is shorter or
equal to Tmax (Line 18, Algorithm 1). Otherwise, the array
of nodes N is reverted to the state before the winner selec-
tion (Line 22, Algorithm 1). The winner node determination
and its conditional adaptation are repeated for every sensor
in S. After considering all the sensors, the learning epoch
terminates, and a solution represented by the winner nodes
in N is extracted.

4.3.3 Solution Extraction

At the end of each learning epoch, all nodes that have not
been added to N in the current epoch are removed, except
the persistent ν1 and νM . Since each node has associated
waypoint together with possible heading values, the array
is sequentially traversed and Dubins path to visit the way-
point locations is determined as a solution of the DTP. If the
current new found solution represents a feasible path with
a higher sum of the collected rewards R′ than the current
R, the best solution found so far is updated (Line 29, Algo-
rithm 1).

The unsupervised learning procedure is repeated for the
imax learning epochs. The winner nodes from the previ-
ous epoch are preserved. Hence Dubins maneuvers connect-
ing waypoints that are associated with the two consecutive
nodes in the array N are utilized for determination of the
closest point of Dubins path represented by N (its asso-
ciated waypoints). On the other hand, the data collection
path as a solution of CEDOP that has to satisfy Tmax is con-
structed using the new winners of the current epoch (includ-
ing the persistent winners ν1 and νM . Thus the unsupervised

learning can be considered as a stochastic search that is bi-
ased by the preference of the highly rewarding sensors, and
the main role of the learning is in decreasing the distance of
the winner node locations to their respective waypoint loca-
tions.

An example of the GSOA evolution in the solution of
CEDOP with individual sensing range per each particular
sensor is visualized in Fig.5.

4.4 Computational Complexity

The computational complexity of the proposed GSOA un-
supervised learning procedure for solving CEDOP depends
on the number of sensors S and supporting heading values h
because of the solution of the DTP. For n sensors, the num-
ber of nodes in the arrayN can be bounded by 2n as n win-
ner nodes are preserved for the next learning epoch, where
up to n new nodes can be determined. In a single adaptation
of N to the sensor s ∈ S, Dubins path represented by the
array of nodes is found to determine the winner node and its
waypoint location. Since the number of headings is 2h + 1

and the maximal number of nodes in N is 2n, the winner
node determination can be bounded by O(nh2) because of
solving the DTP.

For each considered sensor, up to lmax nodes (sensors)
can be removed from the current N to reduce the Dubins
path length. The nodes are removed in the order of increas-
ing ratio ς(νi) (5) which can be maintained in O(log n) us-
ing a binary heap. After that, the adaptation is performed as a
movement of the winner node and its neighboring nodes to-
wards the waypoint location that can be bounded byO(n) as
the number of moved nodes never exceeds 2n. A single con-
sideration of sensor s can be bounded by O(nh2 + log n +

2n). For n sensors, the computational complexity of a single
learning epoch can be thus bounded by O(n2h2), which is
performed imax times.

The unsupervised learning does not depend on the sens-
ing range δ because the waypoints are determined during
the winner node selection. Besides, relatively few support-
ing headings are considered, which is in the direct contrast
with the VNS-based approach [10] where possible waypoint
locations are sampled, and each sample is further considered
for sampling possible heading values. Therefore, the prob-
lem addressed by an explicit discretization quickly grows
and it becomes computationally very demanding.

4.5 Solution of CEDOP with a Team of Vehicles

Similarly to the SOM-based solution of the OP for several
vehicles [37] or the Team Orienteering Problem reported
in [23]; also the proposed GSOA for CEDOP can be uti-
lized for a solution with a team of data collection vehicles.
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(a) Learning epoch 21 (b) Learning epoch 43

(c) Learning epoch 74 (d) Learning epoch 116

(e) Learning epoch 130 (f) Final solution

Fig. 5 Example of the evolution of the GSOA in a solution of the
CEDOP instance with individual sensing ranges δi and the turning
radius of Dubins vehicles ρ = 1. The number of learning epoch is
imax = 150, but the final solution is determined at the end of the
epoch number 116. The visited sensors are highlighted as yellow disk
denoting the individual sensing range. The red curve is the current Du-
bins path satisfying the limited Tmax. The green curve represents con-
nected locations of the nodesN . Small colored disks are the sensor lo-
cations, where the color denotes the reward value (red is high and low
is blue). The travel budget is Tmax=50, and the final solution length is
49.962. The sum of the rewards collected by the found Dubins path is
R = 530 from the total sum of rewards 670.

