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Dubins Orienteering Problem
Robert Pěnička, Jan Faigl, Petr Váňa, and Martin Saska

Abstract—In this paper, we address the Orienteering Problem
(OP) for curvature constrained vehicle. For a given set of target
locations, each with associated reward, the OP stands to find
a tour from a prescribed starting location to a given ending
location such that it maximizes collected rewards while the
tour length is within a given travel budget constraint. The
addressed generalization of the Euclidean OP is called the Dubins
Orienteering Problem (DOP) in which the reward collecting tour
has to satisfy the limited turning radius of the Dubins vehicle. The
DOP consists not only of selecting the most valuable targets and
determination of the optimal sequence to visit them, but it also
involves the determination of the vehicle’s heading angle at each
target location. The proposed solution is based on the Variable
neighborhood search technique, and its feasibility is supported
by an empirical evaluation in existing OP benchmarks. Moreover,
an experimental verification in a real practical scenario further
demonstrates the necessity of the proposed direct solution of the
Dubins Orienteering Problem.

Index Terms—Motion and Path Planning, Nonholonomic Mo-
tion Planning, Aerial Systems: Applications

I. INTRODUCTION

IN this paper, we study a generalization of the Orienteering
Problem (OP) [1] for curvature-constrained vehicles. The

problem is called the Dubins Orienteering Problem (DOP),
and its objective is to maximize the total collected rewards
by visiting a subset of the given target locations by Dubins
vehicle [2] while the length of the collecting tour does not
exceed a given travel budget. The proposed generalization of
the existing OP with Euclidean distance [3], further denoted
as the Euclidean OP (EOP), is motivated by data collection
scenarios with Unmanned Aerial Vehicles (UAVs) that can be
modeled as the non-holonomic Dubins vehicle [4].

The Orienteering Problem can be considered as a variant
of the Traveling Salesman Problem (TSP). In contrast to the
TSP, in which the goal is to minimize the tour length to visit
all the targets, the OP objective is to maximize the total sum
of the collected rewards while the reward collecting tour does
not exceed the specified travel budget. Thus, the OP is more
suitable formulation for cases where visiting all the targets is
unfeasible with the given travel budget.

In the EOP, the distance between the target locations cor-
responds to the length of the straight line segment connecting
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Fig. 1. Solutions of the Dubins Orienteering Problem on Set 64 for the
budget Tmax = 50 and different turning radii ρ. For ρ = 0, the problem
becomes the ordinary EOP with the sum of the collected rewards R = 900
(on left), while for ρ = 1.3 the problem has to be directly solved as the DOP
to satisfy Tmax and the collected reward is R = 714 (on right). In both cases,
the constructed path lengths are maximally 0.2 bellow the allowed Tmax.

them and the objective is to select a maximal reward subset
of target locations for which the length of the path visiting
them is shorter or equal to the predefined maximal total path
length.

Although the objective in the DOP is similar to the EOP,
i.e., to maximize the collected reward within the given travel
budget, the final reward collecting path has to satisfy the lim-
ited curvature constraint, as shown in Fig. 1, and thus the final
path consists of a sequence of optimal Dubins maneuvers [2]
connecting the selected target locations. Therefore, a solution
of the DOP requires determining particular heading angles at
the target locations to minimize the length of Dubins maneu-
vers between the targets. Regarding computational complexity,
the DOP can be considered as more challenging than the
EOP as changing only one heading angle or target location
in the reward collecting path usually enforces the change of
all heading angles of nearby connected target locations.

A variant of the TSP with Dubins maneuvers [5] is known as
the Dubins Traveling Salesman Problem (DTSP) [6]. Contrary
to the DTSP which aims to minimize the total travel cost,
the DOP allows to address the limited travel budget, and
thus respects a practical deployment of UAVs with limited
operational time. Therefore, we propose to directly solve the
DOP, and our proposed solution is based on the Variable
Neighborhood Search (VNS) metaheuristic for combinatorial
optimization [7], which has been deployed to the OP in [8].

The paper is organized as follows. An overview of related
work on the EOP and DTSP is presented in the next section.
In Section III, the proposed DOP is formally introduced.
Section IV presents the proposed direct solution of the DOP.
Evaluation results together with the report on the method
experimental deployment in a real-scale outdoor scenario are
presented in Section V. Section VI concludes the paper.
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II. RELATED WORK

The introduced Dubins Orienteering Problem (DOP) builds
on the existing approaches for the Euclidean Orienteering
Problem (EOP) [3] and Dubins Traveling Salesman Prob-
lem (DTSP) [9]. Therefore an overview of the existing ap-
proaches is presented in this section. Both the EOP [10] and
DTSP [6] can be used for planning UAV missions; however,
the EOP produces unfeasible paths for the Dubins vehicle, and
the DTSP does not respect the travel budget.

