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Surveillance Planning with Bézier Curves
Jan Faigl and Petr Váňa

Abstract—This paper concerns surveillance planning for an
Unmanned Aerial Vehicle (UAV) that is requested to periodically
take snapshots of areas of interest by visiting a given set of
waypoint locations in the shortest time possible. The studied
problem can be considered as a variant of the combinatorial
traveling salesman problem in which trajectories between the
waypoints respect the kinematic constraints of the UAV. Contrary
to the existing formulation for curvature-constrained vehicles
known as the Dubins traveling salesman problem, the herein
addressed problem is motivated by planning for multi-rotor UAVs
which are not limited by the minimal required forward velocity
and minimal turning radius as the Dubins vehicle, but rather
by the maximal speed and acceleration. Moreover, the waypoints
to be visited can be at different altitudes, and the addressed
problem is to find a fast and smooth trajectory in 3D space from
which all the areas of interest can be captured. The proposed
solution is based on unsupervised learning in which the requested
3D smooth trajectory is determined as a sequence of Bézier
curves in a finite number of learning epochs. The reported results
support feasibility of the proposed solution which has also been
experimentally verified with a real UAV.

Index Terms—Motion and Path Planning, Nonholonomic Mo-
tion Planning, Aerial Systems: Applications

I. INTRODUCTION

IN this paper, we study surveillance planning for an Un-
manned Aerial Vehicle (UAV) that is requested to peri-

odically take snapshots of objects of interest by visiting a
given set of sensing locations at different altitudes such that,
the total required time to visit all the locations is minimal.
The addressed problem can be considered as a variant of the
combinatorial the Traveling Salesman Problem (TSP) in which
connections between the waypoints respect the kinematic
constraints of the UAV. Contrary to the existing formulation for
curvature-constrained vehicles known as the Dubins Traveling
Salesman Problem (DTSP) [1], the herein addressed problem
is motivated by planning for multi-rotor UAVs which are not
limited by a minimal turning radius as the Dubins vehicle (or
any other requirements on the minimal forward velocity to
keep the vehicle in the air such as fixed-wing aircrafts), but
rather by the maximal speed and acceleration.

Similarly to the DTSP with Neighborhoods (DTSPN) [2],
[3], also in the addressed problem, it is allowed to visit
a neighborhood of the particular sensing location, and thus
save the travel time by avoiding a precise visitation of the
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Fig. 1. An example of the 3D smooth trajectory visiting δ-neighborhood of
the given set of sensing locations. The trajectory is found by the proposed
unsupervised learning based algorithm as a sequence of Bézier curves mini-
mizing the TTE of the whole trajectory.

prescribed sensing locations. This generalization is arising
from the surveillance missions where a downward looking
camera is utilized to take a snapshot of the objects of interest,
and relatively small objects can be captured with the desired
level of details within the camera field of view. Hence it is
sufficient to take a snapshot within a specific sensing distance δ
from the particular sensing location. Therefore, the prescribed
sensing locations have δ-neighborhood, and it is sufficient
that the final trajectory is passing the δ-neighborhood of each
sensing location, e.g., see trajectory in Fig. 1.

In [4], it has been shown that Dubins tour visiting a
sequence of waypoints can be advantageous for multi-rotor
UAVs to achieve a precise navigation to the desired locations
rather than navigation along straight line segments. However,
a multi-rotor UAV can accelerate on straight lines and can
make turns at small turning radius with lower speed. Therefore,
it might be more suitable to abandon curvature-constrained
trajectory based on Dubins maneuvers and use a different
smooth trajectory parameterization that can take an advantage
of the trajectory curvature with the maximal vehicle velocity
and acceleration limits. Then, a vehicle velocity profile can
be computed and the expected time to travel the trajectory,
further denoted as the Travel Time Estimation (TTE), can be
determined and minimized during the surveillance planning.