The main idea is to create an individual array of nodes for
each vehicle. Then the most suitable array for the winner in-
sertion and adaptation is determined according to the maxi-
mum gained reward per array. Detail description is out of the
scope of this paper, and therefore, only an example of solu-
tions are depicted in Fig. 6 to demonstrate the GSOA can be
utilized for the solution of CEDOP with a team of vehicles.

5 Results

The proposed GSOA for CEDOP has been evaluated us-
ing the OP benchmarks [20,40] that have been utilized in
the evaluation of DOP [9] and in early results on SOM-
based unsupervised learning approaches [14,11]. The only
existing solvers for DOP and CEDOP are the combinatorial
optimization VNS based on a discretization of the contin-
uous parts of the problem [9,10] and the SOM-based ap-
proach [14,11]. Although the SOM-based solution of the
regular OP and CEOP have been evaluated in [7,23], the
herein proposed approach is based on novel unsupervised
learning of the GSOA [15] that is designed for routing prob-
lems motivated by data collection mission with non-zero
sensing/communication range. Thus, the proposed GSOA
for CEDOP is also compared with the existing SOM ap-
proaches for the Euclidean OP and CEOP instances in the
standard OP benchmarks to provide a complete overview of
the performance of the unsupervised learning methods.

The benchmarks for the OP consists of a set of problems
with particular locations, each with the associated reward,
and accompanied with a set of specific values of the travel
budget Tmax [40]. The considered benchmarks are Set 1, Set
2, and Set 3 proposed by Tsiligirides [41] and diamond-
shaped Set 64 and squared-shaped Set 66 [42]. Each prob-
lem set is accompanied with budget values in the range 5
to 130 which gives 89 instances of the OP. Each such an
instance can be further specified by the minimum turning
radius ρ of Dubins vehicle that is considered from the set
ρ ∈ {0, 0.5, 1.0, 1.5, 2.0}, which can give 445 instances of
DOP. Moreover, for non-zero sensing range, additional in-
stances can be defined for the CEOP and DOP with δ > 0.

Due to such an excessive number of instances, the eval-
uation for the CEOP, DOP, and CEDOP are made for the se-
lected instances to focus on the influence of ρ and δ. There-
fore, particular results are presented for instances with a sin-
gle value of the travel budget Tmax that is selected to be in the
middle of the Tmax range specified for the particular problem
set. Such a budget provides challenges to balance the solu-
tion quality of the routing part (to have the shortest path pos-
sible) with the selection of the subset Sk with the most re-
warding sensors. In addition, increasing the sensing range δ
allows to visit more sensors, and for a certain value, all sen-
sors can be covered even for relatively small budget Tmax.
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(a) ρ = 0, δ = 0, R = 450 (b) ρ = 0, δ = 0, R = 396

(c) ρ = 0, δ = 1, R = 775 (d) ρ = 0, δ = 1, R = 828

(e) ρ = 1, δ = 0, R = 455 (f) ρ = 1, δ = 0, R = 372

(g) ρ = 1, δ = 1, R = 715 (h) ρ = 1, δ = 1, R = 780

Fig. 6 Found solutions for team orienteering problems [40] with turn-
ing radius ρ ∈ {0, 1}, and sensing range δ ∈= {0, 1}. (left): the prob-
lem instance p5.3.g with three vehicles, Tmax= 17.4, and the total sum
of rewards 1680; (right): the problem instance p6.4.k with four vehi-
cles, Tmax= 16.2, and the total sum of rewards 1344.
The particular problem instances with the selected Tmax are
listed in Table 2.

