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Abstract

An application of the self-organizing map (SOM) to the Traveling Salesman Problem (TSP) has been
reported by many researchers, however these approaches are mainly focused on the Euclidean TSP variant.
We consider the TSP as a problem formulation for the multi-goal path planning problem in which paths
among obstacles have to be found. We apply a simple approximation of the shortest path that seems to be
suitable for the SOM adaptation procedure. The approximation is based on a geometrical interpretation of
SOM, where weights of neurons represent nodes that are placed in the polygonal domain. The approximation
is verified in a set of real problems and experimental results show feasibility of the proposed approach for
the SOM based solution of the non-Euclidean TSP.
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1. Introduction

Self-organizing maps (SOM), also known as the
Kohonen-type network, have been applied to solve
the Traveling Salesman Problem (TSP) by several
approaches during last decades. One of the earli-
est approaches were proposed in 1988 [1, 2]. After
that, enhanced variants of adaptation procedures
have been investigated [3, 4]. A notion of inhibi-
tion has been proposed to avoid nodes to win too
often [5]. In [6], an initialization of neuron weights
is discussed and superior results are reported for
starting positions of nodes as the convex hull ap-
proximation of the cities. Aras et at. used geomet-
rical properties of the ring and a topology of cities
in the KNIES algorithm [7]. The convex hull prop-
erty has been studied in the expanding SOM vari-
ant called ESOM [8]. Probably the most complex
SOM algorithm for the TSP is the Co-Adaptive net
introduced in [9]. A recent variant of the SOM ap-
proach with evolutionary principles has been pre-
sented in [10]. Even though these approaches in-
crease quality of solutions and are able to solve
problems with thousands of cities, they are strictly
focused on the Euclidean TSP [11].

A type of the non-Euclidean TSP is the multi-
goal path planning for a mobile robot. The prob-

lem is to find a collision-free path that visits a set
of locations in the robot workspace [12]. If a point
robot can be assumed and the robot workspace can
be represented by the polygonal domain W, the
shortest-path roadmap approach can be used to find
a path between two locations in W [13, 14]. The
difficulty of the SOM application to this kind of
TSP is in an efficient determination of node–city
distances used in the competitive rule, i.e. a path
in order to adapt neurons weights in W. Although
the Euclidean distance can be simply and efficiently
computed, poor quality solutions are found if only
the Euclidean distance is used in the non-Euclidean
TSP. Such quality degradation is not SOM specific
and it has also been shown for other common con-
struction heuristics [15]. Even for humans the dif-
ficulty of solving the TSP with obstacles has been
observed, while near optimal solutions have been
found for the Euclidean TSP [16]. Difficulty of the
shortest path determination is probably the main
reason why SOM researchers consider only the Eu-
clidean variant of the TSP.

In this paper, we show an approach based on ap-
proximation of the shortest path between a point
and city in W that seems to be sufficient in a SOM
based algorithm for the non-Euclidean TSP. Even

Preprint submitted to Neurocomputing June 6, 2011



though the approach is still more computationally
demanding than computation of the Euclidean dis-
tance, it enables applicability of the SOM in the
polygonal domain, because it is significantly faster
than näıve approach based on computation of the
exact shortest path. Moreover, a valuable benefit
of the used approximation is its simplicity, it does
not require sophisticated underlying structures like
SPM [17]. It is based on a convex polygon par-
tition, but eventually any polygon division can be
used. Our prior work in this field has been based on
a set of SPM (one for each city) [18], which requires
more memory resources than a single polygon divi-
sion. Besides, a single overlay of the SPMs contains
much more cells and it suffers by numerical stability
issues.

This paper is organized as follows. A brief de-
scription of the selected SOM adaptation proce-
dure [5] is presented in the next section. It con-
tains a geometrical interpretation of the adaptation
procedure, which is crucial for the applied path ap-
proximation, because it provides a computational
geometry point of view to the network evolution in
the polygonal domain. The approximate procedure
is described in Section 3. Experimental results to-
gether with a discussion of future improvements are
presented in Section 4. Concluding overview of the
presented approach is presented in Section 5.