Even though the DTSP and DTSPN have been addressed
by many approaches including approximation algorithms such
as [5], [6], [7], heuristics [1], [8], [9], [10], [11], and also evo-
lutionary techniques [12], [13], [14], to the best of our knowl-
edge, the TSP-like formulation of the surveillance planning
with 3D smooth trajectory parametrization has not yet been
directly addressed. A possible 3D surveillance planning can
follow a decoupled approach like the Alternating Algorithm
(AA) [1] or Local Iterative Optimization (LIO) [8] in which
the sequence of visits to the waypoint locations is determined
as the Euclidean TSP (ETSP), and then a smooth trajectory
connecting the locations is computed. Hence various types of
curves such as B-Splines [15], polynomial functions [16] or
Bézier curves [17] can be utilized for generation of continuous
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and smooth trajectory [18]. However, such a sequence can be
of poor quality because it is determined independently to the
constraints of the UAV and the δ-neighborhood.

Therefore, we propose to leverage on advancements on
the recent unsupervised learning of the Self-Organizing Map
(SOM) in a solution of the DTSP [10] that has been extended
to the DTSPN in [11], and we propose to directly employ a
smooth curvature and the TTE optimization during the solution
of the sequencing part of the addressed surveillance problem.
A determination of 3D smooth trajectories during the opti-
mization is likely to be more demanding than a closed-form
solution of the optimal Dubins maneuvers [19]. On the other
hand, the results presented in [11] show that a solution of prob-
lems with tens of waypoints is found in hundreds of millisec-
onds, which further motivate us to consider the unsupervised
learning with a more general trajectory parameterization than
Dubins maneuvers. The selected trajectory parameterization
is based on Bézier curves because it is specified by only four
control points and it allows to find smooth trajectories not only
in 2D but also in 3D scenarios. Therefore, the contribution
of the presented work is the novel unsupervised learning
procedure for planning 3D smooth trajectories parameterized
as a sequence of Bézier curves visiting δ-neighborhood of the
given sensing locations placed at different altitudes.

The remainder of the paper is organized as follows. The
addressed problem is formally introduced in the next section
together with the necessary background on the Bézier curve
parametrization and computation of the velocity profile and
thus the TTE. The proposed SOM-based solution is described
in Section III. Results on a comparison of the proposed
approach with the selected DTSP approaches in 2D missions,
an influence of the increasing δ to the solution quality, and
evaluation of altitudes differences in 3D missions are presented
in Section IV together with the report on the experimental de-
ployment of the proposed method with a real UAV. Concluding
remarks are dedicated to Section V.

II. PROBLEM STATEMENT

In the herein addressed surveillance planning, we consider a
smooth trajectory to capture a given set of n objects of interest
O by traveling along the trajectory that satisfies the limitations
of the used UAV. For each oi ∈ O, we consider a sensing
location si ∈ R3 from which a snapshot of oi can be captured.
Moreover, oi can be captured within the δ distance from si,
and thus for each oi ∈ O, the surveillance trajectory has to
contain a waypoint location pi such that ‖(pi, si)‖ ≤ δ. The
problem is to determine a fastest possible trajectory to visit the
δ-neighborhood of all the sensing locations, which consists of
determining the sequence of visits to the neighborhoods, i.e.,
a variant of the TSP, but also the trajectory optimization.

The considered trajectory parameterization is based on the
Bézier curve that is defined by four control points. The end
locations of the curve are directly defined by two control
points, and the departure and terminal tangents of the curve are
defined by the two additional points. This allows to connect
a sequence of Bézier curves into a smooth path, and thus we
consider n Bézier curves connected as the final trajectory, i.e.,

one curve for one object of interest. The expanded form of the
utilized parametrization of the Bézier curve X(τ) [20] can be
expressed as

X(τ) = B0(1− τ)3 + 3B1τ(1− τ)2 + 3B2τ
2(1− τ) +B3τ

3,
(1)

where 0 ≤ τ ≤ 1 and Bk stands for the k-th control point.
Since the final trajectory X is closed, it consists of n Bézier

curves Xi and because it has to be smooth, two consecutive
curves Xi and Xj with the control points (Bi