Both the VNS-based and unsupervised learning approaches
are randomized. Therefore each problem instance is solved
20 times, and the reported performance indicators are the av-

Table 2 Selected instances of the OP

Set 1 – Instance with 32 locations and Tmax= 46
Set 2 – Instance with 21 locations and Tmax= 30
Set 3 – Instance with 33 locations and Tmax= 50
Set 64 – Instance with 64 locations and Tmax= 45
Set 66 – Instance with 66 locations and Tmax= 60

erage sum of the collected rewards R, the average required
computational time Tcpu, and the best-found solution from
20 trials is reported as Rmax. Besides, the overall perfor-
mance of the algorithms as an aggregated value is evalu-
ated using the relative percentage error (RPE) defined as the
relative error between the reference value Rref and Rmax

over the performed trials per particular problem instance,
where Rref is the highest reward found by the evaluated al-
gorithms. The RPE is computed as

RPE = (Rref − Rmax)/Rref · 100%. (10)

The robustness of the algorithm over the performed trials is
shown as the average relative percentage error ARPE

ARPE = (Rref − R)/Rref · 100%. (11)

The average values of the respective indicators RPE and
ARPE among all evaluated instances in the particular bench-
mark sets are denoted by RPE and ARPE, respectively, to
report overall expected performance of the methods in the
particular problem sets.

The recommended settings of the VNS-based solvers [9,
10] is utilized, and the number of heading values in solv-
ing DOP instances is nh = 13. For CEDOP, the number of
heading samples is nh = 8 per each of the waypoint location
sample that are sampled at the δ perimeter around each sen-
sor location, and nw = 8 samples are utilized, which gives
64 possible waypoints per each sensor s ∈ S for the VNS-
based approach. The utilized stopping criterion is the maxi-
mal number of 10 000 iterations with the maximal 5 000 it-
erations without improvement. Only two parameters are rel-
evant for the SOM-based algorithms: the number of learning
epochs imax and the number of additional supporting head-
ings h. Regarding the results reported in [14,11] the follow-
ing settings is considered: imax = 150 and h = 3. The same
values are also used for the proposed GSOA algorithm and
with one more parameter lmax, which denotes the maximal
number of the eventually removed winner nodes, which has
been set to lmax = 3. Due to the way how the supporting
headings are constructed in SOM and GSOA approaches,
the value of h = 3 means nh = 7 heading values per each
waypoint locations for both types of unsupervised learning
approaches.

All the algorithms (VNS, SOM, and GSOA) have been
implemented in C++ and run within the same computational
environment using a single core of the Intel Core i7-6700K
CPU running at 4 GHz, except the computationally demand-
ing VNS-based solution of CEDOP, which has been run on a
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Table 3 Aggregated results for all the instances of the Orienteering Problem

Set
CGW [42] SOMv1 [7] SOMv2 [23] Proposed GSOA

RPE RPE ARPE RPE ARPE Speed× RPE ARPE Speed×

Set 1 0.10 0.25 2.45 0.10 1.05 2.1 0.36 2.80 2.4

Set 2 0.92 0.92 1.94 0.92 1.10 7.4 0.92 2.56 7.7

Set 3 0.00 0.00 1.73 0.00 0.89 13.5 0.33 3.24 24.2

Set 64 0.40 2.83 6.32 1.62 4.37 11.4 1.74 4.64 15.0

Set 66 0.43 2.10 6.14 1.54 5.27 20.4 0.80 2.26 26.9

computational grid. The VNS-based algorithm pre-computes
all Dubins maneuvers between all the waypoints prior the
combinatorial optimization with an optimized structure for
inserting/removing waypoints into Dubins tour. On the other
hand, both the SOM and GSOA approaches are searching
for the suitable headings during the unsupervised learning,
and all the requested Dubins maneuvers are computed on
demand and no special optimizations in Dubins path com-
putation are utilized for the presented results.

The achieved results and comparison for the particular
OP, CEOP, DOP, and CEDOP instances are reported in the
following sections together with the discussion of the results
and performance of the proposed GSOA-based method.

5.1 Empirical Evaluation in the OP and CEOP Instances

A performance overview of the proposed GSOA in solving
the regular OP (considering the full range of Tmax for each
problem set) is reported in Table 3, where the column Speed
× denotes how much is the particular unsupervised learning
approach faster than the first SOM-based solution to the OP
introduced in [7]. In absolute numbers, a solution is found
in tens of milliseconds, and the most demanding instances
are from Set 64 and Set 66 which are found in around 80 ms
for the utilized computational environment. Example of so-
lutions found by the proposed GSOA for the selected prob-
lems according to Table 2 are depicted in Fig. 7.