2. SOM adaptation procedure for the TSP

A structure of the self-organizing neural network
for the TSP can be represented as a two-layered
competitive learning network [5]. It contains two
dimensional input vectors and an array of output
units. An association between the learning net-
work and a geometrical representation of the TSP
solution is shown in Fig. 1. An input vector i
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Figure 1: Schema of the two-layered neural network
and associated geometric representation.

represents coordinates (ci1, ci2) of the city ci and

weights νj1, νj2 can be interpreted as coordinates of
the node νj . The network is initialized with small
random connection weights and cities are then se-
quentially applied to the network in a random or-
der. The output nodes compete to be the winner
for a given city. The weight vectors of the win-
ner node and its neighbouring nodes are updated
in order to get closer to the city according to the
neighbouring function f . The nodes form a ring and
after the adaptation, the ring represents tour over
the applied cities. The network evolves until each
city has sufficiently close the winner node (less than
given error δ). A schema of the adaptation process
is depicted in Algorithm 1.

Algorithm 1: SOM Procedure for the TSP

Input: C = {c1, . . . , cn} - set of cities
Input: (d,G, µ, α) - parameters of SOM
Input: δ – maximal allowable error
Input: imax – max. no. of adaptation steps
Output: (ν1, . . . , νm) - sequence of node

weights representing the city tour

init(ν1, . . . , νm) // set of neurons weights

i← 0 // the adaptation step counter

repeat
error ← 0
I ← ∅ // a set of inhibited nodes

Π(C)← a random permutation of cities
foreach c ∈ Π(C) do

ν? ← select winner node to c, ν? /∈ I
error ← max{error, |ν?, c|}
adapt(ν?, c)
I ← I ∪ {ν?} // inhibit winner node

G← (1− α)G // decrease the gain

i← i+ 1 // increment the step counter

until error ≤ δ or i ≥ imax

An inhibition mechanism is used to associate dis-
tinct winner node to each city during one complete
presentation of all cities to the network (one adap-
tation step). A winner node is marked as inhibited
and it does not compete to be winner for another
city for the rest of the adaptation step. At the end
of each adaptation step, a tour can be constructed
from the winner nodes by traversing the ring and
the exact length of the tour can be found as the
sum of city–city lengths.

The winner node is selected according to ν? =
argminν |c, ν|, where |., .| denotes the Euclidean dis-
tance between the city c and the node ν for the
Euclidean TSP. The adaptation function (adapt)
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moves the winner node and its neighbouring nodes
towards the presenting city c according to the rule
ν′j = νj + µf(., .)(c − νj), where µ is the frac-
tional learning rate. Authors of [5] suggested the
neighbouring function f(G, d) = exp(−d2/G2) for
d < 0.2m and f(G, d) = 0 otherwise, where G is the
gain parameter, d is the cardinal distance measured
along the ring and m is the number of nodes. An
appropriate initial value of G depends on the size of
problem and authors proposed G0 = 0.06 + 12.41n.
Recommend values of learning and decreasing rates
are µ = 0.6, resp. α = 0.1.

An application of the presented adaptation
schema to the multi-goal path planning requires
nodes in the free space, therefore paths (and dis-
tances) have to respect obstacles. The efficiency
of the SOM algorithm relies on determination of
the winner node, which uses a node–city distance.
The winner node and its neighbouring nodes are
then moved closer to the city along the path avoid-
ing obstacles, i.e. a node weights are set to a new
position at the path such that the node travels a
distance µf(G, d)|S| traversing the path, where |S|
is the node–city distance. Because a winner node
is selected to each city from the set of all nodes
in each adaptation step, the efficient determination
of the collision-free path is crucial for a reasonable
computational requirements of the SOM adaptation
procedure.

3. Approximation of the Shortest Path in
the SOM based TSP

During the adaptation process, weights (nodes)
are modified in order to find a solution of the TSP.
The modification process can be viewed as an ex-
ploration of the problem domain. In the first adap-
tation steps, nodes are moved across the problem
domain, while in the final steps, due to lower value
of the gain G, weights (nodes) changes are very
small. Such observations can lead to expect that
a rough approximation of the shortest path in early
steps should be sufficient, because position of the
nodes is dramatically changed during movements.
On the other side, the winner nodes are very close
to the cities in final steps. An example of the per-
formance of the SOM adaptation in an environment
with obstacles is shown in Fig. 21. These observa-

1The nodes are connected by black line segments just to
show neighbours of the nodes. It is not necessary to compute
a path between two nodes in the TSP.