0, Bi
1, Bi

2, Bi
3)

and (Bj
0, Bj

1, Bj
2, Bj

3) have to be connected at the same end
point. Thus, the last control point Bi

3 and the first control point
Bj

0 need to be identical to keep the trajectory continuous
Bi

3 = Bj
0. (2)

In addition, the Bézier curves have to point to the same
direction, and therefore, the tangents can be defined as

tia = Bi
1 −Bi

0, tib = Bi
3 −Bi

2 (3)

with the length of the particular tangent vector
lia =

∥∥tia∥∥ , lib =
∥∥tib∥∥ . (4)

This requirement can be satisfied by the condition ensuring
the trajectory is smooth

lja t
i
b = lib t

j
a. (5)

It is assumed, the multi-rotor UAV can, in general, travel an
arbitrary path. Moreover, we aim to determine not the shortest
path as in the DTSP with a constant forward velocity of the
vehicle, but we rather aim to determine the fastest trajectory
for the particular UAV limited only by its maximal velocity
and acceleration. Therefore instead of minimizing the length
of the path, the Travel Time Estimation (TTE) of the trajectory
T (X ) is considered in the proposed problem formulation.

Finally, we assume the UAV is requested to start its mission
at the given initial location s1 (further called depot) and it is
requested to return at the same location after finishing the
patrolling tour, and thus visitation of s1 is considered without
the δ-neighborhood, i.e., δ = 0 for the depot s1.

Having the introduced preliminaries, the surveillance plan-
ning problem can be formulated as follows. For the given
set of n sensing locations S = {s1, . . . , sn}, si ∈ R3, one
si for each oi ∈ O, the sensing distance δ, and the depot
location s1, determine a smooth trajectory X as a sequence
Σ = (σ1, . . . , σn) of Bézier curves Xi, 1 ≤ i ≤ n, i.e.,
X = (Xσ1

, . . . ,Xσn), and 1 ≤ σi ≤ n, such that the TTE
of the trajectory T (X ) is minimal, Xσ1

starts at the depot
s1, Xσn terminates at s1, and for each sσi , there is a point
pσi of the trajectory Xσi within the δ distance from sσi ,∥∥(pσi , sσi)

∥∥ ≤ δ.
Problem 2.1 (Surveillance Mission Planning Problem):

minimize Σ,X ,P T (X ) =

n∑
i=1

T (Xσi)

subject to

Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n, σi 6= σj for i 6= j;
X = (Xσ1

, . . . ,Xσn) is a smooth connection of n
Bézier curves where Xσ1

starts at s1, Xσn ends at
s1, and each Xσi has a point pσi ∈ Xσi such that
P = (pσ1

, . . . ,pσn),
∥∥(pσi , sσi)

∥∥ ≤ δ for sσi ∈ S.
(6)
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A. Travel Time Estimation (TTE)

The Travel Time Estimation (TTE) can be determined from
the velocity profile along a parameterized trajectory such as
the Bézier curve (1). A simplified model of the velocity profile
is considered, and the vertical and horizontal movements of
the vehicle are individually limited by the maximal velocity
and acceleration. Although the motion of the multi-rotor UAV
is generally coupled, we are allowed to consider movements
independent because of the utilized Model Predictive Con-
troller (MPC) [21] employed for the trajectory following.
Decoupling the axes and motion generation for each axis
separately [22] allows efficient computation of the MPC [21].
Therefore, the employed implementation of [21] provides
real-time computation of the required thrust of individual
rotors while it still guarantees the vehicle follows the planned
trajectory for the vertical and horizontal accelerations under
the respective limits together with the requested horizontal and
vertical velocities. We denote vvert to the maximal vertical
speed, avert to the corresponding maximal magnitude of the
vehicle acceleration and similarly vhoriz and ahoriz for the
horizontal speed and acceleration, respectively. The TTE is the
minimal expected time to travel the given trajectory, and thus
the maximal velocity profile along the trajectory is determined
with respect to the path curvature and the acceleration limits.