Two SOM-based approaches denoted SOMv1 [7] and
SOMv2 [23] are compared with the proposed GSOA. The
best results provided by the unsupervised learning approaches
are highlighted in bold. The results indicate that the best
performing unsupervised learning is SOMv2 [23] that is to-
gether with the GSOA significantly faster than early SOMv1.
The proposed GSOA provides overall a bit worse solutions
than SOMv2, but significantly better results are provided for
the large instances from Set 66. On the other hand, none of
the unsupervised learning approaches provides better results
than one of the first heuristics for the OP denoted CGW [42].

The main benefit of the unsupervised learning approaches
is in exploiting non-zero sensing range δ. The performance
indicators for the selected instances of Set 3, Set 64, and

Table 4 Results for the Close Enough Orienteering Problem

Problem SOMv1 [7] SOMv2 [23] Proposed
(Tmax, δ) Rmax R Rmax R Rmax R

Set 3 (50, 0.5) 560 518 460 415 570 544

Set 3 (50, 1.0) 620 591 600 535 630 608

Set 3 (50, 1.5) 690 650 650 627 670 663

Set 3 (50, 2.0) 710 689 700 683 720 706

Set 64 (45, 0.5) 1026 952 1026 947 1038 999

Set 64 (45, 1.0) 1296 1247 1344 1332 1344 1332

Set 64 (45, 1.5) 1344 1340 1344 1344 1344 1344

Set 64 (45, 2.0) 1344 1341 1344 1344 1344 1344

Set 66 (60, 0.5) 985 901 765 626 1010 982

Set 66 (60, 1.0) 1300 1233 1495 1462 1480 1436

Set 66 (60, 1.5) 1585 1543 1650 1628 1650 1624

Set 66 (60, 2.0) 1665 1641 1680 1679 1680 1678

Set 66 problem sets with Tmax according to Table 2 and
δ ∈ {0.5, 1.0, 1.5, 2.0} are reported in Table 4 with the
overview of the computational requirements in Fig. 9. It can
be noticed that considering δ ≥ 1.5 for Set 64 allows to col-
lect all the rewards as increasing δ does not increase Rmax.
The proposed GSOA-based solver outperforms the previous
SOM-based approaches almost in all evaluated instances.
The most demanding is the early approach [7], where the
rewards are addressed by duplicating the sensors, which has
been addressed in [23] by weighted adaptation, which is also
employed in the proposed GSOA. Overall, the best perform-
ing algorithm is the GSOA and examples of found solution
for selected sensing ranges, which do not allow to collect all
the rewards, are depicted in Fig. 8.

5.2 Empirical Evaluation in the DOP and CEDOP Instances

Performance of the proposed and existing solvers in orien-
teering problems with Dubins vehicle is firstly evaluated for
the selected DOP instances. The only existing solvers are
denoted VNS-DOP [9] and SOM-DOP [14]. The results are
reported in Table 5, where the best performing unsupervised
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(a) Set 1, Tmax= 46,
R= 175

(b) Set 2, Tmax= 30,
R= 265

(c) Set 3, Tmax= 50,
R= 500

(d) Set 64, Tmax= 45, R=780 (e) Set 66, Tmax= 60, R=890

Fig. 7 Solutions of the selected OP instances found by the GSOA.

(a) Set 3, Tmax= 50,
δ = 1.0, R = 620

(b) Set 3, Tmax= 50,
δ = 1.5, R = 670

(c) Set 3, Tmax= 50,
δ = 2.0, R = 720

(d) Set 64, Tmax= 45, δ = 0.5, R =
1020

(e) Set 66, Tmax= 60, δ = 1.0, R =
1475

Fig. 8 Selected solutions of the CEOP instances found by the proposed GSOA.