(a) step 1 (b) step 2 (c) step 3

(d) step 16 (e) step 17 (f) step 38

(g) step 45 (h) step 46 (i) step 47

(j) step 57 (k) step 62 (l) step 78

Figure 2: An example of performance of the adap-
tation procedure in the TSP with obstacles, small
standalone disks represent cities and connected
disks represent nodes (weights) that form a ring.

tions are main motivation for the following applica-
tion of approximate shortest path in the polygonal
domain W.

The approximation is based on a convex polygon
partition of W, which can be found in O(v log v),
where v is the number of vertices of W [19]. The
convex polygon partitioning divides free space ofW
into a set of convex cells. A node is always placed
in the free space, thus it is always placed in some
cell. The shortest path from a vertex of the cell to
the city can be used as approximation of the path
from a node to the city. The shortest paths from
vertices to cities can be found in the visibility graph
by Dijkstra’s algorithm in time O(ne log(v + n)),
where n is the number of cities, v is the number of
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(a) path over v0 (b) path over v1 (c) full refinement

Figure 3: An example of path refinement, gray segment represents diagonals of the convex partition, small
disks are cities, a node is connected with the city by the approximation of the shortest path.

vertices and e is the number of visible pairs (city–
city, city–vertex, and vertex–vertex), which can be
bounded e ≤ v + vn. The full visibility graph can
be found in O((v + n)2) [20].

More formally, assume a polygonal workspace
W with v vertices and let P be a convex poly-
gon partition of W into convex cells Ci, P =
{C1, C2, . . . , Ck}, where each cell C is represented
as a sequence of polygon vertices, and assume a
node ν in the cell Cν . The approximate path
from ν to the city c is found as the shortest
path S(w, c) over vertex w of Cν to c such that
w = argminwi∈Cν |ν, wi|+ |S(wi, c)|, where |., .| de-
notes the Euclidean distance between two points
and |S(., .)| is the length of the shortest vertex–city
path.

The problem to find the cell Cν is the
point–location problem, which can be solved in
O(log v) [21]. The complexity of the path determi-
nation depends only on the number of cells vertices
and the adaptation of node depends only on the
number of vertices, because paths from each vertex
to all cities can be pre-computed and a node is then
moved along the path with v vertices at maximum.

A precision of the proposed approximation de-
pends on the size of the convex cells and can be
insufficient for an arbitrary point. An initial path
can be improved by the following refinement pro-
cedure. Assume a node ν inside the cell Cν and
approximation of the path from ν to the vertex vk
as a sequence of vertices (v0, v1, . . . , vk), v0 ∈ Cν .
A refinement is an examination of direct visibility
test between ν and vi:

1. i← 0
2. while visible(ν, vi+1) ∧ i < k do

i← i+ 1
3. path← (vi, vi+1, . . . vk).
The visibility test can be based on the straight

walk procedure [22]. If a straight line from ν to the
vertex vk intersects only diagonals or entirely lies
in the same cell, then the vertex vk is visible and
all vertices vi for i < k can be removed from the
sequence. Examples of a refined path are shown in
Fig. 3.

The path refinement can be performed up to the
selected number of vertices. The higher number
increases the computational burden, but a shorter
path can be found. The effect of the path refine-
ment is experimentally verified for a set of selected
maximal number of examined vertices in Section 4.
The full path refinement procedure is denoted as
pa algorithm variant and va-j denotes refinement
up to j vertices. It means that the va-0 algorithm
variant uses the initial path, and only one vertex
(the second one2) is examined in the va-1 variant.