The Euclidean OP has been studied since 1984 when Tsili-
girides proposed two heuristics [11]. The first S-algorithm uses
Monte Carlo method for picking the best solution from a large
number of randomly generated paths with probabilities based
on the reward per additional distance to the target location.
The second D-algorithm uses a method for vehicle-scheduling
with one depot by Wren and Holiday [12]. Tsiligirides further
proposed a route-improvement algorithm that improves an
initial route by using target insertion, target exchange, and
2-Opt operations [11].

A Four-Phase heuristic for the OP [1] uses insertion, im-
provement, and deletion phases to iteratively improve the path.
In the insertion phase, new target locations are introduced
to the path while using additional reward per distance and
relaxed budget constraint. The second phase is based on 2-
Opt and 3-Opt improvement operations. The deletion phase
removes a target location with the minimal reward per distance
and continues to the first phase with decreased relaxation of
the travel budget. The fourth phase is the maximal insertion,
and it follows after the iteration of previous three phases is
terminated.

Chao et al. (1996) proposed a fast and effective heuristic for
the OP in [13]. The heuristic considers only the target locations
inside an ellipse with the foci in origin and ending locations
with the major axis length equal to the travel budget. Using the
most distant target locations from foci, a number of paths are
generated during initialization with a greedy algorithm. The
highest reward path pathop is then improved by the Two-point
exchange, i.e., by one-point move and 2-Opt operations, that
systematically exchanges the target locations between pathop
and set of alternative paths pathnop formed from unused target
locations.

The Variable Neighborhood Search (VNS) metaheuristic [7]
has been used to solve OP by Sevkli et al. (2006) [8]. This
VNS-based method utilizes a predefined neighborhood struc-
ture, namely target insert/exchange and path insert/exchange
operations. Using these four structures, the VNS algorithm
iteratively performs shake and local search procedures. During
the shake procedure, the currently best achieved solution is
randomly changed to escape from a local minimum. In the
local search procedure, the changed solution is searched within
a smaller neighborhood structure to obtain a possibly better
solution than the current best one.

Regarding the DTSP, the most relevant methods are the
sampling based approaches [9], [14], [15] that allow a com-
binatorial optimization by using a discrete set of possible
headings at the target locations. The DTSP stands to determine
the minimum length path to visit all the target locations

and satisfies the minimum curvature constraint of Dubins
vehicle. The sampling based methods use a uniform sampling
of the vehicle heading angle at each target location. The
problem is then considered as the Generalized Asymmetric
TSP that is further transformed and solved as the Asymmetric
TSP (ATSP) [16], e.g., using Lin-Kernighan algorithm [17].

The closest existing problem formulation to the proposed
DOP is the OP for kinodynamic vehicles outlined in [18].
Their solution of the Stochastic TSP and OP for kinodynamic
vehicle is based on dividing the configuration space into cells
with an equal volume, and merging the cells with no or
few target locations into larger ones. In the TSP, the vehicle
traverses each cell and collects the target locations inside by
making small deviations from a fixed path that goes through all
cells. For the OP, the vehicle selects a TSP sub-path with the
highest reward. Even though the algorithm provides a possible
approach to the DOP, it is useful mainly for the stochastic ver-
sion of the OP where the target locations are randomly placed.
In such a case, the algorithm provides an approximation of
the optimal trajectory with a high probability. Moreover, the
algorithm does not directly maximize the collected reward as
the herein proposed method; it rather selects a part of the TSP
path with the maximal reward and length below or equal to
the budget.

The proposed solution of the introduced Dubins Orienteer-
ing Problem (DOP) is based on the VNS technique already
deployed for the Euclidean OP in [8], which is actually one
of the best performing methods for the EOP. The developed
algorithm for the DOP is therefore compared with existing
approaches for the EOP proposed by Chao et al. [13], Four-
phase heuristic [1], and the original VNS-based method [8].
This comparison is done for the existing datasets by Tsili-
girides [11] and two problem instances by Chao et al. [13].
Further experimental evaluation is performed for a practical
scenario with a real UAV, see Section V.