Set 3, Tmax = 50 Set 64, Tmax = 45 Set 66, Tmax = 60
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SOMv1 [7], δ  = 0.5
SOMv1 [7], δ  = 1.5
SOMv2 [23], δ  = 0.5
SOMv2 [23], δ  = 1.5
Proposed, δ  = 0.5
Proposed, δ  = 1.5

Fig. 9 Computational requirements in solution of the CEOP instances.

learning approach in particular problem instance is high-
lighted in bold. Notice that for increased minimum turning
radius ρ, solutions with a lower sum of the collected rewards
are found than for shorter ρ. It is because, for longer radii, a

relatively long Dubins maneuver is required to connect two
close sensors, e.g., see the solution of Set 64 in Fig. 10.

The proposed GSOA-based approach provides notice-
ably better results than SOM-DOP [14] and it also requires
a bit lower computational requirements. In general, the de-
termination of Dubins maneuvers is significantly more de-
manding than using Euclidean distance in the regular OP,
where the solutions are found in tens of milliseconds con-
trary to units and tens of seconds for DOP. Overall, all the
evaluated algorithms provide competitive solutions, but in
absolute numbers, the best solutions are found by the VNS-
DOP [9], and the unsupervised learning approaches provide
a bit worse solutions. Notice that a choice to cover one sen-
sor instead of another can make the difference in the sum
of rewards about 5, 10, or even more, as the solution is sen-
sitive to a proper selection of the subset Sk. The main dif-
ferences in the solution quality are for the Set 64 instances,
where sensors are placed in a diamond-shaped grid and the
unsupervised learning methods stuck at local optima prob-
ably because of the limited number of supporting headings.
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Table 5 Results for the Dubins Orienteering Problem

Problem instance VNS-DOP [9] SOM-DOP [14] Proposed GSOA
(Tmax, ρ) Rmax R Tcpu [s] Rmax R Tcpu [s] Rmax R Tcpu [s]

Set 1 (Tmax= 46, ρ = 0.5) 175 168 11.0 170 168 5.1 175 164 4.3

Set 1 (Tmax= 46, ρ = 1.0) 165 158 11.3 160 153 6.3 160 149 4.6

Set 1 (Tmax= 46, ρ = 1.5) 140 135 10.2 140 126 5.0 135 128 4.3

Set 2 (Tmax= 30, ρ = 0.5) 255 252 4.4 255 249 2.3 255 245 2.3

Set 2 (Tmax= 30, ρ = 1.0) 230 230 4.8 240 221 2.9 240 224 2.3

Set 2 (Tmax= 30, ρ = 1.5) 210 210 3.6 195 181 2.2 210 197 2.1

Set 3 (Tmax= 50, ρ = 0.5) 510 508 14.1 510 492 6.1 510 482 5.1

Set 3 (Tmax= 50, ρ = 1.0) 470 470 13.6 480 464 6.8 480 454 5.2

Set 3 (Tmax= 50, ρ = 1.5) 440 430 12.4 440 403 6.1 430 392 4.9

Set 64 (Tmax= 45, ρ = 0.5) 792 778 61.2 744 697 24.5 714 692 21.9

Set 64 (Tmax= 45, ρ = 1.0) 702 684 59.6 540 513 19.9 570 537 19.2

Set 64 (Tmax= 45, ρ = 1.5) 636 603 55.3 456 413 14.5 504 432 15.6

Set 66 (Tmax= 60, ρ = 0.5) 895 850 63.2 860 814 22.9 895 867 18.5

Set 66 (Tmax= 60, ρ = 1.0) 890 846 71.9 835 790 22.2 870 840 19.3

Set 66 (Tmax= 60, ρ = 1.5) 795 722 61.5 765 698 18.0 780 730 16.3

(a) Set 1, Tmax= 46,
ρ = 1.0, R= 160

(b) Set 2, Tmax= 30,
ρ = 1.0, R= 240

(c) Set 3, Tmax= 50,
ρ = 1.0, R= 480

(d) Set 64, Tmax= 45, ρ = 1.0,
R= 570

(e) Set 66, Tmax= 60, ρ = 1.0,
R= 870

Fig. 10 Selected solutions of the DOP instances found by the proposed GSOA.

