
Noname manuscript No.
(will be inserted by the editor)

Continually Trained Life-Long Classification

Rudolf Szadkowski · Jan Drchal · Jan Faigl

Received: date / Accepted: date

Abstract Two challenges can be found in a life-long classi-
fier that learns continually: the concept drift, when the prob-
ability distribution of data is changing in time, and catas-
trophic forgetting when the earlier learned knowledge is lost.
There are many proposed solutions to each challenge, but
very little research is done to solve both challenges simul-
taneously. We show that both the concept drift and catas-
trophic forgetting are closely related in our proposed de-
scription of the life-long continual classification. We describe
the process of continual learning as a wrap modification,
where a wrap is a manifold that can be trained to cover or un-
cover a given set of samples. The notion of wraps and their
cover/uncover modifiers are theoretical building blocks of
a novel general life-long learning scheme, implemented as
an ensemble of variational autoencoders. The proposed al-
gorithm is examined on evaluation scenarios for continual
learning and compared to state-of-the-art algorithms demon-
strating the robustness to catastrophic forgetting and adapt-
ability to concept drift but also showing the new challenges
of the life-long classification.

Keywords continual learning, life-long learning, auto-
encoder, catastrophic forgetting, concept drift

1 Introduction

Continual learning is essential for domains where the in-
coming data must be continually integrated into a classifier.

This work was supported by the Czech Science Foundation (GAČR)
under research project No. 18-18858S.

Department of Computer Science, Faculty of Electrical Engineering
Czech Technical University in Prague
Technick 2, 166 27, Prague 6, Czech Republic
E-mail: {szadkrud,drchajan,faiglj}@fel.cvut.cz,
WWW home page: https://comrob.fel.cvut.cz/

Such a classifier is expected to train and predict the incom-
ing data as long as it is in operation; hence, it is a life-long
classifier. On a life-long time scale, we expect that the prob-
abilistic distribution of incoming data can change in time,
where such a change is called concept drift. Moreover, there
is also a problem of catastrophic forgetting: as the classi-
fier is continually trained, it can forget some knowledge it
learned earlier. Both the concept drift and catastrophic for-
getting are the main challenges of continual learning [7].

In neural networks, concept representations are distributed
throughout the network weights [8]. In such distributed rep-
resentations, during each training iteration, a slight change
of a single parameter can lead to changes in multiple con-
cepts at once. During continual learning, these changes can
accumulate, and concepts might get catastrophically forgot-
ten [5]. There are four approaches to preventing catastrophic
forgetting [19]:

– weight regularization to prevent overfitting of the current
task [13] ;

– storing selected samples that are used for rehearsal (in-
corporating the old samples into training dataset) [30,
27];

– learning a generative model that produces samples used
for rehearsal [29,26];

– designing a network architecture that (partially) isolates
concepts in subnetworks [21,9].

A straightforward implementation of the architecture design
approach is an ensemble of predictors [15], which we com-
bine with Variational AutoEncoder (VAE) [12] used as a
generative model.

Our proposed method is based on an ensemble of clas-
sifying and generating autoencoders. An autoencoder is a
neural network trained to approximate an identity transfor-
mation of the input. The autoencoder training is unsuper-
vised because the loss, also called the reconstruction error,

2 Rudolf Szadkowski et al.

is defined as a difference between the input and its trans-
formed image. This reconstruction error of the autoencoder
has an alternative to anomaly detection. An anomalous input
is detected by the autoencoder when the reconstruction er-
ror exceeds a given threshold [3,2]. A related application of
the same method is the novel class detection [20,23], where
the task is to detect unknown classes. In both applications,
the anomaly and the novel class detection, the autoencoder
divides the input space into two regions according to the re-
construction error. Here, we call the region with the error
below a certain threshold: a wrap.

In this paper, we take advantage of the wrap interpre-
tation of the autoencoder and present a continually super-
vised training algorithm that suppresses catastrophic forget-
ting and adapts the classifier to concept drift. The classifier
is implemented as an autoencoder ensemble, where each au-
toencoder is trained to cover its respective class by a wrap.

We present two mechanisms modifying the wrap: cover,
and uncover, where the former includes given samples, and
the latter excludes given samples from the wrap. Both meth-
ods modify the wrap while suppressing catastrophic forget-
ting.

The wrap and its two modifiers, cover and uncover, are
the building blocks for the general life-long learning algo-
rithm: For each given sample batch, the algorithm uncovers
given samples by wraps to which the samples do not belong.
Then it covers the samples by their corresponding wrap.

The robustness of the proposed algorithm is intuitively
demonstrated with four basic scenarios of incremental learn-
ing in a three-dimensional domain. Besides, the scalability
to higher dimensional domains is evaluated using scenarios
constructed from the MNIST and CIFAR10 datasets.

The paper is structured as follows. In the following Sec-
tion 2, a brief introduction to the related work on continual
learning is provided. The herein addressed continual learn-
ing is formulated in Section 3, where we present an analysis
of the challenges based on which we propose a general life-
long classifier. In Section 4, the classifier is implemented as
an ensemble of generating VAEs. The results are reported
and discussed in Sections 5 and 6, respectively. The paper is
concluded in Section 7.

2 Related Work

The continual learning is a paradigm where the predictor
trains on a stream of labeled samples. The training on stream
is constrained by limited storage. Thus, it is impossible to
save all labeled samples; rather, the predictor must incre-
mentally aggregate the knowledge. In a non-static environ-
ment, which produces a stream of labeled samples, the ag-
gregated knowledge can become obsolete as the concept, de-
scribed by the knowledge, changes. Two challenges arise as

Fig. 1 Illustration of wraps P1 and P2 during iterations t−1 and t, and
their relation to classes C1 and C2 (dashed borders) that provide the
class-samples S+,t

1 and S+,t
2 (marks), respectively. Even though the

samples S+,t
1 do not represent the class C1, the corresponding wrap

P1 must retain its shape. However, between the iteration t− 1 (dotted
border) and t (solid border), the wrap loses its part (red region) due
to catastrophic forgetting. The classes can change in time due to the
concept drift, like the class C2 in the picture, and such drift can be
detected only through new class-sample distribution. Notice that with-
out any assumption about the probabilistic distribution of samples, the
only way to detect the concept drift is by having a class-sample that is
a part of the wrap of another class (on top of P1 in the red).

we assume a non-static environment and limited model size:
the concept drift and catastrophic forgetting.

In continual connectionist learners, catastrophic forget-
ting stems from the strength of the connectionist models:
distributed representation of concepts [5]. The concepts are
represented by a large number of weights, which are shared
with other concept representations. Therefore, updating part
of the network influences overall performance [8]. There are
four approaches countering catastrophic forgetting: regular-
ization, rehearsal, generative replay, and network architec-
ture [19].

In the regularization approach, the training is regularized
to prevent the overfitting of the currently processed batch of
data. Such as the Elastic Weight Consolidation (EWC) [13],
where the algorithm selectively freezes the neural network
weights that are important to the previously learned task/class.

In the rehearsal approach, the predictor stores a limited
amount of samples reintroduced into the next training. In the
algorithm presented in [27], the limited memory clusters and
stores selected samples, which are then used for rehearsal.

The generative replay (also called pseudo-rehearsal) is
similar to the rehearsal approach, where instead of saving
the samples, the predictor trains a generator to generate the
samples. In [29], the authors use the Generative Adversarial
Network (GAN) as the generator, where the GAN generates
samples that are mixed with the input samples. Thus the pre-

Continually Trained Life-Long Classification 3

dictor is trained on current and reconstructed samples. Sim-
ilarly, the VAE is the generator network used for memory
replay in [1].

The generative replay is often combined with the archi-
tecture approach, where the architecture of the network is
designed to minimize the interaction between concept rep-
resentations during training. The FearNet [9] has a fast-slow
memory system, where the short-term memory learns to re-
play recent experience while the long-term memory aggre-
gates the short-term memory samples. Our presented clas-
sifier is also a hybrid of generative replay and dynamic ar-
chitecture approaches; however, unlike the algorithms men-
tioned above, we also consider the concept drift.

By considering the concept drift, we assume the exis-
tence of concepts, a hidden part of the environment, which
provides us samples. The concepts can be described with
a joint distribution p(X, y) between input X (samples) and
output y (labels) variables. The concept drift is then defined
as a change of the joint distribution in time: pT1(X, y) 6=
pT2

(X, y), where T1 and T2 are consequent iterations.

The authors of [6] distinguish two types of the concept
drift: (i) the virtual concept drift, where the distribution of
the input data p(X) changes; and (ii) the real concept drift,
where the posterior class probability p(y|X) changes. The
learning that reacts to the concept drift and integrates the
change into the learned model is called adaptive learning,
which can be understood as a special case of continual learn-
ing.

The key feature of adaptive learning is selective forget-
ting. A voting ensemble of classifiers is proposed in [4] as
an adaptive learning algorithm, where each classifier can be
learned on a different task and weighted in the case of the
concept drift. The authors of [24] propose a rehearsal-based
classifier that uses a window of variable length that slides
on the data stream and provides the training data. When
the concept drift is detected, the window is shortened, and
thus the model forgets the past data. More complex sample
weighting is presented in [16], where the authors weight the
stored data by its relevancy. The window forgetting unlearns
the concepts basing on how old the concept is; however,
such a strategy can forget old concepts that are still consis-
tent with new data. Our algorithm unlearns the old concepts
that are in a conflict with the current concept.