III. PROBLEM STATEMENT

The motivation for the proposed Dubins Orienteering Prob-
lem (DOP) is in data collection scenarios for multirotor
Unmanned Aerial Vehicles (UAVs) with limited operational
time, where each of the target location requested to be visited
has assigned a particular reward value, and the vehicle needs
to follow a curvature-constrained path. The proposed solution
can be however applied to any Dubins vehicle such as the fixed
wings UAVs [19] or even the Ackermann vehicles. Hence, the
objective is to find a data collection path for the Dubins vehicle
that maximizes the sum of the collected rewards R such
that the path length does not exceed the specified maximal
travel budget Tmax. The existing Euclidean OP [3] cannot
be directly used in such scenarios as it produces unfeasible
paths for the considered Dubins vehicle model and thus, it may
lead to miss some of the target locations or violation of the
budget constraint. The proposed DOP is a generalization of the
Euclidean OP, and therefore, the EOP is formally introduced in
the next section followed by its generalization for the Dubins
vehicle in Section III-B.



PĚNIČKA et al.: DUBINS ORIENTEERING PROBLEM 3

A. Euclidean Orienteering Problem (EOP)

Having a set of target locations S = {s1, . . . , sn}, the
Orienteering Problem seeks to find a maximal reward subset
Sk ⊆ S and a path visiting Sk such that its length is limited
by the given Tmax. The origin and ending locations are given
and denoted as s1 and sn. The subset selection in the problem,
which determines the collected reward, is similar to the NP-
hard Knapsack problem. The problem is also related to the NP-
hard Traveling Salesman Problem (TSP) in finding a minimal-
length path on Sk.

Each considered target location si is defined by its position
denoted as si ∈ R2 (for simplicity and better readability) and
its reward ri. We assume that the reward of the origin and
ending locations are zero r1 = rn = 0 and strictly positive
for all other locations, i.e., ri > 0 for 1 < i < n. The EOP
includes determination of k target locations defining the subset
Sk and a sequence to their visits that can be described as a
permutation Σ = (σ1, . . . , σk), where 1 ≤ σi ≤ n, σi 6= σj
for i 6= j and σ1 = 1, σk = n. For the Euclidean distance
Le(sσi , sσj ) between two locations sσi and sσj , the EOP can
be formulated as the optimization problem:

maximize
k,Sk,Σ

R =

k∑
i=1

rσi

subject to
k∑
i=2

Le(sσi−1 , sσi) ≤ Tmax

σ1 = 1, σk = n .

(1)

B. Dubins Orienteering Problem (DOP)

The Dubins Orienteering Problem (DOP) is a generalization
of the OP for the Dubins vehicle model to determine a feasible
path over selected target locations Sk. The state of the Dubins
vehicle q = (x, y, θ) consists of its position in plane (x, y) ∈
R2 and its heading θ ∈ S1, i.e., q ∈ SE(2). One of the
specifics of this non-holonomic vehicle model is the minimal
turning radius ρ that influences the length of the shortest path
between two states. The kinematic model of Dubins vehicle
with a constant forward velocity v and a control input u can
be described as:

q̇ =

 ẋ
ẏ

θ̇

 = v

 cos θ
sin θ
u
ρ

 , u ∈ [−1, 1] . (2)

In [2], Dubins proved that for the model (2) the short-
est path between two states consists only of straight line
arc (S-segment) and arcs with the curvature ρ (turning
left denoted as L-segment or right as the R-segment)
and the optimal path is one of six possible maneuvers
{LSL,LSR,RSL,RSR,LRL,RLR} that are further de-
noted as Dubins maneuvers. For any two states qi and qj
the Dubins maneuver together with its length Ld(qi, qj) can
be determined analytically [2]; however, regarding the studied
DOP, we need to determine the particular headings θi and θj of
the vehicle at corresponding locations si and sj , respectively.

Hence, each target location si is considered as the state
qi = (si, θi) in the DOP and in addition to the determination

of the subset Sk of the k locations and the permutation
Σ = (σ1, . . . , σk), the DOP intends to find the corresponding
heading angles Θ = (θσ1 , . . . , θσk

). The Dubins Orienteering
Problem for the model (2) can be then formulated as the
optimization problem:

maximize
k,Sk,Σ,Θ

R =

k∑
i=1

rσi

subject to
k∑
i=2

Ld(qσi−1 , qσi) ≤ Tmax

σ1 = 1, σk = n .

(3)

In contrast to the Euclidean OP, the introduced DOP consid-
ers the Dubins vehicle model, and the path is constructed using
the Dubins maneuvers between the adjacent target locations
(states). Notice that the optimization problem (3) is not only
over all possible subsets and respective permutations of the
target locations (k, Sk,Σ), but also over all possible heading
angles Θ at the target locations. This makes the problem
computationally challenging as the already NP-hard EOP is
extended to optimize over heading angles.

