
GSOA: Growing Self-Organizing Array – Unsupervised Learning for the
Close-Enough Traveling Salesman Problem and Other Routing Problems

Jan Faigl

Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague,
Technická 2, 166 27, Prague 6, Czech Republic

Abstract

This paper presents a novel unsupervised learning procedure called the Growing Self-Organizing Array (GSOA) that is
inspired by principles of the self-organizing maps for the Traveling Salesman Problem (TSP). The proposed procedure is
a consolidation of principles deployed in solution of several variants of the generalized TSP with Neighborhoods (TSPN)
for which the main ideas of the proposed unsupervised learning already demonstrates a wide range of applicability. The
herein presented learning procedure is a conceptually simple algorithm which outperforms previous self-organizing map
based approaches for the TSP in terms of the solution quality and required computational time. The main benefit of
the proposed learning procedure is in solving routing problems that combine a combinatorial solution of some variant
of the TSP with the continuous optimization, i.e., problems where it is needed to determine a sequence of visits to the
given sets with determination of the particular waypoint location from each (possibly infinite) set. Low computational
requirements of the proposed method are demonstrated in a solution of the Close-Enough Traveling Salesman Problem
(CETSP), which is a special case of the TSPN with the disk-shaped neighborhoods. The results indicate the proposed
procedure provides competitive solutions to the existing heuristics while it is about one order of magnitude faster and at
least about two orders of magnitude faster than a heuristic solution of the discretized variant of the CETSP considered
as the Generalized TSP.

Keywords: Unsupervised learning, Self-organizing Map, TSP, GSOA, Data collection planning

1. Introduction

Routing problems are traditionally studied in opera-
tional research, and probably the most studied combina-
torial routing problem is the Traveling Salesman Prob-
lem (TSP) which stands as follows. Given a set of loca-
tions, the problem is to determine the shortest tour vis-
iting all the locations exactly once and returning to the
starting location. The TSP is known to be NP-hard un-
less (P=NP) and several approximation algorithms and
heuristics have been proposed [1]. In addition to com-
binatorial heuristics such as the efficient implementation
of the Lin-Kernighan heuristic [2], genetic algorithms [3],
ant colony optimization [4], and simulated annealing [5],
also neural networks have been applied to combinatorial
routing problems [6, 7, 8, 9, 10].

Neural networks approaches are of the particular in-
terest in this paper; however, Hopfield-based approaches
have been criticized as a suitable technique for combi-
natorial optimizations [11]. The other type of the neu-
ral networks deployed in combinatorial optimization prob-
lems is the Self-Organizing Map (SOM) [12]. SOM-based
approaches exhibit promising results [13] and several im-
proved modifications of the original ideas have been pro-
posed during the last decades, e.g., see overviews of exist-
ing work in [14, 15, 16]. It is reported in the literature that

SOM-based approaches have low-computational require-
ments and can solve large-scale problems, e.g., exploiting
massively parallel computational resources [17]. However,
the solution quality is usually worse than for more compu-
tationally demanding evolutionary methods.

In this paper, a novel unsupervised learning procedure
for routing problems is presented. The proposed method
is called Growing Self-Organizing Array (GSOA) and its
main principles follow the existing work on SOM for the
TSP, but it is mostly motivated by data collection plan-
ning where a robotic vehicle is requested to collect data
from a given set of sensing sites [18]. In this type of prob-
lems, it may not be necessary to visit the sites precisely,
and the robotic vehicle may use remote sensing or wireless
communication to collect the required data [19]. There-
fore, rather than the ordinary TSP, the problem can be
formulated as the TSP with Neighborhoods (TSPN), and
more specify with the disk-shaped neighborhood as the
Close-Enough TSP (CETSP) [20].

The CETSP stands to determine the closed shortest
path that passes each sensing site within a specified sensing
range δ. Since the disk-shaped neighborhood is a continu-
ous set, the main computational challenges of the CETSP
are related to the infinite possibilities how to visit the δ-
neighborhood of each sensing site together with the com-

Preprint submitted to Neurocomputing August 10, 2019

binatorial optimization of the sequencing part of the un-
derlying TSP.

In addition to heuristic approaches, e.g., [20, 21], the
CETSP can be addressed by a sampling of each partic-
ular neighborhood into a finite set of possible locations.
Then, a solution of the CETSP is found as a solution of
the related Generalized TSP (GTSP) [22], e.g., by heuris-
tics [23, 24]. However, such an explicit sampling of the
possible locations increases the size of the problem which
becomes quickly computationally demanding despite pos-
sibly more sophisticated sampling schema [25].

The proposed GSOA algorithm originates from the ideas
developed for the TSPN [26, 27] and further improved in
other deployments to solve data collection planning formu-
lated as the Prize-Collecting TSP (PC-TSP) [28] general-
ized to the PC-TSP with Neighborhoods (PC-TSPN) [29]
and also the Orienteering Problem (OP) [30, 31] and its
generalization to the Orienteering Problem with Neigh-
borhoods (OPN) [32, 33]. All this effort results in a con-
ceptually simple algorithm that does not require specific
parameters tuning as the previous SOM-based approaches.
Moreover, it follows one of the early ideas of dynamic SOM
structure [9, 34], and the number of neurons is adaptively
adjusted during the learning, which is a desirable feature
for solving PC-TSP(N) and OP(N) where the tour does
not necessarily visit all the sensing sites.

The recent advancements on applying the unsupervised
learning principles to the aforementioned routing problems
and the used self-adjustment of the number of neurons are
the main motivation to call the developed learning pro-
cedure the Growing Self-Organizing Array (GSOA). Al-
though the GSOA is inspired by the SOM for the TSP, and
it shares the usage of neighboring function in the adapta-
tion phase, the structure of the network is specifically de-
signed for routing problems as an array of nodes with the
output space identical to the input space, contrary to the
usually 2D grid cells mapping of a high-dimensional input
space into 2D space for the ordinary Kohonen’s networks.
Therefore the proposed learning procedure is called the
GSOA to emphasize its focus on routing problems.

Even though the herein in presented unsupervised learn-
ing principles of the GSOA already demonstrates a wide
range of applicability in several routing problems moti-
vated by surveillance and data collection planning [35, 33,
36], they are not described elsewhere in a comprehensive
way. Moreover, the performance of the GSOA has not
been compared with SOM-based solutions to the TSP, and
therefore, in this paper, the GSOA is demonstrated in a
solution of the selected instances from the TSPLIB [37]
(with up to 2392 locations) and compared with one of
the recent SOM-based algorithms for the TSP [16] (fur-
ther called ORC-SOM) and one of the most sophisticated
SOM-based algorithms called Co-adaptive Net [14]; both
reported to be the best performing SOM-based algorithms
in the literature. However, the main advancements of
the proposed GSOA are in a solution of routing problems
that combines combinatorial optimization of the underly-

ing TSP with continuous optimization, e.g., in determin-
ing the most suitable waypoint locations from an infinite
set of possibilities within the disk-shaped neighborhood of
each sensing location in the solution of the CETSP. There-
fore, the performance of the GSOA in the CETSP is com-
pared with the best performing heuristic from 15 evaluated
methods in [21] (further denoted as SZ2 from the Steiner
Zones [21]). Besides, it is compared with the sampling-
based approach and the GTSP formulation solved by [24].
The presented evaluation is based on several representa-
tive instances with up to 1001 sensor locations with vari-
ous radii of the disk-shaped neighborhood. Based on the
performed evaluation and comparison with the existing so-
lutions, the proposed GSOA provides solutions of the com-
petitive quality while the computational requirements are
significantly lower.

The paper is structured as follows. An overview of the
related approaches to the CETSP together with the brief
overview of the most relevant SOM-based solutions to the
TSP and other routing problems are presented in the next
section to clarify the main contributions of this paper. In
Section 3, the TSP and CETSP are formally defined. The
proposed GSOA is presented in Section 4. Results on the
evaluation of the GSOA in the selected instances of the
TSPLIB and CETSP are reported in Section 5. Conclusion
and final remarks are in Section 6.

2. Related Work

The herein studied Close-Enough Traveling Salesman
Problem (CETSP) is motivated by data collection and en-
vironment monitoring missions. The CETSP has been
firstly described by Gulczynski et al. in [20] as a suit-
able problem formulation to plan data collection paths for
retrieving data about electricity, water or gas consump-
tion using wireless communication. The authors of [38]
consider the CETSP in monitoring scenarios for forest fire
detection using aerial vehicles. In [35], a variant of the
CETSP is used to plan surveillance missions and to exploit
the field of view of the utilized visual sensor to shorten the
required trajectory by avoiding a precise visitation of the
expected locations of the objects of interest by the aerial
vehicles. Another example of data collection planning for
underwater vehicles to remotely retrieve data from the
sampling stations located on the ocean floor is reported
in [29].

The CETSP is a special case of the Traveling Sales-
man Problem with Neighborhoods (TSPN) in which the
requested path has to visit each of the n sensor sites that
form the respective neighborhoods. The TSPN is NP-hard
as the probem becomes the ordinary TSP for the zero
neighborhoods. In the CETSP, the regions are restricted
to disks; however, in the TSPN, a particular neighborhood
can also be a straight line, convex or even non-convex re-
gions. Several approximate solutions have been proposed
for the TSPN with restricted variants of the neighbor-
hood such as disjoint unit disks that are arbitrarily con-

2

nected [39], disjoint convex fat neighborhoods [40]. Nev-
ertheless, the TSPN is shown to be APX-hard [41] and
cannot be approximated to within a factor 2 − ε, where
ε > 0. Notice the Mixed Integer Non-linear Programming
formulation of the TSPN is too computationally demand-
ing [42], and thus heuristic approaches are studied.

Six heuristics to solve the CETSP with disks of the
same radius δ are proposed in [20]. All the heuristics share
the following three steps. First, a feasible supernode set
F is determined such that each sensing site is within the δ
distance from at least one point of F . Then, a solution of
the TSP on F is found as a feasible solution of the origi-
nal CETSP. Finally, the feasible path found in the previous
step is shortened. The heuristics differ how the set F is de-
termined, and three of them are based on hexagonal tiling.
The other heuristic uses a binary matrix to represent that
two nodes are closer than δ, and the additional construc-
tion of F is called sweeping circle heuristic where circles
are utilized instead of hexagons. The last heuristic deter-
mines supernodes using intersections of the neighborhoods
that are called Steiner zones.

Two heuristics based on the idea of supernodes are
proposed in [43] where the authors used a convex hull and
merged tiling (clustering) for the creation of the supern-
odes. The TSP tour is then improved using simulated
annealing algorithm. The reported results are for problem
instances with up to 1000 sensing sites with the compu-
tational requirements below one second. An evolutionary
based approach is proposed in [38], and it is evaluated in
five scenarios with up to 300 sensing sites. Although the
approach provides best solutions in the evaluated scenar-
ios, it is computationally very demanding.