In contrast to the probabilistic description of the con-
cept, the authors of [22] present a clustering algorithm that
assumes that the clustered samples are points lying on an
unknown manifold living within the feature space. In this
work, we describe concepts (classes) as disjoint manifolds
in the feature space. The definition of classes as manifolds is
our basis for the formulation of continual learning presented
in the following section.

3 Analysis

Let X be a metric feature space with an arbitrary metric d,
and let a manifold Ci ⊂ X be the i-th class, where we as-
sume that classes Ci are mutually disjoint. Each class Ci
is unknown, but at the iteration t, we get a finite point-set
of class-samples S+,t

i ⊂ Ci. In the continual learning, we
can only work with the given class-samples S+,t

i at the it-
eration t. Moreover, any class Ci can change during two
iterations (Cti 6= Ct

′

i) due to the concept drift; see Fig. 1.
The goal of continual learning is finding such a classifier
F t : X → {1 . . .M} at t that

∀i ∈ {1 . . .M},∀x ∈ Cti : F t(x) = i. (1)

We propose to useM trainable manifoldsPi ⊂ X , which
we call wraps, to mimic their respective classes. Ideally,
each class Ci is a subset of its respective wrap Pi, while
all wraps are mutually disjoint:

∀i ∈ {1 . . .M} : Cti ⊂ P ti , (2)

∀i, j ∈ {1 . . .M}, i 6= j : P ti ∩ P tj = ∅. (3)

Since the class Cti is unknown, the wrap P ti is modi-
fied w.r.t. positive class-samples S+,t

i and negative class-
samples S−,ti = ∪Mj 6=iS

+,t
j , finite sets of samples that are

part of the class Cti or disjoint with the class, respectively. In
continual learning, we consider that the class samples given
at the t-th iteration do not necessarily represent the classes,
i.e., a wrap that subsumes positive class samples taken from
one iteration does not necessarily subsume the whole class.

Thus, the wraps have to aggregate the positive class-
samples over time. Such aggregation is realized by keeping
the wrap persistent over time; therefore, the trained wrap P ti
should be disjoint with negative class-samples but it should
also contain the positive class-samples, and a part of the
original wrap P ti

∀i ∈ {1 . . .M} : (P t−1i − V ti) ⊂ P ti , (4)

∀i ∈ {1 . . .M} : S+,t
i ⊂ P ti , (5)

∀i ∈ {1 . . .M} : P ti ∩ S
−,t
i = ∅, (6)

where the forget set V ti ⊂ P
t−1
i is a part of the i-th wrap that

can be forgotten during the transition to the t-th iteration.
The forget set is closely related to catastrophic forgetting;
indeed, in the worst-case scenario, the forget set contains
the entire wrap P t−1i ⊂ V ti . Thus, the whole aggregated
knowledge from the past can be lost, and the wrap must be
able to forget when the concept drift is detected.

Without any assumption about the probabilistic distri-
bution of class samples, the only way to detect the con-
cept drift is when negative class samples intersect the wrap
S−,ti ∩P t−1i 6= ∅. The intersection of the wrap and negative
class-samples must be a part of the forget set S−,ti ∩P t−1i ⊂
V ti to stay consistent with the conditions (4) and (6).

4 Rudolf Szadkowski et al.

(a) (b) (c)

Fig. 2 Three possible scenarios depending on the membership of the class-sample s ∈ S+,t
i . (a) The class-sample is inside its own wrap s ∈ P t−1

i

and no wrap modification is needed. (b) If the class-sample is incident with none of the wraps s 6∈ P t−1
j ; j ∈ {1 . . .M} then, P ti covers s. (c) If

the class-sample falls in another wrap s ∈ P t−1
j ; j 6= i then P tj uncovers s that is later covered by P ti .

The conditions (3), (4), (5), and (6) capture the problem
of continual learning and provide constrains for the wrap
training. In the context of sequential processing, only one
wrap can be modified at a time. Therefore, if a class-sample
of the class i ends up in the j-th wrap of a different class j 6=
i, then, it is impossible to stay consistent with (3) and (6)
with just a single modification. We present two elementary
wrap modifiers called the cover and uncover that are used in
construction of continual learning algorithm compliant with
(3), (4), (5), and (6).

Both modifiers change the wrap w.r.t. different wraps
and class samples. For each class-sample s ∈ S+,t

i , three
possible scenarios depend on whether the class-sample ends
up either in the i-th wrap, in neither wrap, nor a different
j-th wrap. The scenarios are depicted in Fig. 2.

In the first case s ∈ P t−1i , the sample is inside its wrap,
and thus the wrap does not have to be changed w.r.t. the sam-
ple s. In the second case of s 6∈ P t−1j ; j ∈ {1 . . .M}, the i-
th wrap must be modified, and therefore, in the next iteration
s ∈ P tj , we refer to such modification as P ti covers s. Note
that by covering a class-sample s, the i-th wrap expands
more than by a single class-sample (P t−1j ∪{s} (P tj). The
wrap is a manifold living in the metric space; therefore, ev-
ery point s from the wrap is a center of some ball Bd(s, εs)
inside the wrap. Thus, if a sample becomes a part of the wrap
during the cover, there is a ball centered at the covered sam-
ple that becomes a part of the wrap. Finally, in the third case
s ∈ P tj ; j 6= i, the i-th wrap must cover s, but also the j-th
wrap must be modified to not include s at the iteration t to
comply (3); and we refer such a modification as P tj uncovers
s. Similarly to the cover, the wrap loses more than a single
class sample during the uncover. After the uncover, s is not
in P tj ; therefore, in the metric space, there must be such a
ball Bd(s, εs) that is disjoint with P tj . The ball Bd(s, εs)
must intersect P t−1j at more than one point s; therefore, the
intersection between the ball and the wrap must be a part of
the forget set V tj .

We propose the following straightforward training scheme
to modify the wraps w.r.t. class samples and consistency
with (3), (4), (5), and (6). At each iteration t, the given class-

sample set S+,t
i is firstly uncovered by all wraps P tj ; j 6= i

and then covered by the P ti wrap. The classification can be
then realized by the function

F t(x) = argmax
i

[[x ∈ P ti]]. (7)

The proposed implementation of the θ-wrap P ti (θ) and its
training algorithm follows.

4 Method

The continual learning scheme described in the previous sec-
tion is implemented as an ensemble of discriminating VAEs,
each corresponding to its respective wrap. The autoencoders
are trained to replay the samples of their respective wraps,
used for further training, and discriminate between positive
and negative samples. In this section, we present the train-
ing algorithm with two objectives for training L+ and un-
training L−, see Alg. 1. The generative replay, training, and
untraining loss functions are used to implement COVER and
UNCOVER wrap modifiers, which are called in the update
procedure summarized in Alg. 2.

We define the wrap as a wrap function preimage of the
interval [0, θ):

P = f−1([0, θ); g) = {x|f(x; g) < θ;x ∈ X}, (8)

where θ ∈ (0, 1] is a threshold parameter and f : X →
R+ is a continuous wrap function parametrized by a VAE
g : X → X × Y with the output domain extended by the
discriminative space Y = (0, 1).

The VAE is composed of the encoder e : X → Zµ ×
ZS and decoder c : Z → X × Y , where Z = RD is the
latent space andZµ×ZS is the space of multivariate normal
distribution parameters that VAEs are trained to approach
N (0, I) for given samples [12]. The VAE architecture and
the wrap representation are depicted in Fig. 3.

The autoencoder g = (gX , gY) is trained to reconstruct
positive samples gX (x+) ≈ x and to discriminate positive
σ(gY(x+)) ≈ 1 and negative σ(gY(x−)) ≈ 0 samples;

Continually Trained Life-Long Classification 5

(a)

(b)

Fig. 3 (a) The Variational AutoEncoder (VAE) g is composed of
two neural networks: encoder e and decoder c. The encoder maps the
input x to multivariate normal distribution parameters of the latent
space, where eµ(x) and eS(x) give the mean and variance, respec-
tively. The decoder then maps the latent space onto feature space X
extended by discriminative space Y . The VAE is used in three modes
(use cases): as a wrap-sample generator (yellow), where a random sam-
ple is taken from the normal distribution and mapped into the feature
space; as trainable network (blue), where for each input x a random
sample is taken from the normal distribution parametrized by eS(x)
and eµ(x), and the result is evaluated by the loss L+ or L−, depend-
ing on whether the sample was positive or negative, respectively; as
the wrap-function evaluator (red), where the input x is encoded by
eµ(x), decoded and evaluated by the wrap-function f . (b) The i-th
wrap-function and threshold θ determines the i-th wrap manifold.

where σ is the sigmoid function. In this work, we use the
wrap function

f(x; g) =
1

dim(X)
||gX (x)− x||2 + (1− σ(gY(x))), (9)

where the first term corresponds to reconstruction objective
training the network to reconstruct the input from the latent
space [14]; the objective is normalized by the feature space
dimension. We extend the reconstruction error by the sec-
ond term of (9), which optimizes the discriminative output
gY(x) to distinguish positive samples from negative ones.