IV. PROPOSED APPROACH FOR THE DOP

The proposed algorithm to solve the introduced Dubins Ori-
enteering Problem (DOP) is based on the Variable Neighbor-
hood Search (VNS) [7], which has been already deployed to
the EOP in [8]. In contrast to the EOP, the DOP has to consider
the heading angle at the target locations, which requires a
new formulation of the solution search method. Therefore a
brief overview of the VNS and the used approach for dealing
with heading angles is provided prior detail description of the
proposed VNS-based solution for the DOP.

The VNS is a metaheuristic proposed by Hansen and
Mladenovic [7] for combinatorial optimization. The method
operates on an initially defined Neighborhood structures
N(l1, . . . , lmax), where l denotes the maximal distance be-
tween two solutions in the neighborhood. In the OP, the
distance l is the number of different target locations inside
the solution vector (qσ1

, . . . , qσn
). A set Nl(x) contains all

solutions in l distant neighborhood of the solution x. Particular
Neighborhood structure is then expressed by an operation that
changes the given solution within the desired distance.

Two main procedures are used in the VNS to search the
solution space starting from an initial solution. In the shaking
procedure, the incumbent solution x is randomly moved to
different solution x′ within the neighborhood. This is used
to get farther from the current best solution which may be
only a local minimum. Afterward, the local search procedure
systematically searches for the best solution in the neighbor-
hood of the solution x′. The solution from the local search
becomes a new incumbent solution if it improves the current
best solution. The procedures continue until stopping criterion
is met, which is either a number of iterations, CPU time or
maximal time between improvements.

For solving the DOP, we used the Randomized Variable
Neighborhood Search (RVNS) variant of the VNS [7]. The
RVNS algorithm uses a randomized local search procedure
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instead of the systematic approach used in the regular VNS.
The randomized variant of the local search tries, during
a predefined number of iterations, to randomly change the
solution x′ inside the Neighborhood structure to improve the
solution by collecting more rewards. As it is shown for the
EOP with the VNS [8], the RVNS is faster than the regular
VNS and generates solutions that achieve the same rewards.

In the VNS, the Dubins Orienteering Problem is represented
by a solution vector (qσ1

, . . . , qσk
, qσk+1

, . . . , qσn
), where the

first k target locations (qσ1 , . . . , qσk
) are within the budget

constraint limit
∑k
i=2 Ld(qσi−1

, qσi
) ≤ Tmax, σ1 = 1 and

σk = n. The remaining vector (qσk+1
, . . . , qσn

) consists of all
other target locations that are above the budget.

qσ1
qσn

θ1 θ1 θ1 θ1

θm θm θm θm

θ2 θ2θ2θ2

qσ3
qσ2

θ2

θ1

θm

qσn-1

Fig. 2. Search graph of the DOP with m uniformly sampled heading angles
at each target location qσi , 0 ≤ i ≤ n. For a particular selected sequence of
the target locations (qσ1 , . . . , qσn ) a graph search over all heading values is
performed to obtain headings providing the minimal path length.

Each state qσi consists of the location sσi and particular
heading θσi that is selected from uniformly sampled angles
from the interval θ ∈ 〈0, 2π) into m samples (θ1, . . . , θm).

The main difference of the proposed VNS-based DOP
algorithm, compared to the existing variant for the EOP [8],
is the determination of particular heading θσi

at each target
location. For a given number of samples m and a sequence
of targets, the algorithm finds the shortest path by trying
all possible combinations of sampled headings. The utilized
search graph of the VNS DOP for a sequence of target
locations (qσ1

, . . . , qσn
) is visualized in Fig. 2. A graph search

is used to determine particular sequence of heading samples
that produces path with the minimal length. A dynamic
programming technique is utilized to store distances from the
origin qσ1 and ending qσk

locations to simplify further target
location insertion/deletion.

In the proposed VNS method for the DOP, we utilize only
a subset of reachable locations Sr such that qi ∈ Sr ⇔
(Ld(q1, qi) + Ld(qi, qn)) ≤ Tmax for any combination of
sampled heading angles (θ1, θi, θn). This selects all target
locations that are reachable by the Dubins vehicle within the
travel budget.

The initial solution x required for the VNS technique is
generated using a greedy algorithm. For an initial zero reward
Dubins path from q1 to qn, we iteratively add a new target
location from Sr that minimizes additional distance per target
reward as long as the length of the whole path is below Tmax.