A systematic evaluation of the existing approaches to
the CETSP is presented in [21] where the author also pro-
poses improved heuristics based on Steiner zones. The
evaluation is performed in three sets of problem instances.
The first set consists of CETSP instances created from
seven benchmarks selected from the TSPLIB [37] consid-
ered with three values of the overlap ratio R. The value of
R is the ratio of the length of the smallest square contain-
ing all n disks and the radius of the disk [21]. Three radius
patterns are considered to create 21 CETSP instances for
very low overlap ratio (R = 0.02), moderate (R = 0.10),
and very high (R = 0.30) ratios. Notice that with increas-
ing value of R the neighborhood disks are more and more
overlapping, and thus a solution of the related TSP can be
very far from the optimal solution of the CETSP.

The second set consists of 27 instances of the CETSP
where the particular radius of the disk is constant for all
the sensing sites, and thus the set represents problems
with various overlap ratios. The third set consists of 14
instances where each neighborhood (disk) has a different
radius, and therefore, this set represents problems with ar-
bitrary radii. The total number of problem instances used
in the evaluation [21] is 62 with the size of the problems
from 17 to 1001 sensing sites. These instances form a set of
representative benchmarks that are also used in the evalu-

ation of the herein proposed GSOA in solving the CETSP,
see Section 5.

15 heuristics are considered in the evaluation [21] that
includes the heuristics mentioned above and also sampling-
based approach where the CETSP is transformed to the
Generalized TSP (GTSP). A particular instance of the
GTSP is created by sampling points at the perimeter of
each disk, and the author reports the number of samples
should be at least 24 per each disk; otherwise, a poor solu-
tion would be found. It is also reported that the best-found
solutions are provided by the GTSP-based approach; how-
ever, it is computationally very demanding, and the author
mentions that some of the problems have been found in
hours, weeks, or even months. The author of [21] reports
that the best performing approach regarding the trade-off
between the computational requirements and quality of
found solutions is his improved heuristic based on Steiner
zones denoted SZ2.

The computational requirements of the GTSP-based
solution of the CETSP are addressed in [25] where au-
thors propose a new discretization schema to improve the
solution quality by more samples while keeping the compu-
tational requirements low. Although the reported compu-
tational times are in units or tens of seconds using iCore5
running at 2.9 GHz, the presented results are only for rel-
atively small problems with up to 30 sensing sites.

2.1. Self-Organizing Maps for the TSP

The proposed unsupervised learning procedure of the
GSOA is inspired by the principles of self-organizing maps
(SOMs) for the TSP, and therefore, a brief overview of the
existing approaches is presented here. The overview is not
intended to be exhaustive because detailed description of
the previous SOM based solutions to the TSP is presented
in [14, 44, 16]. Therefore the main intention of this section
is to provide an origin of the ideas used in the proposed
GSOA and to clarify the contribution with respect to the
previous work.

SOM-based solution to the TSP is very similar to the
Elastic net [8] proposed in 1987. However, Smith noted [45]
that before this work has been published, Fort had been
working on using Kohonen’s SOM to solve the TSP [10].
Moreover, at the same time, Angéniol et al. [9] propose
the pioneering SOM-based solution to the TSP in 1988
which uses a dynamic structure of the network. Later on,
a growing structure has been further used in FLEXMAP
proposed by Fritzke and Wilke [34]; however, the approach
does not utilize a deletion mechanism. On the other hand,
most of the SOM-based approaches to the TSP use a fixed
structure with the number of neurons equal, but mostly
greater than the number of the sensing sites n. A recom-
mended number of neurons M is between 2n ≤ M ≤ 3n,
e.g., M = 2.5n [46], which is also the observed maximal
number of the required neurons in FLEXMAP [34].

The SOM for the TSP follows the standard Kohonen’s
SOM [12] with few modifications due to the solution of

3

the routing problems. It can be considered as a two-
layered neural network, where the input layer serves for
presenting the sensing sites (input signals) towards which
the network is adapted using the unsupervised learning.
However, the output layer is an array of neurons, and the
neurons’ weights directly represent point locations in the
input space. The neurons can be connected into a ring be-
cause of the array structure of the output layer, and thus
the ring represents a path in the input space.

The learning is usually performed in a sequence of
learning epochs, where for each learning epoch, all input
signals are presented to the network, and the best match-
ing neuron is selected as the winner neuron. Then, the
winner neuron is adapted towards the particular input sig-
nal together with its neighboring neurons that are adapted
to the input signal with decreasing power according to the
neighboring function. Thus, the learning epoch consists
of the winner selection and adaptation phases that are re-
peatably performed for every sensing site.

The complexity of a single learning step is polynomial
in n, and it can usually be bounded by O(n2) [16]. Once
the network is stabilized, the winner neurons match the
sensing sites, and a solution of the TSP can be retrieved
by traversing the ring, i.e., following the array structure,
and using the sensing site associated to the winner neu-
rons. The above-presented description represents a basic
SOM schema for solving the TSP utilized by most of the
existing SOM-based approaches, and the most related and
remarkable ones are as follows.

In 1997, Somhom et al. propose their variant of the
SOM-based solution to the TSP [46] which significantly
outperforms the previous approaches [9, 47] including the
Elastic net [8] regarding the quality of found solutions and
also the required computational time. The important fea-
ture of the Somhom’s approach is an explicit inhibition
of the neurons, which avoids to repeatably select a single
neuron as a winner neuron multiple times during a single
learning epoch. Although this can be considered as a tiny
detail, it provides the anytime property to the SOM al-
gorithm, because it is no longer necessary to wait for the
convergence of the network to a stable state to obtain a
solution. A feasible solution of the TSP can be retrieved
from the network after each learning epoch using the as-
sociated sensing site to their respective winner neurons
because each sensing site has a unique winner neuron. Be-
sides, the approach [46] was the best performing SOM for
the TSP at that time.

Probably the most sophisticated SOM-based solution
to the TSP is the Co-adaptive Net proposed by Cochrane
and Beasley in 2003 [14]. In addition to several improve-
ments, the computational requirements are decreased by
a restricted search for the best matching neuron and the
winner neurons are searched from the whole network only
every β learning epoch [14]. The authors report improved
results over the previous approaches using TSPLIB bench-
marks with instances up to 1400 sensing sites.

One of the relatively recent SOM-based approaches for

the TSP using conventional CPU (e.g., in addition to par-
allel implementations [17]) is the ORC-SOM [16]. It fol-
lows the previous SOM schemata, but the authors intro-
duce a displacement function for a smooth transition from
the tour outlining (by overall competitive rule) to the tour
refining (by the regional competitive rule). The reported
results are for selected benchmarks from the TSPLIB with
up to 2392 sensing sites. In comparison to the previous ap-
proaches (including the Co-adaptive Net [14]), the ORC-
SOM is reported [16] to be the best performing pure SOM-
based procedure regarding the quality of solutions at the
expense of higher computational requirements than the
Co-adaptive Net.

Regarding the existing SOM-based solvers for the TSP,
to the best of our knowledge, the most representative are
the Co-adaptive Net [14] and ORC-SOM [16] because they
are reported in the literature as the best performing purely
SOM-based algorithms in comparison to other SOM ap-
proaches. Although there can be found more recent pa-
pers concerning SOM for the TSP, they are mostly based
on the previous work applied in some extended problems
such as [48], or they are combined with other techniques,
e.g., [44, 49], or do not provide significantly better solu-
tions [50] than the results presented elsewhere and also
here. Therefore, Co-adaptive Net and ORC-SOM are the
selected competitors to the proposed GSOA in the eval-
uation of the unsupervised learning based approaches in
TSP instances.

The selected TSP benchmarks are the TSPLIB prob-
lems considered in [16] as they represent various types of
scenarios including instances with “clusters” of closely lo-
cated sensing sites in which SOM approaches usually do
not provide good performance. Note that none of the
SOM-based approaches outperforms the tuned implemen-
tation of the most power-full combinatorial Lin-Kernighan
heuristics [51] developed by Helsgaun in [2] and denoted
LKH. Thus, the herein presented comparison for the TSPLIB
instances is mostly to show a small step forward in the
solution quality provided by unsupervised learning based
approaches. On the other hand, the main advantage of
the unsupervised learning, and especially of the proposed
GSOA, is in the solution of combinatorial problems that
also include a continuous optimization part, e.g., a solution
of the CETSP.

2.2. GSOA Motivation and Background

The herein proposed GSOA can be considered as a re-
sult of the evolution of the author work on the SOM-based
solution of the multi-goal planning introduced in [52], where
Somhom’s approach [46] has been deployed in solving rout-
ing problems in the polygonal domain. Later on, the idea
of determining an alternate location (to be visited) during
the winner selection has been introduced in [53] to solve a
variant of the coverage planning problem. Then, the prin-
ciples have been combined in a solution of the TSPN [26]
including problems with non-convex regions [27]. Based on
the review of the existing SOM schemata and parameters,

4

a novel schema has been proposed in [54] which outper-
forms the previous works regarding the solution quality
and computational requirements.

The developed schema [54] has been then deployed in
a solution of data collection planning missions formulated
as the PC-TSPN in [29] and further extended for the prob-
lems where the penalties for not visited sensing sites de-
pend on the determined subset of the sensing sites to be
visited [55]. Besides, the schema as been employed in a
solution of the so-called Dubins TSP (DTSP), where the
path connecting two sensing sites has to respect kinematic
constraints of the utilized aerial vehicle [56]. Then, it has
been employed in the solution of the DTSP with Neighbor-
hoods for which the unsupervised learning based approach
provides the best trade-off between the solution quality
and the required computational time [35]. In addition, the
developed unsupervised learning procedure has been con-
sidered in the Orienteering Problem (OP) [57, 32] and the
Dubins OP [58] and both problems also with disk-shaped
neighborhoods in [33] and [59], respectively. Finally, a so-
lution of the OP with Neighborhoods has been utilized for
online planning in [60].