4. Experimental Results

Performance of the used SOM based algorithm
for the TSP has been evaluated in a set of TSPLIB
problems [23] prior the evaluation of the approx-
imation of the shortest path. Mainly to find an
estimation of the algorithm quality without effect

2Vertex v0 is part of the Cν cell, so it is directly visible
from ν.
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of the path approximation. SOM is a randomized
algorithm therefore each problem has been solved
20 times by the particular algorithm variant. The
recommended parameters of the SOM procedure [5]
are used as they have been presented in Section 2.
The number of neurons has been set to 2.5n, where
n is the number of cities. The adaptation has been
terminated if the error is less than 0.001. The qual-
ity of solutions is evaluated as the percent deviation
to the optimum tour length of the mean solution
value, PDM = (L − Lopt)/Lopt · 100%, and as the
percent deviation from the optimum of the best so-
lution value (PDB), where Lopt is the length of the
optimal solution found by the Concorde solver [24].
The selected TSPLIB problems represent instances
of the Euclidean TSP therefore the Euclidean dis-
tance is used in the adaptation procedure. Qual-
ity metrics provide estimation of algorithm perfor-
mance and can be used to evaluate influence of the
path approximation. Results for selected problems
are presented in Table 1. The average value of the
PDM is about 5%.

Table 1: Performance of the SOM algorithm on
TSPLIB problems

Problem NC
Lopt

PDM PDB
T

[m] [s]

eil51 51 4.3 3.8 2.5 0.02

berlin52 52 75.4 6.9 0.0 0.03

st70 70 6.8 2.6 1.2 0.04

eil76 76 5.4 5.0 2.9 0.05

rd100 100 79.1 4.0 1.2 0.10

eil101 101 6.4 5.2 2.9 0.09

bier127 127 1182.9 4.1 1.7 0.17

ch130 130 61.1 3.8 2.3 0.17

rat195 195 23.3 8.7 6.6 0.37

kroB200 200 294.4 4.1 1.5 0.42

gil262 262 23.9 5.5 4.4 0.70

lin318 318 420.4 4.8 3.4 1.17

rd400 400 152.8 5.4 3.9 1.86

u574 574 369.3 5.7 4.8 4.07

rat575 575 68.0 7.2 6.3 3.91

rat783 783 88.5 7.3 6.1 7.46

The proposed approximation of the node–city
path has been experimentally verified in a set of

problems with obstacles. Due to lack of common
problems for environments with obstacles a set of
environments (in a form of polygonal maps) used in
the motion planning has been utilized. Parameters
of the environments are shown in Table 2, where
NV is the number of vertices, NH is the number
of holes and NR is the number of convex cells (of
the supporting convex partition), environments a,
jh, pb, ta, and h2 represent maps of real buildings.
The cities are found as sets of sensing locations in

Table 2: Testing environments with obstacles

Name
Dimensions

NV NH NR
[m × m]

jari 4.5 × 4.9 48 1 14

complex2 20.0 × 20.0 40 3 21

m1 4.8 × 4.8 51 4 26

m2 4.8 × 4.8 51 6 20

map 4.8 × 4.8 68 8 36

potholes 20.0 × 20.0 153 23 75

rooms 20.0 × 20.0 80 0 33

a 8.9 × 14.1 99 6 22

dense 21.0 × 21.5 288 32 150

jh 20.6 × 23.2 196 9 77

pb 133.3 × 104.8 89 3 41

ta 39.6 × 46.8 74 2 30

h2 84.9 × 49.7 2062 34 476

the inspection task, like in [13] and together with
maps of real environments they provide realistic size
of the problems. The name of the environment with
a subscript denoting the visibility range in meters
for the inspection is used as the problem name of
the particular TSP. Cities of problems without the
subscript have been found as sensing locations for
the unrestricted visibility range.

Because of the proposed approximation of the
shortest path, a found path can be different from
the exact path, which can cause that a stable solu-
tion with the required error is not found. There-
fore the adaptation procedure is terminated after
180 adaptation steps.

The path approximation is evaluated for the
three variants of the path refinement: without the
refinement (va-0 ), examination of the second vertex
of the path (va-1 ) and the full path refinement (pa).
Detail results are presented in Table 3, where NC
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Table 3: Comparison of refinement variants