After an initial path P is found, the proposed VNS-based
algorithm uses the following neighborhood structures in shak-
ing and local search procedures to obtain solutions with higher
rewards. The randomized shaking uses the structures:

• Path Move uses a randomly selected path (qσi , . . . , qσj ),
where 1 < i < j < n, from the solution vector
(qσ1

, . . . , qσn
), and moves it to a randomly selected

position σo < i or σo > j. For the purpose of the VNS,
this operation represents neighborhood l = 1 despite the
fact that the number of different target locations is usually
larger than one.

• Path Exchange also uses a randomly selected path
(qσi

, . . . , qσj
) from the solution vector, but exchange

the path with a second random non-overlapping path
(qσo

, . . . , qσp
). The path exchange operation represents

the neighborhood l = 2.
The local search procedure employs different and much

closer neighborhoods. Unlike the shaking, the local search
procedure uses an iterative search in the particular neighbor-
hood such that it tries numerous operations on the same solu-
tion. For the RVNS, the local search tries random operations
for a number of times that is equal to the square of the number
of the target locations. This ensures that the neighborhood of
solution x′ from shaking is searched more deeply for local
optima than in the shaking procedure. The procedure uses the
following neighborhood structures.
• One Point Move corresponds to the l = 1 neighborhood

in which only one randomly selected target is moved to
a different position within the solution vector.

• One Point Exchange is a farther neighborhood l = 2
and it uses two randomly selected distinct targets from
the solution vector and exchanges their positions.

In all four presented neighborhood structures, the operations
also search through all sampled heading angles as described
above, to minimize the solution path length for a particular
sequence of the target locations.

The proposed VNS-based algorithm for the DOP is sum-
marized in Algorithm 1. For brevity, the rewards collected by
a path P = P (k, Sk,Σ,Θ) is R(P ) =

∑k
i=1 rσi

, σi ∈ Σ, and
the path length is Ld(P ) =

∑k
i=2 Ld(qσi−1

, qσi
).

Algorithm 1: Variable Neighborhood Search for the DOP
Input : S – set of target locations
Input : Tmax – maximal allowed budget
Input : m – number of heading values for each target
Output: P – found data collecting path

1 Sr ← getReachableLocations(S)
2 P ← createInitialPath(Sr ,Tmax) // greedy
3 while stopping condition is not met do
4 l← 1
5 while l ≤ lmax do
6 P ′ ← shake(P , l)
7 P ′′ ← localSearch(P ′, l)
8 if Ld(P ′′) ≤ Tmax and R(P ′′) > R(P ) then
9 P ← P ′′

10 l← 1
11 else
12 l← l + 1

The VNS-based DOP algorithm uses only two neighbor-
hood structures for both shaking and local search, which
means that the maximal neighborhood distance is lmax = 2.
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An extension of the neighborhood structures to lmax > 2
is possible by concurrently moving more than two target
locations in the local search.

Evaluation results of the proposed DOP method are pre-
sented in the next section together with the comparison to the
existing algorithms for the EOP. Besides, results from the real
practical experiments with UAV are presented as well.

V. RESULTS

The proposed method for the Dubins Orienteering Prob-
lem (DOP) has been evaluated on five existing datasets from
the literature [20] and also in real data collection scenario
with Unmanned Aerial Vehicle (UAV). Using the existing
datasets, the proposed VNS-based method is compared with
existing Euclidean Orienteering Problem (EOP) approaches as
to the best of our knowledge there is no existing solution
for the introduced DOP. The maximal achieved rewards for
particular non-zero turning radii are presented alongside to
show the influence of increasing turning radius on the collected
reward. Furthermore, the real experiment with hexarotor UAV
is presented. The results show practical applicability of the
introduced DOP and the proposed VNS-based method for
robotic data collection planning.

A. Results on datasets and existing EOP approaches

A comparison of the proposed DOP method with solu-
tions for the EOP, namely with the heuristic proposed by
Chao et al. [13], 4-phase heuristic by Ramesh et al. [1],
and VNS-based algorithm by Sevkli et al. [8] has been
performed. Abbreviation of the methods and used existing
benchmarks are in Table I. Results for the proposed method
are presented for multiple representative turning radii ρ ∈
{0, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3}, where ρ = 0 is a solution of
the EOP.

TABLE I
ABBREVIATION RELATED WITH THE RESULTS

Set 1, Set 2, Set 3 Test instances created by Tsiligirides [11].
Set 64, Set 66 Test instances proposed by Chao [13].
4Phase Four-Phase heuristic for EOP by Ramesh et al. [1].
Chao Fast and effective heuristic by Chao et al. [13].
VNS VNS-based algorithm by Sevkli et al. [8].
VNS DOP Proposed Dubins Orienteering VNS method.