Table 6 Aggregated Results for the Close Enough Dubins Orienteering Problem

Problem set VNS SOM Proposed GSOA
ρ = 1.0 ARPE Tcpu [s] RPE ARPE Tcpu [s] RPE ARPE Tcpu [s]

Set 3, δ = 0.5 0.4 2,887.77 6.9 10.9 7.9 4.1 6.8 5.0

Set 3, δ = 1.0 0.5 3,321.15 7.0 10.6 8.3 3.7 6.7 4.6

Set 64, δ = 0.5 2.7 3,488.85 22.0 27.3 20.2 17.4 22.6 20.7

Set 64, δ = 1.0 0.4 3,600.06 10.4 15.7 22.2 7.9 12.8 23.2

Set 66, δ = 0.5 1.7 3,332.26 13.0 17.9 25.5 10.9 14.0 22.4

Set 66, δ = 1.0 1.4 3,512.28 17.2 22.3 26.7 14.3 18.5 24.0

On the other hand, the relatively small problem sets Set 1,
and Set 2 do not represent a significant challenge for the un-

supervised learning approaches, and therefore, they are not
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considered in the evolution of the solvers in the CEDOP in-
stances.

The turning radius ρ = 1 is considered in the perfor-
mance evaluation of the CEDOP instances, but with the full
budget ranges for the instances from Set 3, Set 64, and Set
66 and the sensing range δ ∈ {0.5, 1.0}. The aggregated
results are reported in Table 6, where the reference solution
Rref used in computation (10) and (11) is the solution found
by the VNS-based approach, and thus RPE is zero for it. The
VNS-based method provides the best solutions but it is com-
putationally very demanding, and solutions have been found
using the computational grid with hundreds of processors,
and thus the reported values of Tcpu are not for the same
computational environment as for the unsupervised learning
approaches. The times for the VNS-based approach are al-
most about one hour, and therefore, it is evident the SOM
and GSOA approaches are significantly less demanding.

Table 7 Results for the Close Enough Dubins Orienteering Problem

Problem VNS SOM Proposed
(Tmax, ρ = 1) Rmax R Rmax R Rmax R

Set 3 (δ = 0.5) 570 570 530 516 530 514

Set 3 (δ = 1.0) 620 615 570 550 580 560

Set 64 (δ = 0.5) 990 973 738 687 780 726

Set 64 (δ = 1.0) 1326 1303 1068 1017 1152 1064

Set 66 (δ = 0.5) 1055 1032 895 853 930 916

Set 66 (δ = 1.0) 1485 1396 1040 984 1110 1070

Set 3, Tmax = 50 Set 64, Tmax = 45 Set 66, Tmax = 60

7 
s

25
 s

1 
h

T
cp

u
 

VNS, δ  = 0.5
VNS, δ  = 1.0
SOM, δ  = 0.5
SOM δ  = 1.0
Proposed, δ  = 0.5
Proposed, δ  = 1.0

Fig. 11 Computational requirements of the evaluated solvers in the
solution of CEDOP. Both unsupervised learning approaches SOM and
GSOA provides a solution in less than 25 seconds, while the VNS-
based approach needs about one hour.

The proposed GSOA improves the performance of the
unsupervised learning approaches in comparison to SOM [11]
and overall it seems to be a bit faster. Detailed results for
the selected instances according to Table 2, ρ = 1, and

δ ∈ {0.5, 1.0} are reported in Table 7 with an overview of
the computational requirements in Fig. 11. Selected solu-
tions found by the proposed GSOA are depicted in Fig. 12.

(a) Set 3, δ = 0.5, R= 530 (b) Set 3, δ = 1.0, R= 580

(c) Set 64, δ = 0.5, R= 780 (d) Set 64, δ = 1.0, R= 1152

(e) Set 66, δ = 0.5, R= 930 (f) Set 66, δ = 1.0, R= 1110

Fig. 12 Selected solutions of CEDOP instances Set 3, Tmax= 50; Set
64, Tmax= 45; and Set 66, Tmax= 60; all with ρ = 1.0 found by the
proposed GSOA.