The advantage of using the discriminative term is twofold.
First, the autoencoder initialized by the LeCun initialization
proposed in [18] maps the feature space gY(x) ≈ 0.5, and
therefore, if θ < 0.5, the wrap is mostly empty initially.
The second advantage of the discriminative term is that, un-
like the reconstruction error, the discriminative term is lower
and upper bounded. Thus the term cannot diverge, which is
utilized in the objective for untraining L− (12).

Algorithm 1 Train autoencoder with positive and negative
samples.

Variables g: autoencoder; X+, X−: positive and negative sam-
ples; θ: threshold; E: max epoch; J : cost function;

Result g: trained autoencoder;
1: function TRAIN(g, X+, X−)
2: g0 ← g

3: for k = 1 to E do
4: εk ← J (gk−1, X

+, X−)
5: gk ← gradient-descent(gk−1, εk)
6: if ∀x ∈ X+ : f(x; gk) < θ and ∀x ∈ X− : f(x; gk) > θ

then
7: break
8: end if
9: end for

10: g ← gk
11: end function

The autoencoder is trained under two objectives L+ and
L− used for positive and negative samples, respectively

reg(x) = DKL(N (eµ(x), eS(x))‖N (0, I)), (10)

L+(x) = ||gX (x)− x||2 + (1− σ(gY(x))) + reg(x),
(11)

L−(x) = 1− σ(gY(x)), (12)

where reg(x) is the VAE regularization of that improves
generative properties of the autoencoder [12] by optimizing
the Kullback-Lieber divergence DKL. The relationship be-
tween the objectives and wrap function is L−(x) ≤ f(x) ≤
L+(x). Thus, by minimizing the loss of positive samples
L+(x), the wrap value f(x) is decreased, while by maxi-
mizing the loss of negative samples L−(x), the wrap value
f(x) increases. The total cost function for the positive sam-
ples X+ and negative samples X− is then

J (X+, X−) =
1

|X+|
∑
x∈X+

L+(x)− 1

|X−|
∑
x∈X−

L−(x),

(13)

which is used in the training, depicted in Alg. 1.

Fig. 4 Illustration of the wrap-function (blue curve) modified during
training the positive sample x+ and untraining negative sample x−

(red). The positive sample x+ is optimized by the L+ minimization
while x− by theL− maximization. On the right, the training is finished
after the wrap-value of the positive sample (red disc) is below θ and the
negative sample is above θ. The unoptimized part of X is uncontrolled,
which might result in catastrophic forgetting, here visualized as the
wrap P1 (blue strip) losing its part (red strip) during training.

6 Rudolf Szadkowski et al.

(a)

(b)

Fig. 5 Illustration of the cover and uncover wrap modifications. (a)
When the wrap P1 (blue strip) covers the sample x+ (red), the wrap-
function (blue curve) is minimized for the sample x+ along with the
wrap-samples P̂ t−1

1 (green). (b) When the wrap P1 uncovers the sam-
ple x−, the wrap function is maximized for the sample x− and mini-
mized for the wrap-samples except for those that are close to x−.

During the training, the i-th autoencoder is optimized
until X+ ⊂ Pi and X− ∩ Pi = ∅, or until the max epoch
is reached. The training optimizes the wrap value for each
given positive or negative sample; however, it is generally
unknown how the wrap value is changed in the rest of the
feature space X − (X+ ∪X−); see Fig. 4. Therefore, some
arbitrary regions of the unoptimized space X − (X+ ∪X−)
might become or stop being a part of the optimized wrap,
where the former can violate (3) and the latter violates (4).

Intuitively, the positive samples should contain a repre-
sentation of the trained wrap from the previous iteration, so
the new wrap subsumes the wrap from the previous iteration.
Likewise, the negative samples of the trained wrap must
contain a representation of other wraps so that the trained
wrap stays disjoint.

The wraps are represented by samples, which we call
wrap-samples. The wrap-samples P̂ ti are extracted from the

VAE decoder

Z = {N (0, I)}N , (14)

P̂ ti = {cti(z)|f ti (cti(z)) < θ, z ∈ Z}, (15)

where the multivariate distribution N (0, I) is used to gen-
erate N random latent samples, which are decoded into the
feature space. We preserve the learned knowledge through
iterations by introducing the extracted wrap-samples into the
training set.

The wrap-sample introduction has a straightforward use
in the definition of the cover wrap modifier

COVER(gt−1i , Sti) :=

TRAIN(gt−1i , S+,t
i ∪ P̂ t−1i , S−,ti ∪

⋃
j 6=i

P̂ t−1j), (16)

where the wrap-samples are simply added to class-samples,
which supports (4), and the wrap-samples of other wraps are
added as negative samples to ensure (3) and (6); see Fig. 5a.
The COVER modifier allows the wrap to finish the second
scenario shown in Fig. 2a, where the new class samples are
not a part of any wrap.

However, in this work, we also consider the concept drift,
which is detected by a class-sample being inside a wrap of
another class as it is illustrated in Fig. 2c, where the wrap
must uncover the foreign class sample. Assuming that the
autoencoder is a continuous function, by uncovering point
s−, the wrap must forget some neighborhood Bd(s−, εs−),
which intersects with the wrap P t−1i . Therefore, the inter-
section Bd(s−, εs−)∩ P̂ t−1i cannot be part of negative sam-
ples. We propose to approximate the neighborhoodBd(s−, εs−)
by the Euclidean ε0-ball Bd(s−, ε0) for each negative class-
sample and subtract it from wrap-samples

UNCOVER(gt−1j , Stj) :=

TRAIN(gt−1j , P̂ t−1j −Bd(S−,tj , ε0), S
−,t
j ∪

⋃
k 6=j

P̂ t−1k),

(17)

where ε0 is a hyperparameter; see Fig. 5b. Practically, the
ball subtraction is implemented as deletion of such P̂ t−1j

wrap-samples in ε0-neighborhood of any negative class-sample.

The UNCOVER method is consistent with (4), (3), and (6),
but not (5) because the positive class-samples can be inside
wraps of other classes (in such situation (3) and (5) cannot
be true at the same time). Thus, the UNCOVER of all neg-
ative class-samples transforms the eventual third scenario
(see Fig. 2c) into the second scenario (Fig. 2b) for which
we can use the COVER wrap modifier. With covering (16)
and uncovering (17), the update of the autoencoder is com-
pletely defined, and the procedure is depicted in Alg. 2.

Continually Trained Life-Long Classification 7

Algorithm 2 Update autoencoders with the dataset D.
Variables {gi}: collection of M autoencoders, i ∈ {1 . . .M};
D = {(s, k)}: dataset of labeled samples where k indicates a label

of the sample s;
θ: threshold; f : wrap function;
Result {gi}: updated autoencoders;

1: function UPDATE({gi}, D, θ)
2: for i = 1 to M do
3: Si ← {s|(s, i) ∈ D}
4: for j = 1 to M where j 6= i do
5: if ∃s ∈ Si : f(s; gj) < θ then
6: gj ← UNCOVER(gj , Si) . See (17).
7: end if
8: end for
9: gi ← COVER(gi, Si) . See (16).

10: end for
11: end function

For the evaluation, we relax (7) by using

F ′t(x) = argmin
i
f ti (x), (18)

which maps each point of the feature space onto a single
label.

5 Experiments

In this section, we report on the empirical evaluation of the
proposed approach in two parts. First, we demonstrate the
qualitative differences between continual learners on intu-
itive examples. Second, the proposed continual learner is
compared with two state-of-the-art continual learners, and
we show the selective forgetting is needed for scenarios where
the concept drift is possible.

We assess the performance of continual learners by eval-
uating their cover and uncover mechanisms. The cover mech-
anism corresponds to the ability to learn without forgetting,
while the uncover mechanism relates to selective forgetting
needed for the concept drift adaptation. In this section, the
performance of cover and uncover mechanisms is evaluated
by evaluation scenarios. The scenario is a sequence of train-
ing tasks Ti constructed from subclasses, where each sub-
class has an assigned label (subclasses with the same label
form a class).

Three domains are used as sources of the subclasses. In
the first domain, further referred to as gauss, we use three
clusters generated from the multivariate Gaussian distribu-
tion in the three-dimensional feature space to demonstrate
how the proposed classifier works intuitively. The second
domain is the MNIST [17] dataset (denoted mnist) con-
taining ten subclasses (digit is a subclass), where we eval-
uate how the proposed classifier performs in complex do-
mains. Finally, the CIFAR10 dataset [33] (denoted cifar)
containing ten image subclasses as mnist; however, un-
like mnist, cifar is challenging even in non-incremental

classification scenarios. All three domains provide subclasses
from which a sequence of training tasks can be constructed.