The utilized VNS is a stochastic procedure, and therefore,
each scenario has been solved 10 times for each budget Tmax.
The results were computed using a single core of Intel i7
3.4GHz CPU. A single sample of the heading angle m = 1
has been used for the DOP problems with ρ = 0 as the
heading angle does not influence the distance between the
target locations. For ρ > 0, equidistant sampling of the
heading angle into m = 16 values has been utilized. The
stopping criterion is the maximal number of 10 000 iterations
with the maximal 3 000 iterations without improvement.

Results for Tsiligirides datasets Set 1, Set 2, Set 3 are
presented in Tables II, III and IV, respectively. Tables V and
VI show results for Chao datasets Set 64 and Set 66. The
presented results are the maximal achieved collected rewards

R from the all 10 runs for the particular problem and budget.

TABLE II
RESULTS COMPARISON FOR SET 1

Tmax Chao 4Phase
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
5 10 10 10 10 10 0 0 0 0

10 15 15 15 15 15 15 15 15 15
15 45 45 45 45 45 45 45 40 35
20 65 65 65 65 60 60 60 60 50
25 90 90 90 90 85 85 85 85 75
30 110 110 110 110 110 105 105 105 95
35 135 135 135 135 135 130 130 120 120
40 155 150 155 155 155 150 145 140 140
46 175 175 175 175 175 170 170 165 160
50 190 180 190 185 185 185 175 175 165
55 205 205 205 200 200 195 195 185 185
60 225 225 220 220 220 215 215 205 205
65 240 240 240 240 235 235 235 225 220
70 260 260 260 260 255 250 250 240 235
73 265 265 265 265 265 260 260 250 240
75 270 275 270 270 265 265 260 255 245
80 280 280 280 280 275 275 270 265 255
85 285 285 285 285 285 280 275 270 265

TABLE III
RESULTS COMPARISON FOR SET 2

Tmax Chao 4Phase
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
15 120 120 120 120 120 115 115 115 95
20 200 200 200 190 190 180 175 165 135
23 210 210 210 205 200 200 200 200 160
25 230 230 230 230 220 220 205 200 165
27 230 230 230 230 230 230 230 220 180
30 265 260 265 260 255 255 240 230 225
32 300 300 300 290 290 275 275 260 240
35 320 320 310 320 315 310 300 285 285
38 360 385 360 350 345 340 330 325 310
40 395 395 395 385 375 375 365 355 335
45 450 450 450 440 440 420 410 395 370

TABLE IV
RESULTS COMPARISON FOR SET 3

Tmax Chao 4Phase
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
15 170 170 170 170 160 160 160 150 140
20 200 200 200 190 190 180 180 180 180
25 260 260 260 260 260 260 250 250 230
30 320 320 320 320 320 320 320 310 300
35 390 390 390 380 380 360 380 380 360
40 430 430 430 430 420 420 420 420 400
45 470 470 470 470 460 450 450 450 440
50 520 520 520 520 510 510 470 500 490
55 550 550 550 550 540 540 530 530 520
60 580 580 580 580 570 560 560 560 550
65 610 610 610 610 600 590 590 590 580
70 640 640 640 640 630 610 610 600 610
75 670 670 670 670 650 650 640 630 630
80 710 710 700 700 690 680 680 670 670
85 740 740 740 730 730 700 700 710 710
90 770 770 770 760 760 740 750 710 730
95 790 790 790 790 780 780 770 760 750

100 800 800 800 800 790 790 790 780 770
105 800 800 800 800 800 800 800 800 790
110 800 800 800 800 800 800 800 800 800
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TABLE V
RESULTS COMPARISON FOR SET 64

Tmax Chao VNS
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
15 96 96 96 96 96 96 96 96 96
20 294 294 294 294 294 294 252 252 252
25 390 390 390 390 384 366 360 300 300
30 474 474 474 468 468 468 468 408 390
35 570 576 576 570 570 564 546 498 492
40 714 714 714 696 696 690 672 582 582
45 816 816 816 798 792 780 756 642 636
50 900 900 900 888 882 876 834 708 714
55 984 984 984 978 960 960 924 804 786
60 1044 1062 1062 1044 1026 1026 1008 834 834
65 1116 1116 1116 1098 1098 1098 1080 918 900
70 1176 1188 1188 1170 1170 1134 1134 990 960
75 1224 1236 1236 1230 1206 1194 1194 1038 1014
80 1272 1272 1272 1272 1260 1254 1224 1074 1080

TABLE VI
RESULTS COMPARISON FOR SET 66

Tmax Chao VNS
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
5 10 10 10 10 10 10 0 0 0