Problem NC
Lopt va-0 variant va-1 variant pa variant

[m] PDM PDB T [s] PDM PDB T [s] PDM PDB T [s]

jari 6 13.6 0.84 0.00 0.07 0.21 0.00 0.08 0.10 0.00 0.08

complex2 8 58.5 2.36 0.00 0.09 0.29 0.00 0.10 0.00 0.00 0.11

m1 13 17.1 4.77 0.00 0.12 0.14 0.00 0.16 0.19 0.00 0.18

m2 14 19.4 11.17 6.33 0.12 12.51 8.95 0.17 11.23 7.33 0.19

map 17 26.5 4.87 0.00 0.18 3.85 0.00 0.25 3.24 0.00 0.28

potholes 17 88.5 1.61 0.00 0.32 1.48 0.00 0.33 1.09 0.00 0.40

a 22 52.7 1.03 0.00 0.28 0.28 0.00 0.40 0.33 0.00 0.56

rooms 22 165.9 1.55 0.11 0.29 1.01 0.17 0.44 0.85 0.00 0.46

dense4 53 179.1 15.01 8.28 2.54 14.14 6.86 2.71 14.71 7.55 3.28

potholes2 68 154.5 13.77 9.67 3.02 5.06 3.09 3.54 5.25 2.97 4.81

jh2 80 201.9 7.45 4.73 2.39 2.04 0.43 4.96 1.74 0.87 6.94

pb4 104 654.6 4.35 1.82 3.37 1.10 0.03 6.88 0.60 0.04 7.89

ta2 141 328.0 8.44 5.90 5.81 2.96 2.13 11.94 3.29 2.05 14.49

h25 168 943.0 3.33 1.75 33.79 1.70 1.16 67.68 1.67 1.03 92.78

potholes1 282 277.3 30.73 25.95 32.52 6.54 3.75 64.60 6.05 4.03 91.63

pb1.5 415 839.6 9.92 6.08 57.08 2.17 1.07 123.92 2.40 1.07 140.04

h22 568 1316.2 11.51 8.01 321.27 2.38 1.75 686.24 2.46 1.69 958.37

ta1 574 541.1 13.41 12.03 106.75 5.46 4.77 225.98 5.35 4.59 275.90

is the number of cities. Notice the computational
time T for problems h22 and ta1, the h2 environ-
ment contains more vertices, therefore it is more
computationally demanding. An overview of the
quality metrics is shown as histograms in Fig. 4.
Selected found solutions are presented in Fig. 5.
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Figure 4: Quality of solution.

An error of the path approximation is too high
for the va-0 variant and the adaptation has been
terminated after 180 steps in several cases. Such

termination has been observed for eight environ-
ments, mostly for the potholes, dense, and m2 en-
vironments. The convergence issue has not been
observed if a refinement of the path has been per-
formed. The cause of the issue is demonstrated
in Fig. 6. One city is not covered by the winner

(a) convergence
issue

city

winner
node

(b) node entering
to the next (city)

cell

city

node

(c) node in the
next (city) cell

Figure 6: Effect of error of the va-0 path approxi-
mation, map potholes.

node, because the winner is not effectively moved
towards the city. For the va-0 variant, the path
refinement is not performed and the length of the
path over the cell vertex is of course longer than the
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(a) map jari, NC=6,
L=13.6 m

(b) map complex2, NC=8,
L=58.5 m

(c) map m1, NC=13,
L=17.1 m

(d) map m2, NC=14,
L=20.9 m

(e) map map, NC=17,
L=26.5 m

(f) map potholes, NC=17,
L=88.5 m

(g) map rooms, NC=22,
L=165.9 m

(h) map dense, NC=53,
L=192.6 m

(i) map a,
NC=22,
L=52.7 m

(j) map jh, NC=80,
L=203.7 m

(k) map ta, NC=141,
L=334.8 m

(l) map h2, NC=168, L=952.6 m

Figure 5: Selected best found solution by the pa algorithm variant.

Euclidean distance (in this case the node and the
city are directly visible). All nodes except this one
are sufficiently close to cities (in distance less than
error), but the node is not effectively moved due to
small value of the gain G. The higher value of the
gain does not really help, because a winner node of
the city can be moved to the next city cell during its
movement along the shortest path over a cell ver-
tex, see Fig. 6b. Once the node is in the next cell,
the length of the approximate path is longer than
before and the current value of G is insufficient.
This is a cost of the independent construction of
the polygon partition without relation to the cities’
positions. In this particular case, the convergence

issue does not affect the solution quality, because
the winner node is associated with the “right” city.
For cases with more cities the issue can decrease the
quality of found solutions and the path refinement
is useful.

The results show that the va-1 variant is suffi-
cient and full path refinement does not significantly
improved the quality of found solutions. The over-
all quality of solutions is competitive with the Eu-
clidean distance in the TSPLIB problems.