Each task T , the classifier is trained to label samples of
the subclass G with the assigned label L; i.e., the classifier
trains over the dataset {(s, L)|s ∈ G}. Multiple subclass-
label assignments are possible during a single task T =

{(Gi, Lj), (Gi′ , Lj′), . . . }. The notion of evaluation scenar-
ios generalizes the commonly used catastrophic forgetting
benchmarks [13,10,26], allowing us to construct benchmarks
for concept drift. Thus, various sequences of the training
tasks can test different qualities of the continual learner.

We adopt four basic scenarios [32] evaluating the essen-
tial properties of continually trained classifiers in two tasks.
The first two scenarios evaluate the robustness against catas-
trophic forgetting where a new class is added in the ADD
scenario, and an existing class is expanded in the EXP sce-
nario. The scenarios INC and SEP evaluate the adaptation to
the concept drift by changing the labels of already presented
samples.

All four scenarios are constructed from three subclasses,
G1, G2, and G3, from which the classes are created. In the
case of the gauss domain, we use clusters generated from the
Gaussian distribution, and for the mnist and cifar do-
mains, the subclasses are digits and vehicle/animal images,
respectively; see Table 1. In each scenario, the subclasses
are presented to the classifier in two iterations T1 and T2
that learns to classify the subclass samples with one of two
labels L1 or L2. The target labels assigned to each subclass
and the iteration in which the subclasses are presented to the
classifiers are unique for each scenario, as described in Ta-
ble 2. For the mnist and cifar domains, we additionally
examine the robustness of the classifiers in complex scenar-
ios, which are composed of multiple tasks and multiple sub-
classes.

Table 1 The sources of subclass samples Gi. For the gauss domain,
the clusters R, G, and B, corresponding to the red, green and blue col-
ors in the RGB space, are used. For the mnist and cifar domains,
three selected digits and vehicles/animals are used as subclasses, re-
spectively.

Assignment G1 G2 G3

gauss R B G
mnist021 0 2 1
mnist197 1 9 7
cifar021 airplane bird automobile
cifar197 automobile truck horse

We refer to the proposed algorithm as ensgendel1

from ensemble of generative models with mechanism of sam-
ple deletion. The utilized VAE comprises hidden layers of

1 Implementation of the evaluation framework and the ensgendel
algorithm is available at https://github.com/comrob/ensgendel.

8 Rudolf Szadkowski et al.

Table 2 Configurations of four basic scenarios. In each scenario, we present a subclass Gi of the samples (with the labels Lj described in the
corresponding cell) to each classifier during two iterations T1 and T2; if there is no label, the subclass is not presented. The last row configures the
testing iteration, where the accuracy of the predicted labels G1 shows the robustness to catastrophic forgetting, and the accuracy of G3 shows the
adaptability to the concept drift in the INC and SEP scenarios.

ADD EXP INC SEP

Iteration G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3

T1 L1 - - L1 - - L1 - L2 L1 - L1

T2 - L2 - - L2 L1 - L2 L1 - L2 L2

test L1 L2 - L1 L2 L1 L1 L2 L1 L1 L2 L2

rectified linear units (ReLU), except for the output layer for
the encoder and decoder that are just linear units. The net-
work is trained by ADAM with default parameters [11]. The
neural network architecture and classifier hyperparameters
are specified for each domain, where all hyperparameters
were selected empirically.

5.1 Three Flavors of Continual Learning

The difference between the continual learners might not be
just quantitative, where one learner has better results in cer-
tain metrics, but also qualitative, where the learner has fun-
damental limitations. We demonstrate such limitations on
two different flavors of the proposed ensgendel learner.

Similarly to [32], we modify the proposed classifier into
two continual learning algorithms without the ability to con-
trol the forgetting. The first is the ensemble of discriminators
generating (recalling) samples (ensgen), which we imple-
ment by omitting Line 6 in Alg. 2. The ensgen classifier is
a hybrid continual learner with generative replay and ensem-
ble architecture approach, but it is unable to untrain already
learned knowledge. The second classifier is an ensemble of
discriminators (ens), which is different from ensgen by
setting the maximum number of samples N = 0. Therefore,
the classifier ens is unable to rehearse on generated sam-
ples. The classifiers ens and ensgen are designed to resist
the concept drift; however, we demonstrate that the continu-
ally trained classifiers cannot adapt the concept drift without
selective forgetting.

5.1.1 Gaussian Clusters in 3-Dimensional Space

In the gauss domain, we compare the classifiers on a toy
problem in the three dimensional space X = R3 that con-
tains three clusters R, G, and B generated from the Gaus-
sian distribution with the means µR = (1,−1,−1), µG =

(−1, 1,−1), µB = (−1,−1, 1), respectively, and with the
common covariance matrix 0.001I. The classifiers are trained
to label the cluster by one of two labels, L1 or L2. The clus-
ter labeling in each scenario during both tasks is described
in Table 2. The proposed classifier contains two VAEs, each

with encoder and decoder layer sizes 3-15-30-4 and 2-15-
30-4, respectively. The threshold parameter is set to θ =

0.2, the subtraction radius ε0 = 0.1, the maximum epochs
E = 1000, and the number of latent samples N = 200. The
results of the scenario evaluations are depicted in Table 3
and visualized in Fig. 6.

5.1.2 MNIST evaluation

In the mnist domain, we use MNIST [17] to construct
the basic scenarios and three complex scenarios spanning
five iterations. MNIST is a dataset containing ten handwrit-
ten digits from zero to nine, which are saved as 28 × 28

greyscale pictures; therefore, the feature space is X = R784.
The dataset contains 7000 samples per class (digit), where
the samples are divided into training and testing sets with a
ratio of six to one. The testing set is then used for the accu-
racy evaluation in each scenario.

In the basic scenarios, the digit classes serve as sub-
classes from which we construct tasks for each scenario,
similarly to the gauss domain in the previous section; see
Table 2. Moreover, we examine the classifiers in three com-
plex scenarios ADD5, EXP5, and SEP5, which are similar
to basic scenarios but are five iterations long.

The used architecture of the VAE is 784-250-500-16, 8-
250-500-785 for the encoder and decoder, respectively. The
threshold parameter is set to θ = 0.1, the subtraction radius
ε0 = 4, the maximum epochs E = 100, and the number of
latent samples N = 200. The hyperparameters are tuned to
mnist021. The evaluation results for basic scenarios are
depicted in Table 3.

The three complex scenarios are extensions of the basic
scenarios that examine the classifier robustness in the sce-
narios with more iterations, classes, and subclasses. ADD5
is a scenario where the classifier trains to classify multiple
digits, from zero to four, with their corresponding labels
L1, L2, . . . , L5, where the samples of each digit are pre-
sented to the classifier in a separate iteration T1, T2, . . . , T5.
In EXP5, the classifiers are trained in five iterations to dis-
tinguish between odd and even digits. Each iteration Ti, the
classifier trains to classify 2i−2 digit as even (L1) and 2i−1
as odd (L2). Finally, in the scenario SEP5, there are two la-

Continually Trained Life-Long Classification 9

Table 3 Classifier accuracy calculated on the testing task before the iteration T2 and after it.

Assignment Classifier ADD EXP INC SEP

T1 T2 T1 T2 T1 T2 T1 T2

gauss

ens 1.0 1.0 0.66 0.91 0.51 0.85 0.67 0.92
ensgen 1.0 1.0 0.66 1.0 0.51 0.89 0.66 0.74
ensgendel 1.0 1.0 0.54 1.0 0.53 1.0 0.67 0.94

mnist021

ens 0.49 0.94 0.67 0.69 0.5 0.68 0.31 0.87
ensgen 0.49 0.97 0.67 0.96 0.46 0.92 0.31 0.9
ensgendel 0.49 0.97 0.67 0.97 0.51 0.98 0.31 0.97

mnist197

ens 0.53 0.99 0.68 0.85 0.67 0.84 0.36 0.9
ensgen 0.53 0.97 0.68 0.96 0.67 0.88 0.36 0.87
ensgendel 0.53 0.98 0.68 0.96 0.65 0.95 0.36 0.93

µR µG µB class-sample L1 wrap L1 relaxed L2 wrap L2 relaxed

T1 T2

(a) ens, ADD

T1 T2

(b) ens, EXP

T1 T2

(c) ens, INC

T1 T2

(d) ens, SEP

T1 T2

(e) ensgen, ADD

T1 T2

(f) ensgen, EXP

T1 T2

(g) ensgen, INC

T1 T2

(h) ensgen, SEP

T1 T2

(i) ensgendel, ADD

T1 T2

(j) ensgendel, EXP

T1 T2

(k) ensgendel, INC

T1 T2

(l) ensgendel, SEP

Fig. 6 The gauss domain projected onto the 2D plane by Principal Component Analysis (PCA) decomposition. The 2D plane is then uniformly
sampled and projected back into feature space, where the projected samples are labeled by classifiers with (18) function. The region predicted
as L1 is shown in light blue while the L2 is light orange. Moreover, the (7) is used to get the wraps of the L1 (orange) and L2 (blue) classes.
The black marks represent the given class samples during the particular iteration, while the triangles are means of R (red), G (green), and B (blue)
clusters.

bels, where at T1, digits 1 to 5 are associated with the label
L1, and zero digits are associated with L2. Each following
iteration Ti; 1 < i < 6, the classifiers train on digits of i that
are relabeled to L2 label. After the T5 iteration, the classi-
fiers should label digits 0 to 4 asL2 and remaining five digits
as L1. The results of three complex scenarios are visualized
in Fig. 7.