10 40 40 40 40 40 40 40 40 40
15 120 120 120 100 100 100 100 95 95
20 195 205 205 205 200 195 195 195 170
25 290 290 280 290 280 280 280 275 260
30 400 400 400 400 380 370 370 370 370
35 460 465 465 465 465 460 455 450 445
40 575 575 575 570 570 570 545 540 535
45 650 650 650 645 650 650 645 640 640
50 730 730 730 725 725 710 710 695 690
55 825 825 825 825 825 800 820 795 790
60 915 915 915 895 895 895 890 890 860
65 980 980 980 980 930 925 950 945 945
70 1070 1070 1070 1065 1030 1070 1070 1070 1035
75 1140 1140 1140 1140 1120 1110 1080 1085 1090
80 1215 1215 1215 1195 1190 1170 1175 1165 1155
85 1270 1270 1270 1270 1245 1260 1245 1235 1200
90 1340 1340 1340 1320 1320 1305 1295 1295 1295
95 1380 1395 1395 1395 1390 1370 1370 1360 1320

100 1435 1465 1465 1445 1445 1435 1420 1420 1390
105 1510 1520 1520 1495 1505 1495 1485 1470 1445
110 1550 1560 1550 1550 1550 1545 1545 1530 1505
115 1595 1595 1590 1580 1580 1580 1575 1555 1550
120 1635 1635 1625 1625 1625 1610 1600 1595 1575
125 1655 1670 1670 1655 1655 1645 1640 1640 1620
130 1680 1680 1680 1680 1675 1675 1670 1670 1655

Presented results show that the proposed VNS-based DOP
algorithm provides competitive results to the existing EOP
approaches for the turning radius ρ = 0. Nevertheless in
some test instances for ρ = 0 the DOP does not provide the
best known results due to the fact that the most rewarded
solutions are in terms of number of different nodes very far
from the previously found result with a slightly lower budget.
However, the proposed algorithm solves the DOP, which is not
possible by existing methods for the EOP. For increasing ρ, the
collected reward decreases for almost all problem instances.
This indicates that increasing turning radius results in longer
paths, and thus solutions provided by the EOP approaches
would violate the budget constraint for Dubins vehicle. The
computational time to find the maximal achieved rewards and
the number of iterations needed to obtain the solutions of EOP
and DOP using the proposed VNS-based algorithm are shown
in Fig. 3.
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Fig. 3. Computational time and number of iterations for the EOP (DOP with
ρ = 0), on the left, and the DOP with ρ = 0.7, on the right.
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Fig. 4. A comparison of the proposed DOP algorithm with the subset selection
by the EOP and finding the path as a solution of the DTSP. The same
parameters m = 16 and ρ = 1.3 are used in both cases. Two strategies are
considered for the EOP+DTSP approach. The results on the left are obtained
for an iterative decrease of the budget for the EOP such that the solution of
the DTSP meets the original travel budget. For the results on the right, the
length of the path obtained by the EOP+DTSP is considered as a new travel
budget in the proposed DOP algorithm.

A further comparison of the proposed direct solution of
the DOP with existing approaches for the EOP is based on
a straightforward combination of solving the EOP and Dubins
Traveling Salesman Problem (DTSP). This naive approach is
based on finding the subset of target locations Sk, with the
highest collected reward, by solving the EOP. The sampling-
based solution of the DTSP [9] is then used to find the data
collecting path for the subset Sk with respect to the sampling
of the heading angle m. The results are shown in Fig. 4,
where the plot on the left shows that by using a smaller budget
for the EOP and afterward the found Sk in the DTSP leads
(in most cases) to lower rewards than a direct solution of
the DOP. On the other hand, the right plot in Fig. 4 shows
that in most cases (especially for lower budgets) the rewards
collected by the solution of the DOP is higher. These results
support suitability of the proposed algorithm for the introduced
Dubins Orienteering Problem. Hence, it is not beneficial to
solve the DOP by a separate selection of the target locations,
e.g., by solving the EOP, and consecutive path planning for
the Dubins vehicle. Solving the EOP may provide equally
rewarded paths with multiple different subsets of the target
locations. However, some of the subsets can be connectable
in the consequent DTSP respecting the budget constraint, but
some may not.

The proposed VNS DOP algorithm uses m sampled head-
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Fig. 5. Sums of collected rewards R and computational time for different
heading sample rate m with ρ = 1.2 .

ing values at each target location. A particular number m
influences the path length and higher number of samples may
almost always produce shorter paths and thus, a high reward
collected for a given travel budget Tmax. An influence of m on
the sum of the collected rewards R and the computational time
on m for the selected problems is shown in Fig. 5. The results
show that R tends to increase until m = 12. This is caused
by the fact that the main objective of the DOP optimization
is the sum of collected rewards R and the path length is not
important as far as it is shorter than Tmax.
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Fig. 6. Computational time and collected rewards of the proposed VNS-based
DOP algorithm for increasing value of the maximal neighborhood distance
lmax for particular problems.