Although almost all the aforementioned deployments
build on the ideas firstly introduced in [26, 53], the learn-
ing procedure itself slightly evolves in each particular de-
ployment. It has also been observed that the approaches
for the TSP(N), PC-TSP(N) and OP(N) share common
properties that enable to use the principles of unsuper-
vised learning in various types of routing problems, espe-
cially where combinatorial optimization of determining a
sequence of visits to the sensing locations is combined with
the selection of the subset of the visited sensors together
with determining particular locations to visit the sensors.
Therefore, these properties have been synthesized, and the
Growing Self-Organizing Array (GSOA) is proposed with
the perspective to simplify the description of the further
algorithms following these ideas. Besides, the unsuper-
vised learning of the GSOA has not been deployed in the
CETSP nor evaluated in the standard TSPLIB bench-
marks. Therefore, the main contribution of this paper is
in the introduction of the GSOA as a general unsupervised
learning technique for routing problems that are variants
of the TSP. The performance and benefits of the GSOA are
supported in comparison with representative SOM-based
approaches using TSPLIB benchmarks and comparison to
existing heuristics to the CETSP in a huge set of problems
proposed in [21].

3. Problem Formulations

Even though the TSP can be considered as a well-know
problem, a formal definition of the problem is presented
here to introduce the notation and clarify the optimization
criterion. Besides, the main motivation of the proposed
unsupervised learning for the TSP-like routing problems,
which is specifically deployed in the Close-Enough TSP
(CETSP), are problems arising in data collection planning

where a vehicle is requested to visit a set of sensor sites to
retrieve data from them.

The set of n sensor locations to be visited is denoted
S = {s1, . . . , sn}, where the notation is slightly overloaded
and the sensor si is denoted as the sensor location si for
simplicity. Following the Euclidean TSP, each sensor is
located in a plane si ∈ R2 and the cost of the travel be-
tween any two points p1,p2 ∈ R2 is the Euclidean distance
‖(p1,p2)‖.

In the TSP, it is requested to determine a shortest tour
visiting all the sensors S starting from some initial loca-
tion and returning to the same location. The sequence of
visits to the sensors S can be described as a permutation
Σ = (σ1, . . . , σn) of the sensor labels such that 1 ≤ σi ≤ n
and σi 6= σj for any two σi, σj ∈ Σ. It is assumed w.l.o.g.
the initial (and terminal) location of the vehicle is s1.
Then, the TSP can be formally defined as the combina-
torial optimization problem to determine the sequence Σ
minimizing the total tour length L(Σ, S).

Problem 3.1 (TSP).

minimize Σ L(Σ, S)

L(Σ, S) =

n−1∑
i=1

∥∥(sσi , sσi+1
)
∥∥+ ‖(sσn , sσ1

)‖

subject to

1 ≤ σi ≤ n; σi ∈ Σ; sσi ∈ S
sσ1

= s1

In the CETSP, motivated by remote data reading from
the sensors, the sensor si ∈ S is considered to be vis-
ited if the data collection path is in the distance less or
equal to the communication (sensing) range δ. Thus, the
range forms a disk-shaped neighborhood with the radius
δ around each sensor. Moreover, each sensor can have its
individual range, and therefore, we can distinguish indi-
vidual δi corresponding to the particular sensor si. The
problem can be formulated as a combination of the combi-
natorial optimization to determine the sequence Σ of visits
to the sensors S together with the determination of the
most suitable locations pi ∈ R2 such that each si has its
location pi within the distance δi, i.e., ‖(si,pi)‖ ≤ δi.

Problem 3.2 (CETSP).

minimize Σ,P L(Σ, P, S)

L(Σ, P, S) =

n−1∑
i=1

∥∥∥(pσi ,pσi+1
)
∥∥∥+

∥∥(pσn ,pσ1
)
∥∥

subject to

Σ = (σ1, . . . , σn); 1 ≤ σi ≤ n
S = {s1, . . . , sn}; si ∈ R2

P = {p1, . . . ,pn}; pi ∈ R2

sσ1 = s1 and ‖(si,pi)‖ ≤ δi, for 0 ≤ i ≤ n

The determined locations P are points of the data col-
lection path and they are further referred as waypoints.

5

Following [21], we can assume δ1 = 0 because the vehicle
starts at the specific location and it is also requested the
vehicle returns to that prescribed location.

4. Growing Self-Organizing Array (GSOA)

The proposed Growing Self-Organizing Array (GSOA)
for routing problems consists of the route representation
as a sequence of nodes accompanied by an unsupervised
learning procedure that is inspired by the Self-Organizing
Map (SOM). A slightly different notation from SOM-based
approaches is introduced in the following section for clarity
and simplification of learning procedure. A detail descrip-
tion of the individual parts of the GSOA for solving in-
stances of the TSP and CETSP is presented in Section 4.2,
the convergence properties are discussed in Section 4.3,
and computational requirements in Section 4.4. Beside
the GSOA for the TSP and CETSP, the main idea of the
straightforward extension of the GSOA for routing prob-
lems with the selection of the target locations, such as the
PC-TSP or OP, is presented in Section 4.5 to motivate for
a further application of the GSOA in additional routing
problems.

4.1. Data Representation and Notation

The GSOA is a set of nodes {ν1, . . . , νM} organized in
a one-dimensional structure that is called a ring of nodes
and an example of the ring in a solution of the CETSP
is visualized in Fig. 1a. During the learning, new winner
nodes are created according to the shortest distance of the
ring to the particular sensing locations si ∈ S, and there-
fore, each node νi represents a particular location νi in
the same space as the sensing locations. Hence, during the
learning, the nodes form a path that evolves in the input
space to visit the sensors S. The evolution is performed by
the unsupervised learning procedure in which new winner
nodes are repeatably determined for each sensor of S. A
single adaptation of the ring to all sensor locations S is
called a learning epoch.

Each node νi is associated with its locations νi and
the particular sensor s for which the node has been deter-
mined as the winner node. Moreover, each newly created
winner node ν∗ is also associated with a particular way-
point location sp at which the corresponding sensor s can
be covered, i.e., sp is within a distance to s shorter than
the range δ. The waypoint sp is determined during the
winner selection as the point sp on the segment (ps, s),
where ps is the closest point of the ring to s, such that
sp is in the corresponding neighborhood of s and s can be
covered from sp, see Fig. 1b. Overall, each node νi ∈ N
consists of the location νi that is initialized to ps when
the node is created, the waypoint sp, and it is further as-
sociated with the respective sensor s. In the case δ = 0,
the waypoint is directly the sensor location s.

Since nodes are organized in the one-dimensional struc-
ture N = (ν1, . . . , νM), a feasible route connecting the

waypoints that are in the respective δ-neighborhood of the
corresponding sensor locations (or directly the sensor lo-
cations themselves) can be created by traversing the ring
and using the waypoints associated with the nodes. Hence,
a ring of nodes N represents the requested route as visu-
alized in Fig. 1c. Notice, the ring can be considered as an
array of nodes; however, it can be efficiently implemented
as a double linked list because the nodes are accessed only
by the sequential traversing of the ring N . Besides, new
winner nodes are added to the ring during the learning,
and the previous nodes are removed from the ring at the
end of each learning epoch.

The following notation is used to distinguish between
the nodes, nodes locations, and the waypoints associated
with the nodes. The ring of nodes N consists of nodes
νi ∈ N and each νi is further associated with two points
that are in the same space as the sensor locations. Each
node νi has its location νi, and therefore, in the case of the
Euclidean TSP in a plane, νi is a two dimensional vector
νi ∈ R2, νi = (xνi , yνi). The node νi is further associated
with the waypoint sp, which is also two dimensional vector
sp ∈ R2, and it is denoted as νi.sp whenever it is needed
to explicitly mention with which node sp is associated to.

Regarding Problem 3.2, the associated waypoints to
the nodes are the requested waypoints pi ∈ P ; however,
the sequence of visits to the sensors is prescribed by the
sequence of nodes in the ring N . Hence, after traversing
the ring, the associated sp to the winner nodes become
the waypoints P corresponding to the respective sensing
locations.

4.2. Unsupervised Learning of the GSOA

The GSOA is a growing array structure N which is
iteratively adapted towards the sensor locations S. The
learning procedure starts with a single node ν1 which lo-
cation ν1 can be initialized as the starting location s1 or
it can be set to the centroids of the sensor locations S.
The learning procedure is performed in a finite number
of learning epochs, where each learning epoch is an adap-
tation of the ring of nodes N to all the sensor locations
S. The sensor locations are selected in a random order to
avoid local optima similarly as in [46]. For each s ∈ S a
new winner node is determined that is then adapted to-
wards s. After the adaptation of the ring to all n sensors
of S (i.e., after the end of a single learning epoch), the ring
has n new nodes, and all the previous nodes in the ring are
removed to balance the number of nodes with the number
of sensors. The learning procedure is then repeated for a
fixed number of learning epochs imax.

An overview of the GSOA unsupervised learning proce-
dure is depicted in Algorithm 11. The procedure consists
of three parts: (i) winner node determination; (ii); adapta-
tion of the winner; and (iii) extraction of the solution after

1An implementation of the algorithm is available at https://

purl.org/faigl/sw.

6

νi

s1

δ

νi+1

νi+2

s2

s3

s6

s4

s5

(a) Ring of nodes

νi

s1

δ

νi+1

νi+2

s2

s3

s6

s4

s5
ps δ*ν
sp

(b) Determination of the winner nodes

νi

s1

δ

νi+1

νi+2

s2

s3

s6

s4

s5
δ

(c) Route represented by the ring of nodes

Figure 1: (a) The sensor locations s ∈ S are visualized as small green disks with its neighborhood as a surrounding yellow disk of the radius δ.
The locations νi of the nodes ν ∈ N are shown as small disks connected by black straight line segments into a ring. (b) An example of the
determination of the new winner node ν∗ to the sensor location s5 as the closest point ps of the ring to s5. The corresponding waypoint sp
to cover s5 is a point on the segment (ps, s5) that is inside the δ-neighborhood of s5. (c) A feasible solution of the CETSP (and TSP) is
represented as a route (shown in red) connecting the associated waypoints (shown as small red disks) of the winner nodes of the ring, and it
can be constructed by traversing the ring N .

Algorithm 1: GSOA – Unsupervised Learning

Input: S = {s1, . . . , sn} – a set of sensor locations to be visited, each with particular disk-shaped δ-neighborhood
Input: s1 – the requested initial and terminal location with δ = 0
Input: (σ, µ, α) – the learning parameters: the initial value of the learning gain σ = 10, the gain decreasing rate

α = 0.0005, and learning rate µ = 0.6
Input: imax – the maximal number of learning epochs, i.e., imax = 150

Output: (Σ,P) – Σ defines the order of visits to the sensors S and P are the waypoints to visits the sensors

N ← {ν1} such that ν1 = s1 // init the ring1

imax ← min(imax, 1/α) // ensure σ will always be above 02

i← 0 // set the learning epoch counter3

while i ≤ imax and termination condition is not satisfied do4

B Learning epoch
foreach s in a random permutation of S do5

ν∗(ν∗, ν∗.sp)← determine winner(N , s, δs)6

N ← insert winner(N , ν∗)7

foreach node ν ∈ N in the d-neighborhood of the node ν∗ such that 0 ≤ d ≤ 0.2M do8

Adapt ν towards ν∗.sp using (4) with the neighbouring function (3)9

B Update the best solution found so far
Remove all not winning nodes from N10

i← i+ 1 // update the epoch counter11

σ ← (1− iα)σ // crease the learning gain12

Traverse the ring and construct the sequence of visits Σ′ to S with the corresponding waypoints P ′ as the sp points13

associated to the nodes of the ring
if (Σ′, P ′) represents a shorter route than (Σ, P) then14

(Σ, P)← (Σ′, P ′) // update the solution15

(Σ, P)← two opt(Σ, P) // improve the found solution using the Two-opt heuristic [61]16

return (Σ, P)17

each learning epoch. The individual parts are described in
detail in the following sections.