5.2 Comparative Study

In this part of the evaluation results, we assess how state-of-
the-art (SotA) continual learners perform in scenarios that

induce catastrophic forgetting and concept drift. The pro-
posed algorithm, ensgendel, is compared to two contin-
ual classifiers: Growing Dual-Memory (GDM) learner [26]
and Closed Loop Memory Generative Adversarial Network
(CloGAN) [27]. All compared algorithms use a generative
replay as a counter-measure to catastrophic forgetting. How-
ever, they are also hybridized by one other incremental learn-
ing mechanic: an architecture change for ensgendel and
GDM, and (true) rehearsal technique for CloGAN.

We compared the continual classifiers in the previously
described MNIST evaluation scheme and the more challeng-
ing CIFAR10 domain. Since the CIFAR10 subclasses are
high-dimensional, the neural network architecture of ensgendel

10 Rudolf Szadkowski et al.

(a) ADD5

(b) EXP5

(c) SEP5

Fig. 7 Accuracy evolution during five training iterations in the com-
plex scenarios ADD5, EXP5, and SEP5. For each iteration, the evalu-
ated learners are exposed to subclass samples (digit images) with labels
Li. The accuracy is evaluated w.r.t. to the target final state.

was adapted for image classification to improve the perfor-
mance. The cifar scenarios and the setup of compared
learners are described in the following paragraphs.

5.2.1 cifar scenarios

The CIFAR10 dataset [33] is a set of roughly eighty mil-
lion 32×32 RGB images. For each scenario, the training set
is randomly subsampled to size 1000, which emulates the
underrepresentation expected in continual learning, where
datasets are experienced continually. Each image belongs to
one of the ten subclasses: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, or truck. Since cifar10 and
mnist have the same number of subclasses, we use the al-
phabetic order as the label (airplane and truck correspond to
0 and 9, respectively) to construct the same scenarios as we

constructed for the mnist domain, see Table 1. Thus, the
only difference between cifar and mnist scenarios are
the input images.

5.2.2 Growing Dual-Memory Learner (GDM)

The approach of the GDM learner to continual learning is
a hybrid of generative replay approach and dynamic archi-
tecture [26]. The architecture contains two layers of mem-
ory: the episodic memory that incrementally encodes the in-
puts, and the semantic memory, which extracts high-level
knowledge from the episodic memory. Both layers are grow-
ing self-organizing maps (SOMs) [21], which grow with the
complexity of the input data; thus, the architecture encodes
the information incrementally. Moreover, SOM of the episodic
memory is used as a generator of pseudo-samples, further
improving the robustness against catastrophic forgetting. Due
to the nature of SOM, which work in the Euclidean space,
the authors propose to preprocess image data with VGG
model [31] pre-trained on image dataset [28].

We have integrated the authors’ implementation of the
GDM2 and preprocessed the MNIST 28 × 28 and CIFAR
32×32×3 images into 256 dimensional feature vectors us-
ing the pre-trained VGG model. The GDM model trains for
80 epochs, where the learning rates for the episodic and se-
mantic growing SOMs are set to 0.2 and 0.001, respectively.

5.2.3 Closed Loop Memory Generative Adversarial
Network (CloGAN)

The CloGAN learner, introduced in [27], is a hybrid of gen-
erative replay and (true) rehearsal approaches. The genera-
tive replay is provided by the Auxiliary Conditional Gener-
ative Adversarial Network (ACGAN) [25] trained to gener-
ate pseudo-samples. In contrast to the ensgendel learner,
where each generative model (the VAE in our case) is trained
to represent one class, the CloGAN’s generative model is
trained to represent all classes.

However, the main difference stems from the CloGAN
learning algorithm’s rehearsal mechanism, where CloGAN
stores selected samples into limited memory. The authors
propose to cluster the samples into multiple sets, from which
CloGAN draws an equal number of the selected samples to
ensure the heterogeneity amongst the stored samples. The
number of selected samples depends on the memory capac-
ity, which is limited. Therefore, if the memory is filled up,
the size of the stored clusters is decreased by pruning the
stored samples to free the storage space for the current batch
of the selected samples. The stored, generated, and input
samples partake in the learning of the classifier.

2 https://github.com/giparisi/GDM

Continually Trained Life-Long Classification 11

The implementation of CloGAN3 was integrated with
our evaluation framework. The storage was set to the capac-
ity of 90 samples, which are divided into ten clusters. The
classifier and generative model were trained within hundred
epochs per task with the learning rate 0.0002.

5.2.4 Convolutional network in ensgendel

For high-dimensional inputs from cifar we implemented
convolutional VAE, where we use convolutional layers in-
stead of fully connected layers. The image is encoded into
latent mean and variance by four convolutional layers map-
ping the 32× 32× 3 image into 2× 2× 256 tensor, which
is then processed by three fully connected layers 1024-256-
256 into 128-dimensional latent space. The 128-dimensional
feature is then decoded by mirrored architecture: first pro-
cessed by fully-connected layers 128-256-1024 and then mapped
back into image by four deconvolutional layers. The last
fully connected layer of the decoder is also used for get-
ting the discriminative part of the output gY , where the layer
1024-1 is added. For reconstruction error training, we used
the negative log-likelihood of Bernoulli distribution.

The change of the underlying VAE implementation does
not change the ensgendel algorithm itself. The ensgendel
hyperparameters are set to θ = 0.04 and ε0 = 1.

5.2.5 Comparison of Proposed Method with SotA

All three learners, ensgendel, GDM, and CloGAN, were
evaluated in the same set of the scenarios described in Sec-
tion 5.1.2. Similarly to ensgendel, we made an effort
to tune hyperparameters of the compared learners w.r.t. to
the scenario sets mnist021 and cifar021 for mnist
and cifar domains, respectively. The comparison results
are averaged over five experimental runs. The evaluation
results of the learners in the basic scenarios of mnist and
cifar domains are shown in Table 4. The results of the
complex scenarios ADD5, EXP5, and SEP5 are shown in
Figs. 8 and 9.

It is evident that CloGAN has an uncover mechanism,
and thus the algorithm untrains the knowledge selectively.
The mechanism is not reported by its authors in [27]; how-
ever, we hypothesize that the unlearning mechanism is a
consequence of the clustered storage in CloGAN. Never-
theless, the cluster storage cannot immediately forget out-
dated sample labels, as it is apparent from the INC4 scenario
shown in Fig. 8d. INC4 is a four tasks long scenario simi-
lar to inclusion, which tests the continual learner’s ability to
retrain changed knowledge immediately. At T1, the learner
is trained only on zero digits with the assigned L1 labels. At
T2, two labels are presented to the learner: ones labeled as
L1, and twos and zeroes labeled as L2 (note that the label

3 https://github.com/fikavw/CloGAN

(a) mnist ADD5

(b) mnist EXP5

(c) mnist SEP5

(d) mnist INC4

Fig. 8 Accuracy evolution during multiple iterations of training in the
complex scenarios ADD5, EXP5, SEP5, and INC4 in mnist domain.
The accuracy (full lines), averaged over five experimental runs, is eval-
uated w.r.t. to the target final state. Shaded areas indicate the maximum
and minimum of accuracy. The dashed line tracks the accuracy of a
particular subclass whose label can be gradually forgotten during sub-
sequent tasks. In ADD5 and EXP5 scenarios, we track the accuracy of
zeroes being labeled as L1. In SEP5, we track the accuracy of fives be-
ing labeled as L1, and in INC4, the accuracy of zeroes being labeled
as L2.

12 Rudolf Szadkowski et al.

Table 4 Classifier accuracies averaged over five runs with the standard deviation shown in brackets. The accuracies are calculated on the testing
task before the iteration T2 and after it. The last column shows accuracy of G1 and G3 discrimination trained within one task, i.e., a regular binary
classification accuracy.