4.1. Required computationl time

All results presented in this paper have been
performed within the same computational environ-
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ment: the MAC Mini with the Intel P7350@2 GHz
CPU, 2 GB RAM running FreeBSD 7.2, and only
one CPU core has been utilized during experiments.
Therefore required computational times of the al-
gorithm variants can be directly compared. The al-
gorithms have been implemented in C++ and com-
piled by the G++ 4.2 with -O2 optimization flag.
The computational time depends on the number of
cities and also on the particular environment (the
number of vertices and the number of convex cells).
A comparison of the required computational times
for particular refinement variants is shown in Fig. 7
as histograms of the average values of the compu-
tational times.
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Figure 7: Required computational time.

In order to use the presented approximation, two
supporting structures have to be pre-computed.
The required computational time to create a convex
polygon partition is in units or tens of milliseconds
and it is negligible in comparison to the required
time of the adaptation procedure. Also construc-
tion of the visibility graph is very fast, it is mostly
found in tens of milliseconds and in 154 millisec-
onds for the largest problem with 586 cities and
2062 vertices (h22). The most time expensive part
of the preparation phase is a computation of the
shortest path between cities (and vertices). Even
though the time represents fraction of the compu-
tational requirements of the adaptation procedure,
it is included in the presented results.

The used point location algorithm is based on
the interval trees [21] and it provides thousands of

queries per millisecond in the used computational
environment. Particularly 4950 queries per millisec-
ond (qpms) for the environment jh, 2145 qpms for
m3, and 1736 qpms for h2.

4.2. Comparison with Other Approaches

A comparison of the proposed algorithm with
other approaches is not an easy task, because of
the two following reasons. The first one is lack of
SOM approaches for the TSP in the polygonal do-
main. In our best knowledge, only the SOM algo-
rithm for a graph input [25] deals with obstacles in
the TSP and can be used for the multi-goal path
planning. Even though the authors demonstrated
the approach in a TSP with obstacles, the paper
lacks serious performance evaluation. Therefore a
set of experiments have been performed for various
densities of a triangular mesh that forms a graph
used in their algorithm and problems with different
numbers of cities. The proposed algorithm based
on a convex partition provides better results than
the graph based algorithm for problems with small
number of cities (less than hundreds). The com-
putational requirements are competitive. For prob-
lems with higher number of cities the proposed algo-
rithm is significantly faster than the graph based al-
gorithm, because the graph (triangular mesh) have
to be dense in order to find a solution with compet-
itive quality.

The second difficulty of the comparison is rela-
tively poor performance of SOM regarding the per-
formance of the heuristics from the Operational Re-
search (OR). It is a known fact that the effective
implementation of the Lin-Kernighan heuristic [26]
provides superior quality in a lot of problems. It
is also the case for the used problems in this pa-
per and the linkern [27] solver from the Concorde
package [24]. The linkern solver provides solutions
typically in hundreds of milliseconds3 and with the
PDM quality in tenths of percent. The largest prob-
lem with obstacles h22 is solved in four seconds with
the average quality around two-tenths. These re-
sults are grounds for pessimism, which also the case
for the Euclidean TSP. Authors of [9] noted that to
make the SOM competitive to OR approaches the
computational time should be improved by three or-
ders of magnitude and the solution quality by one
order of magnitude. For the non-Euclidean TSP the

3Here, solutions are found in a pre-computed graph of all
shortest path between cities.
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Table 4: Comparison with the GENI algorithm

Problem
SOM GENI

PDM T [s] PDM T [s]