5.3 Discussion

The reported results support feasibility of the proposed GSOA-
based approach to address computationally challenging CE-
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DOP. The employed novel unsupervised learning procedure
of the GSOA improves the solution and reduce computa-
tional requirements in comparison to the previous SOM-
based approaches. A noticeable improvement is achieved
for few instances of the CEOP, but significant improvement
is achieved for the DOP and CEDOP, especially for Set 64
and Set 66. It is mostly caused by the GSOA, where a new
node is always added to the array together with its way-
point location, but also by the improved adaptation and re-
moval of up to lmax nodes using the ratio (5), which alto-
gether support a selection of more rewarding sensors. On
the other hand, the combinatorial optimization based on the
VNS meta-heuristic provides better results at the cost of in-
creased computational requirements. This is most visible in
the solution of Set 64 where a short Dubins path for ρ ≥ 1

requires appropriate determination of the headings to find a
diagonal path as in the upper left part of the solution Set 64
in Fig. 10d, which has not been found for the right bottom
part by the GSOA. More supporting headings may help to
improve the solution at the cost of increased computational
requirements. E.g., for the increased h = 6, which means
13 heading values per each waypoint, the sum of the col-
lected rewards is increased about one hundred, which is still
worse than the VNS-based solution while the computational
time is about two times increased. Therefore, some of the
speedup data structure as in the VNS-based method can be
utilized to decrease the computational burden. Alternatively,
a different strategy for creating supporting headings can be
employed to fit the regular diamond shape of Set 64 bet-
ter, as it is the only scenario where the VNS-based approach
provides significantly better solutions of the DOP instances
than unsupervised learning methods.

It is worth mentioning that the SOM and GSOA ap-
proaches use an online sampling of the headings during the
adaptation and despite all Dubins maneuvers are repeatably
computed without any pre-computation nor optimized im-
plementation as in the VNS-based approach [10], they are
both less computationally demanding. The particular results
for DOP instances indicate that except Set 64, the proposed
GSOA provides competitive solutions to the VNS-based ap-
proach. However, in the case of CEDOP with non-zero sens-
ing range, the GSOA is stuck in local optima and does not
explore the large search space. The simple local improve-
ment heuristic utilized in the proposed conditional adapta-
tion (i.e., the deletion of up to lmax nodes) provides only
a limited capability of improving the solution and a more
systematic search in the VNS-based method provides better
results. Since the GSOA is about two orders of magnitude
faster than the VNS-based approach in solving CEDOP in-
stances, it provides an opportunity to combine some local
heuristics and combinatorial operators to improve the solu-
tion quality, but still keep the computational requirements
low. Therefore, it is expected that additional local improve-

ments, e.g., iterative local optimization proposed in [30],
combined with the memetic algorithm would improve the
solution similarly as in [43] for the Euclidean TSP.

6 Conclusion

In this paper, a novel unsupervised learning procedure is
proposed to solve a variant of the Dubins orienteering prob-
lem with disk-shaped neighborhoods called Close Enough
Dubins Orienteering Problem (CEDOP). The proposed ap-
proach leverages on the previous SOM-based solvers for the
OPN and DTSPN, but it employs recently proposed Grow-
ing Self-Organizing Array (GSOA) to improve SOM-based
methods in solving variants of the orienteering problem. The
presented results support the proposed approach is viable
and show improvement of the unsupervised learning based
methods in solving orienteering problems. The proposed ap-
proach provides competitive results with the existing VNS-
based solution in instances with relatively sparse target lo-
cations.

The only instances where unsupervised learning meth-
ods perform significantly worse than the VNS-based method
are from Set 64 where the target locations are placed in
a diamond-shaped grid. In solving CEDOP with non-zero
sensing range, the proposed approach provides worse solu-
tions than the computationally very demanding VNS. It is
because of relatively simple local rules for removing nodes
and the visited targets during the learning to meet the re-
quirements of the travel budget. On the other hand, the pro-
posed approach is significantly less computationally demand-
ing than the VNS albeit Dubins maneuvers are repeatedly
computed during the learning. Therefore, a possible future
research direction is to address the identified drawbacks of
the proposed approach by more sophisticated structure to
speed up the computation of Dubins tour represented by the
array of nodes to further employ local optimization strate-
gies for improving the solution quality and keep the compu-
tational requirements low. Besides, the proposed GSOA can
be utilized for solving the addressed orienteering problems
with a team of vehicles, which is also a subject of the future
work.
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