Assignment Classifier ADD EXP INC SEP Discr.
T1 T2 T1 T2 T1 T2 T1 T2

mnist021

GDM 0.49(0.00) 0.82(0.17) 0.67(0.00) 0.80(0.10) 0.44(0.03) 0.73(0.09) 0.31(0.00) 0.64(0.08) 0.98(0.00)
CloGAN 0.49(0.00) 0.97(0.02) 0.67(0.00) 0.98(0.02) 0.45(0.04) 0.92(0.03) 0.31(0.00) 0.94(0.10) 0.98(0.03)
ensgendel 0.49(0.00) 0.96(0.01) 0.67(0.00) 0.97(0.01) 0.50(0.05) 0.97(0.01) 0.31(0.00) 0.96(0.01) 0.99(0.00)

mnist197

GDM 0.53(0.00) 0.81(0.07) 0.68(0.00) 0.74(0.04) 0.60(0.01) 0.64(0.03) 0.36(0.00) 0.69(0.06) 0.89(0.01)
CloGAN 0.53(0.00) 0.97(0.04) 0.68(0.00) 0.91(0.05) 0.67(0.01) 0.93(0.04) 0.36(0.00) 0.98(0.01) 0.98(0.01)
ensgendel 0.53(0.00) 0.96(0.00) 0.68(0.00) 0.96(0.00) 0.65(0.03) 0.94(0.00) 0.36(0.00) 0.98(0.01) 0.98(0.01)

cifar012

GDM 0.50(0.00) 0.63(0.02) 0.67(0.00) 0.68(0.02) 0.45(0.02) 0.48(0.02) 0.33(0.00) 0.59(0.07) 0.73(0.02)
CloGAN 0.50(0.00) 0.56(0.06) 0.67(0.00) 0.67(0.00) 0.41(0.06) 0.57(0.10) 0.33(0.00) 0.62(0.14) 0.59(0.06)
ensgendel 0.50(0.00) 0.64(0.03) 0.67(0.00) 0.61(0.03) 0.52(0.02) 0.60(0.03) 0.33(0.00) 0.66(0.01) 0.72(0.02)

cifar197

GDM 0.50(0.00) 0.66(0.05) 0.67(0.00) 0.69(0.02) 0.50(0.04) 0.56(0.03) 0.33(0.00) 0.64(0.04) 0.62(0.03)
CloGAN 0.50(0.00) 0.50(0.00) 0.67(0.00) 0.67(0.00) 0.57(0.11) 0.70(0.04) 0.33(0.00) 0.47(0.16) 0.52(0.04)
ensgendel 0.50(0.00) 0.69(0.04) 0.67(0.00) 0.76(0.01) 0.49(0.02) 0.62(0.01) 0.33(0.00) 0.66(0.01) 0.62(0.01)

of the zero digits changed). Then, at T3 and T4, the learner
trains to label threes and fives as L1 in their respective tasks.
After the final task T4, the continual learner should classify
ones, threes, and fives as L1, and twos and zeroes as L2.

All compared continual learners show resistance to catas-
trophic forgetting; however, selective forgetting is still chal-
lenging. The performance metrics of the proposed ensgendel
are competitive to CloGAN in most scenarios, although the
former learner seems to be more stable. The purpose of the
herein presented evaluation results is to find fundamental
differences between the continual learners, limiting the per-
formance in certain scenarios. We discuss the found qualita-
tive differences in the following section.

6 Discussion

Catastrophic forgetting and concept drift are usually consid-
ered two separate problems; however, both can occur during
continual learning. We related both problems by two iden-
tified mechanisms of continual learning: cover and uncover.
The cover mechanism is implemented, explicitly or implic-
itly, by learners that can learn incrementally without forget-
ting. However, the robustness to forgetting hinders the con-
cept drift adaptation, and only the algorithms with the un-
cover mechanism were able to adapt. Thus the cover and
uncover mechanisms are fundamental for continual learn-
ing.

6.1 Measured Qualities of ensgendel

The cover and uncover are explicitly implemented in the
proposed ensgendel classifier. ensgendel and its dif-

ferent configurations ensgen and ens were examined in
two domains: gauss and mnist.

The evaluation of the classifiers in the gauss domain
illustrates the properties and weaknesses of each evaluated
classifier. The evaluated classifiers perform well in the ADD
scenario since all of them have one independent discrimina-
tor network per class; therefore, during T2, the training on
fL2

does not influence fL1
.

However, in the EXP scenario,L1 is expanded at the iter-
ation T2, and thus influences the earlier learned subclass R.
In Fig. 6b, the L1 wrap catastrophically forgets the R cluster
at the iteration T2. The catastrophic forgetting does not oc-
cur for the ensgen and ensgendel classifiers, see Fig. 6f
and Fig. 6j, which preserved the knowledge due to wrap-
samples. The persistence is, however, harmful when the adap-
tation to the concept drift is needed.

In the SEP scenario, the G cluster switches the label from
L2 to L1, and thus the L2 wrap must uncover G, which the
ensgen classifier cannot; see Fig. 6g. The ens classifier is
able to forget G, but the forgetting is uncontrolled, and ens
forgets the R cluster as well. In the SEP scenario, interest-
ingly ens does not forget R because L1 does not change
during T1, and it also forgets the G cluster as required. How-
ever, as it can be seen in Fig. 6d, the L1 and L2 wraps
overlap at the G cluster as for some x ∈ G, both fT2

L1
(x)

and fT2

L2
(x) are below the threshold θ. The proposed clas-

sifier ensgendel performs well in all the scenarios since
it has catastrophic forgetting persistence of ensgen, but it
can also forget like ens during the concept drift.

The basic scenarios were also examined within the mnist
domain with two different sets of the basic scenarios, where
we can observe a similar behavior of the classifiers as in the
gauss domain, see Table 3. The ensgen classifier outper-

Continually Trained Life-Long Classification 13

(a) cifar ADD5

(b) cifar EXP5

(c) cifar SEP5

Fig. 9 Accuracy evolution during five iterations of training in the
complex scenarios ADD5, EXP5, and SEP5 in the cifar domain.
For each task, learners are exposed to labeled subclass samples (ani-
mal/vehicle images) as illustrated above each plot. The accuracy (full
lines), averaged over five experimental runs, is evaluated w.r.t. to the
target final state. Shaded areas indicate the accuracy maximum and
minimum. The dashed line tracks the accuracy of a particular subclass
whose label can be gradually forgotten during subsequent tasks. In
ADD5 and EXP5 scenarios, we track the accuracy of airplanes (sub-
class 0) being labeled as L1. In SEP5, we track the accuracy of dogs
(subclass 5) being labeled as L1.

forms ens in the EXP and INC scenarios, while in the SEP
scenario, ensgen underperforms ens.

Similar trend appears in the complex scenarios ADD5,
EXP5, and SEP5. In the ADD5 scenario shown in Fig. 7a, all
the classifiers perform well due to the architecture that sepa-
rates weights of each class; thus, in each iteration, the trained
weights are independent of the weights updated in the pre-
vious iterations. However, the separation of trained weights

does not hold for the EXP5 scenario, where the same class
is expanded multiple times. Besides, the ens classifier un-
derperforms in this scenario as shown in Fig. 7b. Finally, in
the SEP5 scenario, only ensgendel is able to retrain the
subclasses trained at T1; see Fig. 7c. Except for the ADD sce-
nario in the mnist197 assignment, the proposed classifier
ensgendel outperforms both ens and ensgen, because
it is able to selectively forget learned knowledge.

6.2 Measured Qualities of the Compared Algorithms

The proposed classifier was compared with the GDM and
CloGAN learners in two domains: mnist and cifar.

6.2.1 The mnist Evaluation

The mnist domain provides high-dimensional images dis-
tinguished with high accuracy by all learners. Rather than
generalization capabilities, the mnist scenarios evaluate the
catastrophic forgetting robustness and concept drift adapta-
tion.

The results of minimal scenarios reported in Table 8 show
that all the evaluated algorithms can cover samples, i.e., learn
without forgetting, although with different successfulness.
The accuracy of the GDM learner in the ADD and EXP scenar-
ios improves, and we can conclude that the GMD has a cov-
ering mechanism, which, however, performs worse than the
covering mechanisms of CloGAN and ensgendel. The
uncovering mechanism, the ability to selectively forget, is
tested in the INC and SEP scenarios. Only the GDM learner
appears to be not able to uncover, which is apparent in the
INC scenario with mnist197, where the learner consis-
tently does not improve. Surprisingly, the CloGAN learner
appears to have the uncovering mechanism, and overall it
has competitive results to the proposed ensgendel. CloGAN
performs slightly better in covering, see the results for ADD
and EXP, while the ensgendel learner performs slightly
better in uncovering as can be seen in the INC and SEP sce-
narios.

A similar performance of CloGAN and ensgendel
can be observed in the complex scenarios ADD5, EXP5, and
SEP5. ensgendel has the best performance in the ADD5
scenario, where the learners train a new class each layer. The
good performance of ensgendel comes naturally from the
learner’s architecture, where each class updates a separate
network, while the two other learners have to update the
same network and thus risk forgetting. The ability to keep
the previously trained knowledge can be directly observed
in the tracked accuracy of subclasses shown as dashed lines
in Fig. 8. The GDM seems to forget over a longer period as
the learner gradually forgets the tracked subclass in all com-
plex scenarios. ensgendel and CloGAN perform well in
the ADD5 and EXP5 scenarios, and thus we can conclude

14 Rudolf Szadkowski et al.

that both continual learners have a robust covering mecha-
nism.

The results of SEP5 shown in Fig. 8c are harder to in-
terpret since the overall model accuracy (full line) seems to
have similar progress, yet the similar evolution has differ-
ent causes. The GDM covers the tracked subclass (the accu-
racy of fives being labeled as L1) perfectly during the tasks
T1 and T2, as it is shown Fig. 8c by the green dashed line.
However, the overall accuracy of the GDM (see full green
line in Fig. 8c) does not improve at T2 because the learner
is unable to uncover, i.e., it cannot forget selectively. After
the task T2, the GDM forgets the knowledge similarly to un-
controlled forgetting observed in ADD5 and EXP5. We as-
sume that the forgetting of the GDM in SEP5 is probably due
to catastrophic (uncontrolled) forgetting. It is not the case
of the CloGAN and ensgendel learners, where the accu-
racy improvement is monotone (see blue and full red lines in
Fig. 8c). Both learners can gradually untrain the previously
learned knowledge, even though they have robust covering
mechanisms (as we see in ADD5 and EXP5 scenarios). Yet
none of the learners performs perfectly in SEP5, the tracked
subclass is gradually forgotten by all the learners. The se-
lective untraining of samples from a class while keeping the
rest of the class un-forgotten is still challenging.