4.2.1. Winner Selection

The winner selection (Lines 5–7, Algorithm 1) deter-
mines the closest point ps of the ring to the location s

7

of the current sensor s together with the expected way-
point location sp at which s can be covered. The ring
of nodes N can be considered as a sequence of straight
line segments defined by two consecutive node locations
νi and νi+1, and therefore, the closest point ps of the ring
to s is determined as the closest point of the segments
(νi, νi+1), where 1 ≤ i ≤M and νM+1 is ν1, i.e., the array
subscripts are closed to modulo M because the ring repre-
sents a closed path. Thus, we can iterate over all segments
(νi, νi+1) of the ring N , determine the closest point p′i of
each i-th segment to s, and select the closest point ps of
the ring to s as the point p′i with the shortest distance to
s, i.e.,

ps = argmin1≤i≤M ‖(p′i, s)‖

subject to

p′i ∈ (νi,νi+1) and νM+1 = ν1 .

(1)

Having the point ps, a new winner node ν∗ is created
and inserted between the respective νi and νi+1 nodes.
The position of the winner node ν∗ is set to ps, i.e.,
ν∗ = ps. Besides, a waypoint sp is determined to cover
the sensor s using the sensing range δ, and thus save the
travel cost by avoiding precise visitation of the location s.
A relation of the winner node, waypoint, and sensor are

νi

νi+1

s
ps

δ

*ν sp

(a) Winner node outside the δ-
neighborhood of s

νi

νi+1

s
ps δ

*ν sp

(b) Winner node already inside
δ-neighborhood of s

Figure 2: Relation of the closest point ps of the ring to the sensor
s, waypoint sp, and sensor location s in the winner node determina-
tion. If sp is already inside the δ neighborhood of the sensor s, the
waypoint sp is identical to ps, and thus the winner node is set to
be already at the desired waypoint and the network is not adapted
towards s.

visualized in Fig. 2a. If the winner node is outside the
δ-neighborhood of s, its waypoint sp is determined as the
point on the segment (ps, s) that is in δ−ε distance from s

sp = s+ (ps − s)
δ − ε
‖(ps, s)‖

, (2)

where ε is a small constant, e.g., ε = 0.001, to ensure
the waypoint is inside the δ-neighborhood of s because of
eventual numerical imprecisions.2 On the other hand, if

2In the case δ ≈ ε, the waypoint location sp can be set to the
sensor location s, i.e., sp = s.

the new winner node is already inside the δ-neighborhood
(see Fig. 2b), its waypoint location is set to be identical
to the location of the winner node, i.e., sp = ν∗, which
in turn causes the winner node is not effectively adapted
towards s, and it stays at its location.

4.2.2. Adaptation

The adaptation (Lines 8–9, Algorithm 1) is a move-
ment of the winner node ν∗ (together with its neighbour-
ing nodes) towards its waypoint sp. The adaptation of
the winner should be stronger than the adaptation of its
neighbors to distribute the ring across the input space and
support stabilization of the ring. Therefore, the neighbor-
ing function used in SOM adaptation [12] is also employed
in the GSOA. The power of adaptation is decreasing with
the increase distance of the node from the winner node
in the ring and only nodes in the 0.2M neighborhood are
adapted. The neighbouring function has the form

f(σ, d) =

{
e−

d2

σ2 for d < 0.2M
0 otherwise

, (3)

where M is the current number of nodes in the ring N , σ
is the learning gain, and d is the distance of the adapted
node ν to the new winner node ν∗ in the number of nodes
in the ring.

Each node in the 0.2M neighborhood of the winner
node ν∗ is adapted towards ν∗.sp which efficiently means
a movement of the node ν to a new location ν′ according
to

ν′ = ν + µf(σ, d)(ν∗.sp − ν), (4)

where µ is the learning rate, f(σ, d) is the neighbouring
function (3), d is the distance of ν from ν∗ in the number
of nodes, and ν∗.sp is the waypoint location associated
with the newly added winner node ν∗. The principle of a

δ

ν*.spν*

νd=1
ν'd=1

(a) before adaptation

δ

ν*.spν*

(b) after adaptation

Figure 3: Example of adaptation of the winner node ν∗ and its
neighbouring nodes towards ν.sp.

single adaptation with the movement of the node locations
is visualized in Fig. 3.

The GSOA starts with a single node, and therefore, in
the first learning epoch, the first winner node determina-
tion together with the adaptation creates from the initial

8

(a) Adapt to s1 (b) Adapt to s6 (c) Adapt to s2

(d) Adapt to s3 (e) Adapt to s5 (f) Adapt to s4

Figure 4: A ring of nodes after the adaptation to the particular
sensor location during the first learning epoch of the GSOA. Small
blue disks are nodes of the ring that are connected by black line
segments. The green straight line segment connects the winner node
with its particular sensor location. Notice, some of the nodes may
overlap in the visualization because of very similar locations.

degenerated path a closed ring with two nodes represent-
ing the path visiting the first sensor towards which the
ring is adapted. After that, the second winner node de-
termination and adaptation add one more node, and so
on, see Fig. 4. Thus, the number of nodes is n + 1 after
the adaptation to all sensors S. Then, all nodes that are
not winner nodes in the current epoch are removed, and a
solution is extracted from the ring. For the next learning
epoch(s), the ring already has n nodes from the winner
nodes of the previous epoch, and therefore, the number of
nodes will be 2n after the next adaptation to all n sensors
of S.

4.2.3. Solution Extraction

After the adaptation of the ring towards all sensor lo-
cations S, learning parameters are adjusted, and a solution
from the ring is extracted (Lines 10–15, Algorithm 1). In
each learning epoch, n new winner nodes are added to the
ring together with the particularly associated waypoints
as a result of the winner node determination for each sen-
sor s ∈ S; thus, we can remove all other nodes from the
ring to balance the number of nodes with the number of
sensors and keep only the necessary nodes for construct-
ing a feasible solution of the TSP or CETSP. The learning
gain is then decreased using the gain decreasing rate α to
support the convergence of the GSOA to a stable state.

Since all winner nodes in the ring have associated way-
points, a feasible solution can be constructed by traversing
the ring and connecting the waypoints, e.g., see Fig. 1c.
Thus, after a single learning epoch, a feasible solution can
be determined, and the best solution found so far can be
maintained during the learning epochs (similarly to [14]).
The learning can be terminated after a finite number of

(a) Learning epoch 1 (b) Learning epoch 30

(c) Learning epoch 50 (d) Learning epoch 70

(e) Learning epoch 90 (f) Final found solution

Figure 5: An example of the GSOA evolution in a solution of the
CETSP instance team1 100rdmRad (from [21]) with individual δ
radius at each sensor location visualized as red circles around the
sensor locations that are visualized as small green disks. The final
solution is found in 102 learning epochs. Notice in the first epochs,
the ring itselfs is not a feasible solution, but the associated waypoints
to the ring nodes represent a feasible solution.

learning epochs, or whenever the ring is stabilized, and it
is not further modified by the adaptation. Also similarly
to the Co-adaptive Net [14], the final solution is improved
by the Two-opt heuristic [61] to quickly avoid unnecessary
crossings of the final route (Line 16, Algorithm 1).

An example of the ring evolution in the solution of the
CETSP is depicted in Fig. 5. Notice, the connected ring of
nodes do not represent a feasible solution, the connected
waypoints form the solution; however, in the final learning
epochs, the locations of the nodes fit the waypoints, and
the ring converges to the stable state that is a feasible
solution.

4.3. Convergence Analysis and Termination Condition

During each learning epoch, the ring of nodes N is
adapted towards all the sensor locations S and a feasi-

9

ble solution is available at the end of each learning epoch
(Line 13, Algorithm 1). For simplicity, the number of
learning epochs is limited by imax. However, the locations
of the nodes in the ring are stabilized in a finite number
of learning epochs, which can be shown similarly as in [62]
because of µ < 1. Besides, the stability can be intuitively
shown as follows.

0
2

4
6

8
10

0 50 100 150

Learning epoch

Learning gain − σ
Neighbouring function − f(σ, 1)

Figure 6: Evolution of the value of the learning gain σ and the
neighbouring function (3) for the first neighbor of the winner node
(d = 1) in particular learning epochs. The initial value of the learning
gain σ is set to σ = 10 and the gain decreasing rate α is α = 0.0005.

The learning rate σ is decreased after each learning
epoch (Line 12, Algorithm 1), and thus for a small value
of σ, the value of the neighbouring function (3) is prag-
matically zero for d > 0. For example in the case of the
recommended initial value of σ = 10 and α = 0.005, the
value of the neighbouring function (3) is about 1.41e-304
at the learning epoch 146 and it is zero in the next epoch
(using IEEE 754 data representation). The values of σ
and f(σ, d) at learning epochs are shown in Fig. 6. Be-
sides, it is assured the learning gain σ is never negative,
which can be made by imax (see Line 2, Algorithm 1) or
by explicit setting σ = 0 when it would be negative, e.g.,
at the Line 12, Algorithm 1. Hence, only the winner nodes
are adapted towards the waypoints since that.

A winner node ν∗ is always moved towards the cor-
responding sp about µ ‖(ν∗, sp)‖ distance.3 Since such a
node is then never moved towards a different sp because
(3) is zero for d > 0, it will be the closest point to the corre-
sponding sensor location. In a case the ring is eventually
moved closer to that location as a result of the adapta-
tion of another winner node, a new node is always created
in the winner selection of the GSOA, and such a node is
moved towards the particular sensor location. Therefore,
the ring is always moved towards the waypoints, and from
a certain learning epoch, the distance of the winner nodes

3For the winner node adaptation, the neighbouring function (3)
is always greater than zero even for σ = 0 and d = 0, i.e., for both
possible values of the exponent 0 and −1.

to the waypoints is only decreasing because the respective
winner nodes are not moved in the adaptation of other
nodes.