The proposed VNS-based DOP uses the maximal neighbor-
hood distance lmax = 2 but the value can be increased by
concurrently moving lmax > 2 target locations in the local
search procedure. Fig. 6 with the computational times and
collected reward for different lmax shows that the solution
convergence is slower for increased lmax because a single
iteration lasts longer and the randomized RVNS algorithm
does not benefit from the enlarged neighborhood distance.

B. Real experiments

The proposed method has been experimentally evaluated in
the real data collection scenario with a hexarotor UAV. 1 The
UAV is requested to visually inspect as many high rewarded
target locations as possible during the length-limited flight.
The considered scenario consists of 20 target locations, where
a particular colored object with marked reward is located. The
objects are placed in the area of approximately 100×50 m
large. Fig. 7 shows the colored target object with the used
hexarotor UAV, originally developed for multi-robot applica-
tions [21]. The considered travel budget is Tmax = 150 m for

1We refer to http://mrs.felk.cvut.cz/icra17dop for more information about
the experiment.

Fig. 7. Hexarotor UAV during the visual data collection of the colored target
object with displayed reward.

which the UAV has to visit the locations of the objects and
maximize the collected reward.

Although the hexarotor UAV can drive through a path from
the Euclidean OP, in certain cases, it is then required to
decelerate during the sharp turns. Therefore, the hexarotor
UAV modeled as the Dubins vehicle with a smooth path over
the target locations allow using constant speed trajectories.
Moreover, the Dubins model respects the real constraints of the
UAV such as the maximal speed and acceleration. This allows
to the used onboard trajectory controller [22] to precisely
navigate through the trajectory without missing the target
location which can happen for the path produced by solving
the related EOP.

The crucial parameter of the Dubins vehicle is the minimal
turning radius ρ that is computed from the desired constant ve-
locity vc and the maximal acceleration of the UAV amax. The
equation of circular motion with constant speed ρ = v2

c/amax
is used to get the radius, which produces the maximal allowed
acceleration during the circular parts of the path. The constant
velocity vc = 4 m.s-1 and the maximal allowed acceleration
amax = 2.6 m.s-2 has been used and the considered turning
radius ρ is ρ = 6.15 m.

Paths found by the proposed DOP algorithm for the turning
radius ρ = 0 and ρ = 6.15 m are shown in Fig. 8. A solution
is found within a second using the same parameters as in
Section V-A. The particular rewards of the found solutions are
R = 71 and R = 65, for ρ = 0 and ρ = 6.15 m respectively,
with total path lenghts of 149.0 m and 148.4 m. Although
the solution for ρ = 0 provides a higher reward, the path is
not feasible for the constant speed motion, and the onboard
controller has to violate the planned path. This causes cutting
of sharp turns to fulfill the schedule of the plan as it is shown
for the “EOP path traveled by UAV” curve in Fig. 8.
On the other hand, a solution of the DOP with R = 65 respects
the maximal acceleration with the desired constant speed of the
vehicle and all target objects have been successfully captured.

VI. CONCLUSIONS

This paper introduces a generalization of the Orienteering
Problem to the Dubins vehicle that is called the Dubins
Orienteering Problem (DOP). We propose a novel Variable
Neighborhood Search (VNS) based method for solving this
challenging problem. A sampling based approach is used

http://mrs.felk.cvut.cz/icra17dop
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Fig. 8. Plots of the UAV position for solutions of the data collection scenario as the DOP and EOP.

to search for an appropriate sequence of heading angles at
the target locations. The presented results indicate that for
zero turning radius, the proposed DOP solver is competitive
to existing methods for the Euclidean OP. Results for non-
zero turning radius show that the collected reward decreases
with the increasing radius. Moreover, the presented results
demonstrate that a solution of the DOP as a combination of
the Euclidean OP and consecutive Dubins Traveling Salesman
Problem is not plausible. We also show that the sampling
based approach to heading angles is viable as the prime
objective of the DOP is to maximize the collected reward
and a higher number of samples does not necessarily increase
the quality of solution (the collected reward). Finally, results
from the real deployment of the proposed approach further
demonstrate a necessity of the proposed direct solution of the
Dubins Orienteering Problem. For future work, we intend to
investigate the OP for other more complex maneuvers such
as splines, and to extend the DOP for possible data collection
within proximity of the target locations.
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