The results of CloGAN and ensgendel are similar;
furthermore, the CloGAN’s tracked accuracy in the chal-
lenging scenario SEP5 is the highest among the evaluated
learners. Therefore, we can assume that CloGAN has an un-
covering mechanism as well. Since the generative model of
CloGAN does not implement the negative sample loss max-
imization L− (see (12)), we assume that the uncovering is
implemented within the CloGAN’s clustered storage.

The rehearsal storage keeps samples representing the clus-
ters. In a perfect case, the clustering algorithm identifies sub-
classes (digits of MNIST) as clusters. Then, the clustering
storage would contain the representation of the subclasses
and their labels. During the evaluation scenario, the clus-
tered storage then incrementally adds subclasses with their
labels and thus supports the covering mechanism. However,
since the storage is limited, the stored subclasses must de-
crease the number of their representing samples to free the
space for a new cluster representation. We hypothesize that
the uniform decrease of the subclass-label representation size
is what makes the uncovering behavior possible.

During the concept drift, one subclass, G, is represented
in the memory with two different labels. For example, let
(G,L1) and (G,L2) be the subclass-label assignment be-
fore and after the drift. The size of (G,L1) representation is
decreased; thus, if the size of the new (G,L2) is large, the
rehearsed classifier is more likely to assign L2 labels to G
samples. Therefore, CloGAN selectively forgets the (G,L1)

assignment.

However, such uncovering mechanism depends on the
balance between the size of the old and new representations.
Suppose the decreased size of the old (G,L1) representa-
tions is still larger than the new representation of (G,L2).
In that case, the rehearsed classifier is more likely to classify
the samples G as L1 and thus ignore the concept drift. This
memory balance problem is exposed by the INC4 scenario,
where the (Gzeros, L1) representation is probably larger than
the new (Gzeros, L2), which results in the concept drift ig-
noration by CloGAN observed at T2 in Fig. 8d. The tracked
accuracy of (Gzeros, L2) is correctly zero at T1 for all algo-
rithms, but at T2, CloGAN does not adapt to the concept
drift. The GDM learner adapts to the concept drift, but just
for T1 and only the proposed ensgendel learner can per-
manently adapt the concept drift.

The behaviors of ensgendel and CloGAN observed
in Fig. 8d can be both correct under different paradigms.
ensgendel is designed under the one-shot learning paradigm,
where few examples can change the model abruptly, while
CloGAN can adapt the concept drift gradually. These differ-
ent approaches to continual learning are subtle yet critical in
effect and should be researched in the future.

6.2.2 The cifar Evaluation

The cifar subclasses, in contrast to mnist, are discrimi-
nated by evaluated learners with low accuracy, see last col-
umn of Table 4. The low discrimination accuracy has impact
on continual learning, where the overall results of all learn-
ers are worse in cifar than in mnist. The worse perfor-
mance is evident from complex scenarios, see Fig. 9, where
the ensgendel and CloGAN learners have worse accu-
racies than in the respective mnist scenarios as shown in
Fig. 8. In fact, in the cifar scenarios, the learners show
similar development of accuracy (full lines), unlike in the
corresponding mnist scenarios. CloGAN and ensgendel
perform similarly to the GDM; therefore, the uncovering mech-
anism does not provide any advantage as in the mnist sce-
narios.

The low scenario accuracy is a consequence of low dis-
crimination accuracy for two reasons. First, the cover mech-
anism does not cover all given samples (violating (5)); there-
fore, the resulting wrap does not represent the given sub-
class. Second, since the wrap does not represent the sub-
class, the generated samples do not represent the subclass
either. Thus, the knowledge is not transferred between tasks.
The poor quality of generated samples can be indirectly ob-
served in Fig. 9, where the tracked accuracies (dashed lines)
in the ADD5 scenario decrease (unlike in Fig. 8). The abil-
ity of the learner to discriminate between subclasses is im-
portant as the discrimination quality influences the covering
mechanism.

Continually Trained Life-Long Classification 15

The discrimination and reconstruction qualities can be
improved by increasing the size of the training dataset. How-
ever, the point of continual learning is that the learners ex-
perience the dataset continually, i.e., the learners train on
small datasets that might not represent the subclass. The un-
derrepresentation is the essence of continual learning. All
continual learners work under the assumption that a training
set given at T does not represent the domain, class, or even
the subclass. In the most extreme setup, the learner can be
given just one training sample, which must be remembered.
Without any prior knowledge, it is unreasonable to assume
that the learner will generalize from that one sample.

The generalization then seems like an orthogonal quality
to qualities of continual learning, where the overfitting can
be interpreted as a perfect memory (or perfect cover). This
dichotomy of generalization and continual learning capabil-
ities is present in learners FearNET [9] and GDM, where the
one subnetwork generalizes knowledge from other episodic
subnetwork. Architectures combining the advantages of gen-
eralizing and continually learning neural networks should
be more researched, as the generalization capability can im-
prove the continual learning.

6.3 Limitations and Future Work

In this part, we discuss shortcomings of our theoretical de-
scription and proposed method, which we consider are worth
addressing in future work.

6.3.1 Domain Dependent Hyperparameters

The first and foremost limitation of the proposed approach
is the empirical tuning of the hyperparameters needed for
each domain (such as the MNIST or Gauss domains). The
domain itself can be subjected to the concept drift, and thus
the tuned hyperparameters can become suboptimal. Aside
from the VAE hyperparameters, there are three relevant hy-
perparameters of ensgendel, the maximum number of the
wrap-samples N , threshold θ, and subtracting radius ε0.

The parameter N influences the persistence of the wrap.
The ens classifier withN = 0 catastrophically forgets while
ensgenwithN = 200 does not as it can be seen in the EXP
scenario results in Table 3. A large value of N results in
longer training because more samples have to be processed,
but more importantly, the imbalance between class samples
and wrap-samples can hurt the performance. If there is just
one class sample to be covered (16), the larger N is, the
lesser is the marginal error of the class-sample in (13) during
the optimization, and the optimization of the class-sample
will become slower. Moreover, if the number of classes is
high, the unbalance between negative and positive samples
can grow with the number of new classes since the ratio
(without class samples) isN toN times the number of classes.

Such an increasing unbalance between positive and negative
samples makes scaling of the proposed classifier with new
classes difficult.

Setting the threshold θ is also not straightforward. The
parameter should be θ < 0.5 to make it less likely that some
sample is a part of the wrap in the initialized VAE because
the LeCun initialization [18] initializes the VAE weights.
Thus the samples are initially mapped g(x) ≈ 0.5. How-
ever, the lesser θ is, the harder it is to learn the VAE to cover
new samples.

Finally, the subtracting radius ε0 defines the size of the
ball Bd(x, ε0), which is subtracted from the sample during
uncover (17). For high dimensions, setting the ball radius is
not intuitive, as we can see for the results reported in Sec-
tion 5.1.2, where we set ε0 = 4, which in the 3D space
would contain the whole unit cube, but in the 784D space,
the volume of Euclidean 784D ball with the same radius is
a tiny fraction of the unit hypercube volume. Moreover, the
parameter ε0 mainly depends on the VAE ability to cover
the space that is a subset of Bd(x, ε0). There is probably a
technical limit on how small Bd(x, ε0) can be, which is un-
known to us. The dynamic adaptation of θ, ε0, andN should
be explored in the future.

6.3.2 Limited Capacity of Classifier

Although gauss class samples are classified correctly with
the relaxed prediction (18), some class samples are not cov-
ered by their respective wraps. For example in Fig. 6i at T1,
there is one class-sample that is labeled as L1 but it is not
in the wrap PT1

L1
. Such outliers, both in the sense of the nor-

mal distribution and wrap, are probably caused by the bottle-
neck architecture, where the latent space of the dimension-
ality dim(Z) = 2 is mapped into the three-dimensional fea-
ture space. A latent space image is then a plane trained to fit
the class samples of the three-dimensional normal distribu-
tion. Intuitively, it is possible to fit a finite number of such
samples by plane, which is “carefully folded.” 4 However,
finding such folding requires prolonged training. With the
limited number of training epochs, the VAE architecture im-
poses a restriction to the wrap, which should adapt to the
unknown class structure. The structure of each class can dif-
fer in complexity; e.g., in the 3D space, the class can be
zero to the three-dimensional manifold. Therefore, we be-
lieve that each VAE should adapt to the structure of its mod-
eled class. In our future work, we aim to extend the proposed
approach with a dynamic architecture adapting the structure
of the modeled class.

4 Non-intuitively, the famous Peano space-filling curve shows that
there exists a continuous function that maps a continuous curve to a
two-dimensional square that can be generalized to the n-dimensional
cubes.