Based on the convergence analysis of the GSOA, the
adaptation can also be terminated whenever the winner
nodes are negligibly close to the corresponding waypoints
(or the sensor locations themselves in the case of the TSP),
which can be an additional termination condition (Line 4,
Algorithm 1). Moreover, for a solution of the CETSP, the
adaptation of the nodes that are inside the corresponding
δ-neighborhood can be suppressed, and the adaptation can
be terminated once all the winner nodes are inside the δ
neighborhood of the sensor locations, which can further
decrease the required number of learning epochs.

Regarding the results on the empirical evaluation re-
ported in Section 5, the GSOA converges in about one
hundred learning epochs and the recommended value of
imax is imax = 150, which also corresponds to the number
of learning epochs from which the neighbouring function
(3) is zero for the neighbouring nodes of the winner node
(for α = 0.0005 and the initial value σ = 10).

Finally, notice that a solution is not determined us-
ing the node locations but using the associated waypoints.
Therefore the solution constructed at the end of each learn-
ing epoch (Line 13, Algorithm 1) is always feasible. Hence,
there is not an issue with the convergence of the GSOA,
and the proposed learning procedure has the anytime prop-
erty.

0
1

2
3

4
5

0 20 40 60 80 100

Learning epoch

R
el

at
iv

e
so

lu
tio

n
le

ng
th team1_100rdmRad − best solution

team1_100rdmRad − current solution
team1_100, δ = 0 − best solution
team1_100, δ = 0 − current solution

Figure 7: Evolution of the solution length in the GSOA solution of
the CETSP (team1 100rdmRad) and TSP (team1 100, δ = 0). The
solution length is shown as the length of the best solution found so
far and the current solution represented by the ring at the particular
learning epoch, both lengths are shown as the relative ratio to the
length of the final found solution.

An example of the evolution of the solution length and
its convergence during the GSOA unsupervised learning is
depicted in Fig. 7 for the CETSP instance team1 100rdmRad
and its variant with the zero neighborhood, i.e., an in-
stance of the TSP with the same sensor locations. The
corresponding final solutions are visualized in Fig. 8. It
can be observed that in both cases, the GSOA converges
in less than one hundred learning epochs. The quality

10

(a) CETSP – team1 100rdmRad,
L = 402.6, GSOA converges in
99 epochs

(b) TSP – team1 100 with δ = 0,
L = 641.7, GSOA converges in
97 epochs

Figure 8: An example of the found solutions of the CETSP in-
stance team1 100rdmRad [21] and TSP instance created from the
same problem but with the zero neighborhood (δ = 0).

of the solution represented by the current ring may oscil-
late because of the randomized nature of the unsupervised
learning; however, maintaining the best solution found so
far provides anytime property with improving solution un-
til the GSOA is in the stable state.

4.4. Computational Complexity of the GSOA

The computational complexity of a single learning epoch
of the GSOA can be bounded according to the performed
number of winner selections and adaptations. For each
sensor location, a new winner node is searched from the
ring with no more than 2n nodes. Each winner node is
then adapted together with its neighboring nodes that are
within the distance of 0.2M nodes from the winner node
that can be bounded by n nodes. Hence the complex-
ity of the two nested foreach loops of Algorithm 1 can be
bounded by O(n2).

At the end of each learning epoch, not winning nodes
are removed which requires traversing the ring in 2n steps
and the solution is constructed by traversing the ring with
n nodes. Therefore, the complexity of the learning epoch
can be bounded by O(n2).

The complexity of the whole GSOA learning depends
on the number of learning epochs that is a constant and
complexity of the Two-opt heuristic [61] that can be bounded
by O(n2). Therefore, the computational complexity of the
proposed GSOA can be bounded by O(n2). The real re-
quired computational times are reported in Section 5.

4.5. GSOA in Problems with Sensors Selection

The herein proposed GSOA is based on the previous
successful deployments of the unsupervised learning to other
routing problems such as the Prize-Collecting TSP (PC-
TSP) [29] or Orienteering problem (OP) [33], where the
solution of the problems includes a selection of the most
suitable (i.e., most rewarding) sensors. Although a detail
description of the GSOA deployment in these problems is
out of the scope of this paper, the main idea is presented

here to emphasize the most important parts of the GSOA
that allow solving these problems.

The selection of the sensors during the unsupervised
learning needs to trade-off between the adding rewards in
the OP (or reducing the penalty in the PC-TSPN) and the
solution cost regarding the length of the final path. There-
fore, it is not desirable to adapt the ring to all sensors, but
only to the most suitable sensors. This can be realized
by the conditional adaptation proposed in [29] where the
winner node is firstly selected, but it is inserted into the
ring only if certain criteria are met.

For example in the case of the OP, it makes sense to
insert a new winner node to the ring only if the route
represented by the ring would satisfy the limited travel
budget after the adaptation. Hence, it is also required to
evaluate the final tour length during the learning which
is one of the benefits of the GSOA because the solution
can be directly determined using the sequence of nodes in
the ring and the associated waypoints that are determined
during the winner node selection.

Besides, the principles of the GSOA immediately allows
solving the OP with the disk-shaped neighborhoods be-
cause the determination of the waypoint locations is made
during the winner node selection. Examples of solutions
to these problems by the unsupervised learning procedures
that inspire and motivate the herein proposed GSOA can
be found in the previous work, e.g., [29, 32, 33].

5. Results

The performance of the proposed GSOA has been em-
pirically evaluated in a series of TSP and CETSP instances.
Regarding the TSP, the same Euclidean TSP instances
from the TSPLIB [37] with up to 2392 locations as in [16]
are used to compare the performance of the GSOA with
the selected best performing SOM-based TSP solvers re-
ported in the literature. Therefore the Co-adaptive Net [14]
and ORC-SOM [16] have been implemented within the
same C++ framework as the proposed GSOA to make a
fair comparison. In addition, probably the best performing
combinatorial heuristic LKH [2] is employed to show a gap
between the combinatorial heuristics of the operational re-
search with unsupervised learning based approaches.

The performance of the GSOA in the CETSP is com-
pared using instances proposed in [21] and the results and
heuristic SZ2 proposed therein. Besides, the CETSP in-
stances are solved as a variant of the GTSP where each
disk-shaped neighborhood is sampled into 24 locations at
the perimeter of the particular δ-neighborhood as recom-
mended in [21]. These GTSP instances are solved using
the GLNS [24] heuristic. The GLNS implementation in
the Julia programming language is made available by the
authors of [24] and it has been used within the same com-
putational environment as the implemented unsupervised
learning based solvers.

The used performance indicators are the quality of
the found solutions and the required computational time.

11

Table 1: GSOA and SOM-based Solvers in the TSPLIB instances of the TSP

Set Lopt
LKH [2] Co-adaptive Net [14] ORC-SOM [16] GSOA

%PDB %PDM TCPU %PDB %PDM TCPU %PDB %PDM TCPU %PDB %PDM TCPU

eil51 426 0.00 0.00 0.012 2.63 3.60 0.007 3.88 4.32 0.072 2.94 4.11 0.003

st70 675 0.00 0.00 0.016 1.94 2.88 0.009 1.18 2.34 0.129 1.13 2.20 0.005

eil76 538 0.00 0.00 0.014 3.72 5.80 0.009 4.47 5.09 0.148 3.86 4.80 0.005

rd100 7 910 0.00 0.00 0.021 0.65 3.41 0.016 2.33 2.85 0.249 0.76 3.53 0.009

lin105 14 379 0.00 0.00 0.016 7.22 15.71 0.019 0.25 0.39 0.280 0.03 0.32 0.009

pr107 44 303 0.00 0.00 0.021 0.48 1.13 0.017 0.17 0.30 0.314 0.05 0.72 0.010

pr136 96 772 0.00 0.00 0.035 1.71 2.93 0.027 3.54 4.18 0.479 3.36 3.91 0.015

pr152 73 682 0.00 0.10 0.027 1.36 4.28 0.042 1.23 1.71 0.587 0.82 1.71 0.017

rat195 2 323 0.00 0.07 0.039 27.25 30.72 0.056 8.42 10.26 0.960 6.36 7.72 0.029

kroA200 28 568 2.80 2.81 0.058 12.23 14.43 0.068 6.44 6.85 1.010 3.63 6.02 0.032

pcb442 50 778 0.01 0.12 0.131 5.64 8.44 0.240 7.03 8.78 4.785 4.38 7.04 0.152

pr1002 259 045 0.00 0.17 0.897 7.95 9.81 0.757 4.91 5.81 24.655 4.48 5.15 0.800

pcb1173 56 892 0.04 0.30 0.904 7.53 9.50 0.935 9.33 10.28 34.811 6.84 8.04 1.151

d1655 62 128 0.01 0.25 1.854 10.15 11.72 1.492 10.21 10.82 72.445 7.88 9.34 2.660

vm1748 336 556 0.08 0.18 2.148 9.34 11.02 1.662 7.25 8.18 78.568 5.59 7.01 3.041

pr2392 378 032 0.05 0.21 3.826 7.80 8.92 2.594 6.97 7.54 148.056 5.75 6.82 6.956

All the required computational times TCPU are in seconds.

Since the evaluated algorithms are randomized, the quality
is measured as the percentage deviation from the optimum
of the best solution value over the performed trials [17] fur-
ther denoted %PDB.

%PDB =
L− Lref
Lref

· 100%, (5)

where L is the length of the best found solution among
the trials and Lref is the optimal or the reference solution
length of the particular problem instance.

The robustness of the algorithm over the trials is mea-
sured as the percentage deviation from the optimum of the
mean solution value over the performed trials [17] denoted
%PDM.

%PDM =
Lavg − Lref

Lref
· 100%, (6)

where Lavg is the average solution length among the trials.
Optimal solutions of the evaluated TSP instances are

known or can be found by the Concorde solver [63] or
LKH [64]. On the other hand, an optimal solver for the
CETSP is not available, and therefore, the best-found so-
lutions of the evaluated problems reported in [21] are used
for Lref in (5) and (6) in cases where the evaluated algo-
rithms do not provide better solution.