jari 0.10 0.08 0.00 0.01

complex2 0.00 0.11 0.00 0.01

m1 0.19 0.18 0.00 0.03

m2 11.23 0.19 1.36 0.03

map 3.24 0.28 0.81 0.07

potholes 1.09 0.40 0.34 0.13

a 0.33 0.56 0.00 0.16

rooms 0.85 0.46 0.00 0.15

dense4 14.71 3.28 4.63 1.27

potholes2 5.25 4.81 2.98 1.81

jh2 1.74 6.94 0.75 2.53

pb4 0.60 7.89 0.11 4.15

ta2 3.29 14.49 1.86 8.02

h25 1.67 92.78 0.88 14.30

potholes1 6.05 91.63 4.44 31.49

pb1.5 2.40 140.04 0.82 68.05

h22 2.46 958.37 1.32 135.08

ta1 5.35 275.90 3.66 134.41

computational time should be improved even more.
It is clear that such daunting tasks will not be ac-
complished in the near future without sudden ma-
jor breakthroughs [9]. Therefore we consider “less
powerful” state-of-the art construction heuristic to
encourage the SOM community and to show that
also the OR approaches evolved during the time.
The selected heuristic is the GENI solver [28] and
its average performance over 20 runs for each prob-
lem is depicted in Table 4. The presented compu-
tational times T include the time to determine all
shortest path between cities.

4.3. Discussion

The examined problems can be considered as rel-
atively small in comparison to the current direc-
tion of the SOM application in the TSP with thou-
sands of cities, e.g. [10]. The presented approach
is likely to be computationally unfeasible for such
large problems. On the other side, from the prac-
tical point of view, problems of the path planning
for a robot seem to be smaller. In [29], authors
reported that a typical number of cities is in tens

and less than one hundred. Also in the inspection
planning, the number of cities is in hundreds for
real sized environments [30]. So, at least for these
types of problems, the research can be focused on
smaller problems. The proposed approximation can
be motivation for further investigation of the SOM
application to these problems, which seems to be
omitted by the community, probably due to diffi-
culty of determination of the path among obstacles.

The presented results show that the full path re-
finement does not significantly improve the qual-
ity of found solution. Thus, according to the pre-
sented results the approximation of the shortest
path seems to be sufficient. It means that fur-
ther investigation of the non-Euclidean problems
that requires computationally demanding determi-
nation of the distance between presented vector and
weights of the network can be based on approxima-
tion, which can be significantly faster. For gen-
eralized problem in the 3D, approximation of the
shortest path is necessary, as the general problem
of finding the shortest path among obstacles in the
3D is known to be NP-hard [31].

Although the used approximation of the shortest
path is significantly faster than a näıve exact path
determination, it is still hundred times slower than
a simple computation of the Euclidean distance.
The additional speedup improvements may be pos-
sible in two different ways. In the first way, more so-
phisticated geometrical structures can be used and
the winner searching process can be informed by a
rough estimation of the distance to avoid computa-
tionally intensive path determination. The second
way is improvement of the used SOM rules that af-
fected the number of node–city path queries. For
an example the winner selection can be restricted
to a smaller set like in [9], also the number of win-
ner neighbouring nodes involved in the adaptation
may be smaller. Finally, the number of queries pro-
portionally depends on the number of adaptation
steps. It has to be noted that such restrictions de-
crease the required computational time, but they
also decrease the quality of found solutions. The
key problem of the future research in this field is to
find adaptation rules that will decrease the number
of queries, while the solution quality is preserved or
even improved.

5. Conclusion

Difficulty of SOM application to the non-
Euclidean TSP has been noted by several authors

9



of SOM algorithms for the TSP. The presented ex-
perimental results show that even a simple approx-
imation of the shortest path among obstacles can
be used and the SOM algorithm is able to find a
solution with competitive quality to a solution of
the Euclidean TSP of a similar problem size. The
used approximation of the shortest path is more
computationally intensive than computation of the
Euclidean distance. However, the main result of the
presented approach is the feasibility of the approx-
imation that allows eventual application in other
problems where approximation is the only way to
find a solution with reasonable computational re-
quirements.

The proposed approximation is based on geomet-
rical interpretation and application of structures
and algorithms from the computational geometry
(CG) domain that can be considered as relatively
far from the neural network domain. The necessary
algorithms are as follows:

• a visibility graph algorithm,

• a convex polygon partitioning algorithm,

• a point location algorithm,

• a straight walk procedure in a convex partition.

The advantage of the proposed solution is that
these algorithms are relatively easy to implement,
or they can be substituted by pre-computed struc-
tures4 (visibility graph and polygon partition).

The proposed solution shows a combination of
SOM principles with approaches from the CG do-
main and it can open future research in SOM ap-
plication to other problems of the CG domain, e.g.
Touring a Sequence of Polygons, View Planning
Problem, Vision Points, Watchman Route Problem.
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