16 Rudolf Szadkowski et al.

6.3.3 Non-probabilistic description of the continual
learning

The continual learning description and analysis provided in
Section 3 assumes crisp classes and the perfect cover/uncover
modifications. However, ensgendel sometimes stopped
at the maximum epoch E before it covered/uncovered given
samples (e.g., the samples outside of the wrap in Fig. 6l).
Moreover, the classes Ci can be so close to each other that
maintaining the wraps disjoint is practically impossible. Even
if the cover/uncover modifiers would be perfect, the class
samples are noisy in practice. Thus without consideration
of noise, the classifier would overfit (perfectly cover) the
noisy data. Our presented theoretical framework for contin-
ual learning is insufficient to describe noisy datasets and im-
perfect training, and it is a subject of our future work.

7 Conclusion

In this paper, we describe continual learning, where we re-
late the concept drift and catastrophic forgetting problems in
the proposed framework of trainable manifolds called wraps.
The wraps are modified to imitate sampled classes with mod-
ifiers cover and uncover, which include and exclude given
samples, respectively. The proposed framework is imple-
mented as an ensemble of variational autoencoders, where
each autoencoder represents the wrap, and the optimization
of the autoencoder implements the cover and uncover mod-
ifiers. We have evaluated the algorithm with basic incre-
mental learning scenarios and compared it with four con-
tinually learned classifiers demonstrating the robustness to
catastrophic forgetting and utilization of the controlled for-
getting needed for the concept drift adaptation. As for fu-
ture work, we identify two challenges: (i) the influence of
data topology on the continual learning parameters and (ii)
the orthogonal relation between generalization and contin-
ual learning capabilities.

The herein proposed formal description can be applied
both in practice and theory. In practice, the proposed con-
tinual learning framework provides tools for the design and
evaluation of continual learners. Besides, the presented for-
malism can eventually lead to deepening theoretical under-
standing of learning in a continually observed environment.

Acknowledgements This work is an extension of the paper presented
at the 13th International Workshop on Self-Organizing Maps and Learn-
ing Vector Quantization, Clustering and Data Visualization (WSOM
2019), where it received the Best Student Paper award.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Achille, A., Eccles, T., Matthey, L., Burgess, C.P., Watters, N.,
Lerchner, A., Higgins, I.: Life-long disentangled representation
learning with cross-domain latent homologies. In: International
Conference on Neural Information Processing Systems, pp. 9895–
9905 (2018)

2. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini,
L.: Anomaly detection using autoencoders in high performance
computing systems. pp. 9428–9433 (2019). DOI 10.1609/aaai.
v33i01.33019428

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A sur-
vey. ACM Computing Surveys 41(3), 15:1–15:58 (2009). DOI
https://doi.org/10.1145/1541880.1541882

4. Elwell, R., Polikar, R.: Incremental learning of concept drift in
nonstationary environments. IEEE Transactions on Neural Net-
works 22(10), 1517–1531 (2011). DOI https://doi.org/10.1109/
TNN.2011.2160459

5. French, R.M.: Catastrophic forgetting in connectionist networks.
Trends in Cognitive Sciences 3(4), 128–135 (1999). DOI https:
//doi.org/10.1016/S1364-6613(99)01294-2

6. Gama, J.a., Žliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia,
A.: A survey on concept drift adaptation. ACM Comput. Surv.
46(4) (2014). DOI https://doi.org/10.1145/2523813

7. Gepperth, A., Hammer, B.: Incremental learning algorithms and
applications. In: European Symposium on Artificial Neural Net-
works (ESANN), pp. 357–368 (2016)

8. Hinton, G.E., McClelland, J.L., Rumelhart, D.E.: Distributed rep-
resentations. In: D.E. Rumelhart, J.L. McClelland, C. PDP Re-
search Group (eds.) Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1: Foundations, pp. 77–
109. MIT Press, Cambridge, MA, USA (1986)

9. Kemker, R., Kanan, C.: Fearnet: Brain-inspired model for incre-
mental learning. In: International Conference on Learning Repre-
sentations ICLR (2018)

10. Kemker, R., McClure, M., Abitino, A., Hayes, T.L., Kanan, C.:
Measuring catastrophic forgetting in neural networks. In: S.A.
McIlraith, K.Q. Weinberger (eds.) AAAI Conference on Artificial
Intelligence, pp. 3390–3398 (2018)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimiza-
tion. In: 3rd International Conference on Learning Representa-
tions, ICLR, San Diego, CA, USA, May 7-9, Conference Track
Proceedings (2015). URL http://arxiv.org/abs/1412.6980

12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In:
2nd International Conference on Learning Representations, ICLR,
Banff, AB, Canada, Conference Track Proceedings (2014). URL
http://arxiv.org/abs/1312.6114

13. Kirkpatrick, J., et. al: Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sciences
114(13), 3521–3526 (2017). DOI https://doi.org/10.1073/pnas.
1611835114

14. Kramer, M.A.: Nonlinear principal component analysis using au-
toassociative neural networks. AIChE Journal 37(2), 233–243
(1991). DOI https://doi.org/10.1002/aic.690370209

15. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak,
M.: Ensemble learning for data stream analysis: A survey. Infor-
mation Fusion 37, 132–156 (2017). DOI https://doi.org/10.1016/
j.inffus.2017.02.004

16. Krawczyk, B., Woźniak, M.: One-class classifiers with incremen-
tal learning and forgetting for data streams with concept drift. Soft
Computing 19(12), 3387–3400 (2015). DOI https://doi.org/10.
1007/s00500-014-1492-5

17. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010).
URL http://yann.lecun.com/exdb/mnist/. Cited on 2019-29-01

18. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.R.: Efficient back-
prop. In: Neural networks: Tricks of the trade, pp. 9–48. Springer
(2012)

Continually Trained Life-Long Classification 17

19. Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., Daz-
Rodrguez, N.: Continual learning for robotics: Definition, frame-
work, learning strategies, opportunities and challenges. Informa-
tion Fusion 58, 52 – 68 (2020). DOI https://doi.org/10.1016/j.
inffus.2019.12.004

20. Marchi, E., Vesperini, F., Squartini, S., Schuller, B.: Deep re-
current neural network-based autoencoders for acoustic novelty
detection. Computational Intelligence and Neuroscience 2017
(2017). DOI https://doi.org/10.1155/8483

21. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising net-
work that grows when required. Neural networks : the offi-
cial journal of the International Neural Network Society 15(8-9),
10411058 (2002). DOI https://doi.org/10.1016/s0893-6080(02)
00078-3

22. McInnes, L., Healy, J., Saul, N., Groberger, L.: Umap: Uniform
manifold approximation and projection. Journal of Open Source
Software 3(29), 861 (2018). DOI https://doi.org/10.21105/joss.
00861

23. Mustafa, A.M., Ayoade, G., Al-Naami, K., Khan, L., Hamlen,
K.W., Thuraisingham, B., Araujo, F.: Unsupervised deep embed-
ding for novel class detection over data stream. In: IEEE Inter-
national Conference on Big Data, pp. 1830–1839 (2017). DOI
https://doi.org/10.1109/BigData.2017.8258127

24. Nguyen, T.T.T., Nguyen, T.T., Liew, A.W.C., Wang, S.L.: Varia-
tional inference based bayes online classifiers with concept drift
adaptation. Pattern Recognition 81, 280 – 293 (2018). DOI
https://doi.org/10.1016/j.patcog.2018.04.007

25. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with
auxiliary classifier GANs. In: International Conference on Ma-
chine Learning (ICML), pp. 2642–2651 (2017)

26. Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Lifelong learning of
spatiotemporal representations with dual-memory recurrent self-
organization. Frontiers in Neurorobotics 12, 78 (2018). DOI
https://doi.org/10.3389/fnbot.2018.00078

27. Rios, A., Itti, L.: Closed-loop memory gan for continual learning.
In: International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 3332–3338 (2019). DOI https://doi.org/10.24963/ijcai.
2019/462

28. Russakovsky, O., et. al: Imagenet large scale visual recognition
challenge. Int J Comput Vis 115, 211–252 (2015). DOI https:
//doi.org/10.1007/s11263-015-0816-y

29. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep
generative replay. In: Advances in Neural Information Processing
Systems, pp. 2990–2999 (2017)

30. Silver, D.L., Mercer, R.E.: The task rehearsal method of life-
long learning: Overcoming impoverished data. In: R. Cohen,
B. Spencer (eds.) Advances in Artificial Intelligence, pp. 90–101.
Springer Berlin Heidelberg, Berlin, Heidelberg (2002). DOI
https://doi.org/10.1007/3-540-47922-8 8

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. In: Y. Bengio, Y. LeCun (eds.)
3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (2015). URL http://arxiv.org/abs/1409.1556

32. Szadkowski, R., Drchal, J., Faigl, J.: Basic evaluation scenarios for
incrementally trained classifiers. In: International Conference on
Artificial Neural Networks (ICANN), pp. 507–517 (2019). DOI
https://doi.org/10.1007/978-3-030-30484-3 41

33. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images:
A large data set for nonparametric object and scene recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence
30(11), 1958–1970 (2008). DOI https://doi.org/10.1109/TPAMI.
2008.128