The computational requirements are reported as the
real required computational times using a single core of
the Intel Core i7-6700K processor running at 4 GHz. The
proposed GSOA, Co-adaptive Net, and ORC-SOM are im-
plemented in C++ and compiled with the clang compiler

ver. 5.0, which has been also used to compile the LKH [64].
Therefore, the computational requirements are presented
as average values of the required computational time TCPU

per trial (reported in seconds) and all the reported times
can be thus directly compared. The only exception are
the computational times of the CETSP heuristic SZ2 that
are adapted from [21], where therein reported computa-
tional requirements are for a Pentium processor running at
2.4 GHz, without further information about the type. It
is expected it is the Intel Pentium E2220 processor, which
has been introduced at the beginning of 2008. Consider-
ing single thread performance [65], the processor is about
2.63× slower than the utilized Intel Core i7-67000K CPU.
Hence, the times reported in [21] are divided by the factor
of 2.63 to make the required computational times of the
SZ2 heuristic reported in [21] comparable to the used com-
putational environment. Such computational times are de-
noted as TCPU

*.
The individual results in the TSP and CETSP instances

are reported in the following sections.

5.1. Evaluation of the GSOA in the TSP Benchmarks

The performance indicators of the Co-adaptive Net [14],
ORC-SOM [16] (both with the settings recommended by
the authors), the proposed GSOA (with the settings as in
Section 4), and the LKH (with the fastest possible set-
tings) for the selected TSP instances are depicted in Ta-
ble 1. The solved TSPLIB instances cover different types
of the TSP instances where unsupervised learning based

12

solvers perform well but also poorly, i.e., instances with
clusters of locations such as pr152, pcb442, d1655, vm1748,
pr2396, etc. All the problems can be solved optimally,
and the length of the optimal solution is in the second col-
umn denoted Lopt. The best solutions found by the eval-
uated unsupervised learning based solvers are highlighted
in bold.

The results of the LKH are included for completeness,
as it is not surprising it outperforms all the unsupervised
learning based approaches, which is known and discusesed
in almost any comparision of the unsupervised learning ap-
proaches with combinatorial heuristics of the operational
research, e.g., mentioned and advocated in [14, 54]. No-
tice, the LKH provides optimal solutions in less than one
second for most of the problems with less than thousand
of nodes. The most demanding is the optimal solution of
pr2392 which requires about 25 seconds using the evalu-
ation computational environment. However, for the pre-
sented results in Table 1, the LKH has been run with the
computational time limited to 0.01 seconds, but the solu-
tion is terminated after the initialization, and therefore,
the reported times in the TCPU column are higher than
this limit. Thus, in few cases, the LKH is more demand-
ing than unsupervised learning approaches, but it always
provides significantly better solution. Therefore, in the
rest of this section, only the unsupervised learning based
approaches are discusesed to emphasize improvements pro-
vided by the GSOA for this type of solvers.

The parameters of the GSOA that can be tuned are
the initial value of the learning gain σ, the learning rate
µ, the gain decreasing rate α, and the maximal number of
learning epochs imax. Based on the experimental evalua-
tion, the changes in the learning parameters σ, µ, and α
influence the solution only slightly. Therefore, the GSOA
can be considered as parameterless. The computational re-
quirements can be simply decreased by reducing the num-
ber of learning epochs imax as a solution is provided after
each learning epoch; however, worse solutions can be ex-
pected, as it is indicated in Fig. 7.

The proposed GSOA seems to provide a suitable trade-
off between the quality of the found solutions, computa-
tional requirements, and also the complexity of the im-
plementation. The GSOA benefits from a lower number
of nodes than the ORC-SOM and also from the growing
structure. The reported computational complexity of the
ORC-SOM is O(n3) while the GSOA is O(n2). On the
other hand, the Co-adaptive Net is faster than the GSOA
in solving large instances with thousands of locations. It
is because the Co-adaptive Net uses the restricted search
for winner selection and the winner is selected from the
whole ring only every β = 10 learning epochs [14]. A sim-
ilar searching strategy can also be employed in the GSOA
at the cost of a worse solution, which can be observed for
the Co-adaptive Net.

In comparision of implementations, the GSOA is much
simpler than the rather complex Co-adaptive Net with
many parameters that can be tuned or the ORC-SOM

with specific more complex adaptation formulas. However,
there is not a significant reason to solve instances of the
regular TSP by the unsupervised learning approaches as
the solution quality is significantly worse than a solution
provided by the available LKH solver [64] with competi-
tive computational requirements. Therefore the main ben-
efit of the proposed GSOA is in solving the combinatorial
optimization problems that also includes continuous op-
timization part, where the unsupervised learning method
can take advantage of the online sampling of the most suit-
able waypoints, which is reported for solving the CETSP
in the next section.

5.2. Evaluation of the GSOA in the CETSP Benchmarks

Based on the literature review, the evaluation of the
proposed GSOA is performed using benchmarks defined
in [21]. The performance of the proposed unsupervised
learning is compared with the SZ2 heuristic [21] and GTSP-
based approach using 24 samples per each disk that is
solved by the GLNS heuristic [24]. A solution of the
GTSP can be demanding, and therefore, the GLNS is used
in the fast mode and the computational time is limited to
300 seconds, which has been reached in few cases that are
indicated by the emphasized values in the reported tables.
The solutions found by the GTSP-based approach are de-
noted GTSP-GLNS.

The found solutions are compared with the reference
values provided in [21] (as the best-found solutions therein);
however, new best-known solutions are found for several
CETSP benchmarks by the GTSP-GLNS and in several
cases also by the proposed GSOA. Therefore, the overall
best-known solutions among the reported values in [21]
(further denoted as L′ref) and the found solutions by the
GSOA and GTSP-GLNS approaches are considered as the
reference solutions for the computation of the %PDB and
%PDM. Thus, the zero value of the %PDB indicates the
best solution is found by the particular approach. The cost
of the best-known solutions is reported in the column de-
noted Lref and better solutions than L′ref are highlighted
in bold.

The performance comparison of the proposed GSOA in
CETSP instances is organized in three sets of benchmarks
according to [21]. The first set of benchmarks is focused
on the influence of the δ radius of the disk-shaped neigh-
borhood, and the results are reported in Table 2, where
seven instances are considered with three different over-
lap ratios R. For a particular instance of the CETSP, all
the locations have the same δ (except the initial/terminal
location with δ = 0) defined by R [21]. The second set
of CETSP benchmarks is reported in Table 3 and also in
these instances, the radii of all locations to be visited are
the same. Finally, individual values of the δ radius per
each location are considered in the third set for which the
reported results are in Table 4.

The results indicate that the proposed GSOA founds
competitive solutions to the SZ2 heuristic [21] and GTSP-
GLNS [24] in a fraction of second and for each solved

13

Table 2: Results of the CETSP solvers in instances with different overlap ratio R

Set
of

Lref
L′ref SZ2 [21] GTSP-GLNS [24] GSOA

nodes [21] %PDB TCPU* %PDB %PDM TCPU %PDB %PDM TCPU

Very low overlap ratio R = 0.02

kroD100 100 159.0 159.0 2.96 0.113 2.91 3.01 11.4 2.34 3.68 0.010

rat195 195 158.8 158.8 7.87 0.205 3.53 4.43 49.7 5.24 7.19 0.033

lin318 318 2 863.4 2 863.4 1.78 0.562 0.23 0.94 162.4 1.65 3.27 0.082

rd400 400 1 033.4 1 033.4 3.17 0.692 0.59 2.46 214.2 2.46 4.31 0.135

pcb442 442 323.0 323.0 3.16 0.549 4.68 5.98 282.1 5.77 8.01 0.154

d493 493 202.5 202.8 5.29 0.959 0.00 1.08 300.0 2.37 5.31 0.170

dsj1000 1 000 879.1 935.7 8.03 3.496 5.34 8.17 300.0 0.00 1.49 0.624

Moderate overlap ratio R = 0.10

kroD100 100 89.7 89.7 7.82 0.010 10.50 10.58 13.1 0.25 0.52 0.005

rat195 195 68.1 68.1 8.93 0.172 16.58 16.79 50.0 0.31 0.58 0.011

lin318 318 1 408.5 1 408.5 10.53 0.327 24.79 27.23 146.8 0.62 1.78 0.053

rd400 400 461.4 466.1 11.97 0.303 19.98 22.40 243.8 0.00 2.78 0.064

pcb442 442 147.2 147.2 10.20 0.606 22.37 23.59 285.0 2.18 4.10 0.061

d493 493 101.7 101.7 9.01 0.678 40.66 41.90 300.0 2.03 4.49 0.065

dsj1000 1 000 376.1 376.1 7.58 1.771 94.38 100.85 300.0 0.82 4.80 0.263

Very high overlap ratio R = 0.30

kroD100 100 58.5 58.5 0.00 0.051 60.18 62.06 15.7 0.54 1.29 0.003

rat195 195 45.7 45.7 0.20 0.128 95.22 100.67 62.2 0.21 0.62 0.010

lin318 318 766.0 766.0 2.15 0.226 125.69 129.08 159.6 0.46 2.21 0.036

rd400 400 224.8 224.8 3.76 0.333 141.93 145.26 257.7 1.16 6.17 0.040

pcb442 442 83.5 83.5 1.89 0.273 115.19 125.77 296.6 2.03 4.47 0.013

d493 493 69.8 69.8 1.42 0.259 112.15 125.49 300.0 0.72 2.20 0.012

dsj1000 1 000 194.4 200.0 0.99 0.989 320.12 331.65 300.0 0.00 4.71 0.245

All the required computational times TCPU are in seconds.

(a) Overlap ratio R = 0.02, L=162.8 (b) Overlap ratio R = 0.10, L=89.9 (c) Overlap ratio R = 0.30, L=58.9

Figure 9: Selected best solutions found by the proposed GSOA. CETSP instances of the kroD100 problem with a different overlap ratio
R [21].

CETSP instance, a solution is found in less than one sec-
ond. The GSOA provides the best performance in in-
stances with the moderate and very high overlap ratio
(R = 0.3), see Table 2, and in instances with various radii

per each location, see Table 4. In these instances, the
Steiner zones are becoming large for the increasing overlap
ratio (see Fig. 9) and the finite sampling does not provide
enough options to find short tours. Thus, the employed

14

Table 3: Results of the CETSP solvers in intances with constant δ radii

Set
of

Lref
L′ref SZ2 [21] GTSP-GLNS [24] GSOA

nodes [21] %PDB TCPU* %PDB %PDM TCPU %PDB %PDM TCPU

team1 100 101 307.3 307.3 6.31 0.119 9.64 10.07 2.1 0.83 1.47 0.012

team2 200 201 246.7 246.7 12.54 0.241 56.02 56.66 14.5 0.58 1.02 0.013

team3 300 301 466.2 466.2 8.45 0.422 13.96 15.37 32.3 5.41 9.91 0.054

team4 400 401 678.6 680.2 9.21 0.544 6.18 7.40 59.3 0.00 2.54 0.105

team5 499 500 702.8 702.8 3.52 0.995 4.48 5.72 72.3 2.63 6.61 0.170

team6 500 501 225.2 225.2 3.43 0.413 140.95 147.15 136.5 1.20 7.60 0.032

bonus1000 1 001 400.9 402.5 9.22 1.845 81.49 86.38 300.0 0.00 4.27 0.457

rotatingDiamonds1 21 32.4 32.4 2.35 0.018 15.84 15.84 0.5 1.35 2.22 0.001

rotatingDiamonds2 61 140.5 140.5 1.26 0.054 1.78 2.63 0.7 0.62 1.71 0.004

rotatingDiamonds3 181 380.9 380.9 0.65 0.190 2.37 2.39 6.4 0.99 3.63 0.023

rotatingDiamonds4 321 770.7 770.7 0.54 0.383 0.74 1.74 21.9 2.95 8.97 0.073

rotatingDiamonds5 681 1 510.8 1 510.8 0.31 1.022 2.24 3.71 151.4 2.13 11.19 0.265

bubbles1 37 349.1 349.1 0.70 0.033 7.48 7.48 0.6 0.26 0.69 0.002

bubbles2 77 428.3 428.3 0.24 1.010 6.73 6.75 1.1 0.18 0.69 0.005

bubbles3 127 530.7 530.7 12.21 0.407 5.08 5.08 2.6 0.17 0.38 0.010

bubbles4 185 812.1 829.9 4.05 0.294 12.41 14.23 7.1 0.00 0.62 0.022

bubbles5 251 1 062.3 1 062.3 7.49 1.568 1.34 1.37 17.4 2.07 2.84 0.040

bubbles6 325 1 264.9 1 383.1 5.87 0.517 0.00 0.06 36.6 6.81 8.11 0.069

bubbles7 407 1 545.3 1 720.2 6.96 0.850 0.00 1.87 49.4 1.19 2.69 0.108

bubbles8 497 1 670.9 2 101.4 7.10 1.117 0.00 1.64 85.0 3.95 5.08 0.153

bubbles9 595 1 788.6 2 426.3 8.24 2.178 0.00 2.27 158.0 5.33 7.60 0.215

concentricCircles1 17 53.2 53.2 3.30 0.021 4.00 4.00 0.5 1.68 2.54 0.001

concentricCircles2 37 153.1 153.1 5.73 0.044 0.02 0.05 0.6 2.37 4.04 0.002

concentricCircles3 61 268.5 271.1 1.40 0.048 0.00 0.27 0.8 2.82 3.63 0.005

concentricCircles4 105 449.1 454.5 5.61 0.104 0.00 0.05 2.0 2.77 3.40 0.012

concentricCircles5 149 631.3 645.4 3.31 0.273 0.00 0.67 4.2 5.46 6.41 0.022

chaoSingleDep 201 1 022.9 1 022.9 0.01 0.158 4.79 4.97 9.5 3.80 7.61 0.028

All the required computational times TCPU are in seconds.

GLNS heuristic provides worse results in these problems,
which is caused by the poor explicit sampling of the neigh-
borhood into 24 possible waypoints. Moreover, the solu-
tion of the related GTSP instances is demanding, and the
GLNS heuristic does not provide solution of suficient qual-
ity in the fast mode as the computational limit is reached
in few cases. The author of [21] reported that the best so-
lution can be found by the GTSP-based approach, which
is mostly the approach by which reference solutions with
L′ref are found, at the cost of very high computational
times.

Selected best solutions found by the proposed GSOA
are visualized in Fig. 9 and in Fig. 10.

5.3. Discussion

It is known that SOM-based approaches usually do
not compete well with the best performing combinatorial
heuristics for the TSP, which is reported here in Table 1
for the results of the LKH [2]. On the other hand, the
main benefit of the GSOA in CETSP instances is in the
online-sampling of the neighborhood during the unsuper-
vised learning. The GSOA seems to be a suitable solver
for the CETSP in cases where the computational time is
limited; however, the solution can be probably improved
by a combination with memetic techniques as in [15], at
the cost of the increased computational burden.

Since the computational requirements of the GSOA are
very low, it can be employed as a construction heuristic
providing an initial solution that can be further improved

15

(a) team3 300, L=491.5 (b) team4 400, L=678.7 (c) team5 499, L=721.3 (d) bonus1000, L=400.9

(e) rotatingDiamonds2, L=141.4 (f) rotatingDiamonds3, L=384.7 (g) rotatingDiamonds5, L=1542.9 (h) chaoSingleDep, L=1061.8

(i) bubbles1, L=350.0 (j) bubbles9, L=1883.8 (k) concentricCircles3, L=276.1 (l) concentricCircles5, L=665.7

Figure 10: Selected best solutions of the CETSP instances with constant radius [21] found by the proposed GSOA.

16

Table 4: Results of the CETSP solvers in intances with arbitrary δ radii

Set
of

Lref
L′ref GTSP-GLNS [24] GSOA

nodes [21] %PDB %PDM TCPU %PDB %PDM TCPU

team1 100rdmRad 101 388.54 388.54 6.25 6.25 2.3 3.29 3.52 0.009

team2 200rdmRad 201 622.11 622.74 7.13 7.49 10.1 0.00 1.98 0.030

team3 300rdmRad 301 381.83 381.83 39.31 40.88 28.9 1.16 6.84 0.048

team4 400rdmRad 401 1 011.77 1 011.77 1.10 2.81 56.3 1.33 3.24 0.165

team5 499rdmRad 500 454.33 454.33 38.63 40.79 99.8 0.75 4.87 0.127

team6 500rdmRad 501 640.09 666.15 14.84 16.04 99.0 0.00 2.49 0.147

bonus1000rdmRad 1 001 965.38 987.11 11.97 13.27 300.0 0.00 2.04 0.610

kroD100rdmRad 100 141.83 141.83 5.94 6.09 2.1 3.37 4.12 0.009

rat195rdmRad 195 68.22 68.22 85.97 88.87 11.5 0.50 2.24 0.013

lin318rdmRad 318 2 080.57 2 080.57 16.75 19.37 33.3 0.01 4.09 0.062

rd400rdmRad 400 1 252.38 1 252.38 1.76 2.66 52.2 3.33 4.80 0.195

pcb442rdmRad 442 224.36 235.19 14.15 14.99 69.1 0.00 3.17 0.120

d493rdmRad 493 138.97 140.12 33.69 34.65 92.6 0.00 1.78 0.129

dsj1000rdmRad 1 000 627.80 653.13 43.83 45.95 300.0 0.00 3.75 0.569

All the required computational times TCPU are in seconds.

by another optimization metaheuristics such as the Vari-
able Neighborhood Search (VNS) [66], which is one of the
subjects for future work. Besides, the great flexibility of
the GSOA arising from its simplicity allows to employ it
in another routing problems such as the orienteering prob-
lems or even problems where the length of the arc con-
necting two waypoints is not the Euclidean distance [36].

6. Conclusion

In this paper, a new unsupervised learning based ap-
proach called the Growing Self-Organizing Array (GSOA)
is proposed to solve routing problems with underlying TSP-
like solution. The main ideas of the unsupervised learn-
ing employed in the GSOA originate from several success-
ful deployments of unsupervised learning based solvers in
various routing problems. The ideas are consolidated in a
relatively simple to implement unsupervised learning pro-
cedure of the GSAO. Although SOM-based approaches for
the TSP have been studied for almost more than three
decades, the application of unsupervised learning in a so-
lution of the TSPN and more specifically in its herein ad-
dressed variant CETSP is mostly unattended. The unsu-
pervised learning based solvers are usually not very com-
petitive with the most powerful combinatorial heuristics
for routing problems. However, the presented results show
that by conceptually simple determination of the way-
points during the learning, the proposed GSOA can pro-
vide competitive solutions in the CETSP. Moreover, the
computational requirements are significantly lower than
the approach based on the computationally demanding so-
lution of the purely combinatorial GTSP.

The proposed GSOA exploits the benefit of the unsu-
pervised learning in the way that the suitable waypoints
are sampled during the solution of the sequencing part
of the CETSP, and thus probably a poor performance of
the unsupervised learning based solution of the combina-
torial optimization part of the underlying TSP is overcome
by the selection of suitable waypoints. This is the main
advantage of the proposed GSOA over the purely combi-
natorial solution based on the GTSP. Together with the
low computational requirements, the presented results mo-
tivate to further study a combination of the GSOA with
other metaheuristics such as Memetic SOM or VNS. Be-
sides, it also motivates to investigate properties of the
GSOA in additional challenging routing problems in 3D
space or with a selection of the sensor locations to be vis-
ited in orienteering problems.

Acknowledgement

The presented work has been supported by the Czech
Science Foundation (GAČR) under research project 15-
09600Y.

7. References

[1] D. Applegate, R. Bixby, V. Chvátal, W. Cook, The Traveling
Salesman Problem: A Computational Study, Princeton Univer-
sity Press, Princeton, NJ, USA, 2007.

[2] K. Helsgaun, An Effective Implementation of the Lin-Kernighan
Traveling Salesman Heuristic, European Journal of Operational
Research 126 (1) (2000) 106–130.

[3] J.-Y. Potvin, Genetic algorithms for the traveling salesman
problem, Annals of Operations Research 63 (3) (1996) 337–370.

17

[4] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization
by a colony of cooperating agents, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics) 26 (1) (1996)
29–41.

[5] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization
by simulated annealing, Science 220 (4598) (1983) 671–680.
doi:10.1126/science.220.4598.671.

[6] J. J. Hopfield, D. W. Tank, ”Neural” computation of decisions
in optimization problems, Biological Cybernetics 52 (3) (1985)
141–152.

[7] Q. Wang, X. Sun, B. L. Golden, J. Jia, Using artificial neural
networks to solve the orienteering problem, Annals of Opera-
tions Research 61 (1) (1995) 111–120.

[8] R. Durbin, D. Willshaw, An analogue approach to the travelling
salesman problem using an elastic net method, Nature 326 (16)
(1987) 689–691.

[9] B. Angéniol, G. de la C. Vaubois, J.-Y. L. Texier., Self-
organizing feature maps and the travelling salesman problem,
Neural Networks 1 (1988) 289–293.

[10] J. C. Fort, Solving a combinatorial problem via self-organizing
process: An application of the Kohonen algorithm to the trav-
eling salesman problem, Biological Cybernetics 59 (1) (1988)
33–40.

[11] K. Smith, An argument for abandoning the travelling salesman
problem as a neural-network benchmark, IEEE Transactions on
Neural Networks 7 (6) (1996) 1542–1544.

[12] T. Kohonen, M. R. Schroeder, T. S. Huang (Eds.), Self-
Organizing Maps, 3rd Edition, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2001.

[13] K. Smith, M. Palaniswami, M. Krishnamoorthy, Neural tech-
niques for combinatorial optimization with applications, IEEE
Transactions on Neural Networks 9 (6) (1998) 1301–1318.

[14] E. M. Cochrane, J. E. Beasley, The co-adaptive neural network
approach to the Euclidean travelling salesman problem, Neural
Networks 16 (10) (2003) 1499–1525.

[15] J. Créput, A. Koukam, A memetic neural network for the eu-
clidean traveling salesman problem, Neurocomputing 72 (4-6)
(2009) 1250–1264.

[16] J. Zhang, X. Feng, B. Zhou, D. Ren, An overall-regional com-
petitive self-organizing map neural network for the euclidean
traveling salesman problem, Neurocomputing 89 (0) (2012) 1–
11.

[17] H. Wang, N. Zhang, J.-C. Crput, A massively parallel neural
network approach to large-scale euclidean traveling salesman
problems, Neurocomputing 240 (Supplement C) (2017) 137 –
151.

[18] M. Dunbabin, L. Marques, Robots for Environmental Mon-
itoring: Significant Advancements and Applications, IEEE
Robotics & Automation Magazine 19 (1) (2012) 24–39.

[19] K. Vicencio, B. Davis, I. Gentilini, Multi-goal path planning
based on the generalized traveling salesman problem with neigh-
borhoods, in: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2014, pp. 2985–2990.

[20] D. J. Gulczynski, J. W. Heath, C. C. Price, The Close Enough
Traveling Salesman Problem: A Discussion of Several Heuris-
tics, Springer US, Boston, MA, 2006, pp. 271–283.

[21] W. K. Mennell, Heuristics for solving three routing problems:
Close-enough traveling salesman problem, close-enough vehicle
routing problem, sequence-dependent team orienteering prob-
lem, Ph.D. thesis, University of Maryland (2009).

[22] G. Laporte, A. Asef-Vaziri, C. Sriskandarajah, Some applica-
tions of the generalized travelling salesman problem, The Jour-
nal of the Operational Research Society 47 (12) (1996) 1461–
1467.

[23] K. Helsgaun, Solving the equality generalized traveling salesman
problem using the lin–kernighan–helsgaun algorithm, Mathe-
matical Programming Computation 7 (3) (2015) 269–287.

[24] S. L. Smith, F. Imeson, GLNS: An effective large neighborhood
search heuristic for the generalized traveling salesman problem,
Comput. Oper. Res. 87 (C) (2017) 1–19.

[25] F. Carrabs, C. Cerrone, R. Cerulli, M. Gaudioso, A novel dis-

cretization scheme for the close enough traveling salesman prob-
lem, Computers & Operations Research 78 (2017) 163–171.

[26] J. Faigl, L. Přeučil, Self-Organizing Map for the Multi-Goal
Path Planning with Polygonal Goals, in: International Confer-
ence on Artificial Neural Networks (ICANN), Springer, Heidel-
berg, 2011, pp. 85–92.

[27] J. Faigl, V. Vonásek, L. Přeučil, Visiting Convex Regions in
a Polygonal Map, Robotics and Autonomous Systems 61 (10)
(2013) 1070–1083. doi:10.1016/j.robot.2012.08.013.

[28] E. Balas, The prize collecting traveling salesman problems, Net-
works 19 (1989) 621–636.

[29] J. Faigl, G. A. Hollinger, Autonomous data collection us-
ing a self-organizing map, IEEE Transactions on Neural
Networks and Learning Systems 29 (5) (2018) 1703–1715.
doi:10.1109/TNNLS.2017.2678482.

[30] B. L. Golden, L. Levy, R. Vohra, The orienteering problem,
Naval Research Logistics (NRL) 34 (3) (1987) 307–318.

[31] A. Gunawan, H. C. Lau, P. Vansteenwegen, Orienteering Prob-
lem: A survey of recent variants, solution approaches and ap-
plications, European Journal of Operational Research 255 (2)
(2016) 315–332.

[32] J. Faigl, R. Pěnička, G. Best, Self-organizing map-based solu-
tion for the orienteering problem with neighborhoods, in: IEEE
International Conference on Systems, Man, and Cybernetics
(SMC), 2016, pp. 1315–1321.

[33] J. Faigl, On self-organizing maps for orienteering problems, in:
International Joint Conference on Neural Networks (IJCNN),
2017, pp. 2611–2620.

[34] B. Fritzke, P. Wilke, FLEXMAP - A Neural Network For The
Traveling Salesman Problem With Linear Time And Space
Complexity, in: International Joint Conference on Neural Net-
works (IJCNN), 1991, pp. 929–934.

[35] J. Faigl, P. Váňa, Unsupervised learning for surveillance plan-
ning with team of aerial vehicles, in: International Joint Con-
ference on Neural Networks (IJCNN), 2017, pp. 4340–4347.

[36] J. Faigl, P. Váňa, Surveillance planning with Bézier curves,
IEEE Robotics and Automation Letters 3 (2) (2018) 750–757.

[37] G. Reinelt, TSPLIB - A Traveling Salesman Problem Library,
Journal on Computing 3 (4) (1991) 376–384.

[38] Bo Yuan, M. Orlowska, S. Sadiq, On the Optimal Robot Rout-
ing Problem in Wireless Sensor Networks, IEEE Transactions
on Knowledge and Data Engineering 19 (9) (2007) 1252–1261.

[39] A. Dumitrescu, J. Mitchell, Approximation algorithms for TSP
with neighborhoods in the plane, J. Algorithms 48 (1) (2003)
135–159.

[40] M. de Berga, J. Gudmundssonb, M. J. Katzc, C. Levcopoulosd,
M. H. Overmarse, A. F. van der Stappen, TSP with neighbor-
hoods of varying size, J. Algorithms 57 (1) (2005) 22–36.

[41] S. Safra, O. Schwartz, On the complexity of approximating tsp
with neighborhoods and related problems, Computational Com-
plexity 14 (4) (2006) 281–307.

[42] I. Gentilini, F. Margot, K. Shimada, The travelling salesman
problem with neighbourhoods: MINLP solution, Optimization
Methods and Software 28 (2) (2013) 364–378.

[43] J. Dong, N. Yang, M. Chen, Heuristic Approaches for a TSP
Variant: The Automatic Meter Reading Shortest Tour Problem,
Springer US, Boston, MA, 2007, pp. 145–163.

[44] J.-C. Créput, A. Koukam, A memetic neural network for the
Euclidean traveling salesman problem, Neurocomputing 72 (4-
6) (2009) 1250–1264.

[45] K. A. Smith, Neural networks for combinatorial optimization:
A review of more than a decade of research, INFORMS Journal
on Computing 11 (1) (1999) 15–34.

[46] S. Somhom, A. Modares, T. Enkawa, A self-organising model
for the travelling salesman problem, Journal of the Operational
Research Society 48 (9) (1997) 919–928.

[47] L. I. Burke, P. Damany, The guilty net for the traveling sales-
man problem, Computers and Operations Research 19 (3-4)
(1992) 255–265.

[48] Y. Liu, R. Bucknall, Efficient multi-task allocation and path
planning for unmanned surface vehicle in support of ocean op-

18

erations, Neurocomputing 275 (2018) 1550–1566.
[49] B. Avar, D. E. Aliabadi, Parallelized neural network system

for solving Euclidean traveling salesman problem, Applied Soft
Computing 34 (2015) 862–873.

[50] R. Ahmad, D. Kim, An Extended Self-Organizing Map based
on 2-opt algorithm for solving symmetrical Traveling Salesper-
son Problem, Neural Computing and Applications 26 (4) (2015)
987–994.

[51] S. Lin, B. W. Kernighan, An Effective Heuristic Algorithm for
the Traveling-Salesman Problem, Operations Research 21 (2)
(1973) 498–516.

[52] J. Faigl, M. Kulich, V. Vonásek, L. Přeučil, An application
of self-organizing map in the non-euclidean traveling salesman
problem, Neurocomputing 74 (5) (2011) 671–679.

[53] J. Faigl, Approximate Solution of the Multiple Watchman
Routes Problem with Restricted Visibility Range, IEEE Trans-
actions on Neural Networks 21 (10) (2010) 1668–1679.

[54] J. Faigl, On the performance of self-organizing maps for the non-
euclidean traveling salesman problem in the polygonal domain,
Information Sciences 181 (2011) 4214–4229.

[55] J. Faigl, P. Va, Self-organizing map for data collection plan-
ning in persistent monitoring with spatial correlations, in: IEEE
International Conference on Systems, Man, and Cybernetics
(SMC), 2016, pp. 3264–3269.

[56] J. Faigl, P. Váňa, Self-organizing map for the curvature-
constrained traveling salesman problem, in: International Con-
ference on Artificial Neural Networks (ICANN), Springer Inter-
national Publishing, 2016, pp. 497–505.

[57] G. Best, J. Faigl, R. Fitch, Multi-robot path planning for
budgeted active perception with self-organising maps, in:
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 3164–3171.

[58] J. Faigl, Self-organizing map for orienteering problem with
dubins vehicle, in: 12th International Workshop on Self-
Organizing Maps and Learning Vector Quantization, Clustering
and Data Visualization (WSOM+), 2017, pp. 125–132.

[59] J. Faigl, R. Pěnička, On close enough orienteering problem with
dubins vehicle, in: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2017, pp. 5646–5652.

[60] G. Best, J. Faigl, R. Fitch, Online planning for multi-robot ac-
tive perception with self-organising maps, Autonomous Robots
42 (4) (2018) 715–736.

[61] G. A. Croes, A method for solving traveling-salesman problems,
Operations Research 6 (6) (1958) 791–812.

[62] M. Tucci, M. Raugi, Stability analysis of self-organizing maps
and vector quantization algorithms, in: International Joint Con-
ference on Neural Networks (IJCNN), 2010, pp. 1–5.

[63] D. Applegate, R. Bixby, V. Chvátal, W. Cook, CONCORDE
TSP Solver, [cited 12 Dec 2017] (2003).
URL http://www.tsp.gatech.edu/concorde.html

[64] K. Helsgaun, LKH, version 2.0.7, [cited 14 Apr 2018] (2012).
URL http://www.akira.ruc.dk/~keld/research/LKH/LKH-2.

0.7.tgz

[65] PassMark Software Pty Ltd, Cpu performance comparison,
[cited 12 Dec 2017] (2017).
URL \url{https://www.cpubenchmark.net/compare.php?

cmp[]=1137\&cmp[]=2565}

[66] P. Hansen, N. Mladenović, Variable neighborhood search: Prin-
ciples and applications, European Journal of Operational Re-
search 130 (3) (2001) 449–467.

19