The profile for the vertical velocity is directly computed
from the altitude differences along the curve, and thus the first
and second derivatives along the z−axis are utilized, and the
magnitude of the vertical velocity is limited by vvert and avert.
On the other hand, two acceleration components that affect
the vehicle simultaneously can be identified in the horizontal
plane: the tangent atan and radial arad accelerations. The
velocity change is caused by the tangent acceleration atan. The
radial acceleration arad is defined by the path curvature, and
it does not directly affect the vehicle speed. The tangent and
radial accelerations are always perpendicular and the combined
value cannot exceed ahoriz such that a2

tan + a2
rad ≤ a2

horiz .
The path curvature defines arad as arad = v2 κh, where κh is
the horizontal curvature of the trajectory determined as

κh =
‖x′y′′ − y′x′′‖
(x′2 + y′2)

3
2

, (7)

and for Bézier curves it can be expressed in a closed-form. The
cuvature also defines the maximal possible horizontal velocity
vpos of the vehicle along the trajectory as

vpos = min

(
vhoriz,

√
ahoriz
κh

)
. (8)

Then, the maximal possible tangent acceleration atan can be
expressed as

a2
tan = a2

horiz − a2
rad

= a2
horiz − v4

posκ
2
h
, (9)

where the right side is always positive because of (8).
The velocity profile, and thus the TTE, for a sequence of

curves can be determined numerically in six steps:
1) Sample the curves into finite uniformly sampled points

and determine the corresponding values of the curva-

Input layer Output layer

ν1

ν3

νi

νM-1

νM

si,y

Presented 
sensing location 
si=(si,x, si,y, si,z)

si,z

si,x νi,x

νi,z

νi,y

Connections'
weights

ν2

(a) SOM structure

νi

Sensor locations with δ-neighborhood

s1

δνi+1 νi+2 s12
s2s3

s11 s9

s8

s6s7

s4
s10

s5

Ring of connected
neurons

(b) Ring of neurons

Fig. 2. SOM structure for the 3D surveillance planning and visualization of
the ring during the evolution. The green disks represent sensing locations each
with δ-neighborhood visualized as the yellow disk. The requested initial and
terminal location without the neighborhood is called depot, and it is shown
as the dark red disk s1. The neurons are blue disks organized in the output
layer into a ring of neurons. The neuron’s weights are waypoint locations in
the input space. The neurons are further associated with parameters for Bézier
curves, and thus the ring of neurons forms the desired smooth trajectory.

ture (7) computed for the first and second derivatives
expressed from (1).

2) Set the initial and final vehicle velocity to zero as it
is assumed the vehicle starts the mission with the zero
velocity from the initial location (depot) and return to
it, e.g., for replacing battery.

3) Compute derivatives along the z-axis and limit the
velocity according to vvert and avert.

4) Determine vpos for each sampled point (8).
5) Iterate over the samples forward and limit the velocity

by the maximum possible tangent acceleration (9), i.e.,
adjust the travel time between the respective samples.

6) Iterate over the samples backward and limit the velocity
by the maximum possible tangent acceleration (9).

III. SURVEILLANCE PLANNING WITH BÉZIER CURVES

The proposed planning approach is motivated by recent ad-
vancements on Self-Organizing Map (SOM) based solution of
the DTSP [10] and DTSPN [11], which originates in growing
SOM for the TSPN [23]. The used SOM is a two-layered
neural network where the input layer serves for presenting the
sensing locations si ∈ S and the output layer is an array of
neurons N = {ν1, . . . ,νM}, where M is the current number
of neurons in the network.

In the proposed approach, the neurons are the waypoint
locations and a ring of neurons connected by the Bézier curves
is the requested surveillance trajectory, which evolves in the
input space R3 during the learning. A structure of the network
and an example of Bézier curves connecting the neurons are
visualized in Fig. 2. The learning is an iterative procedure
that works in learning epochs, and the main principle of the
learning is as follows.

A single learning epoch is an adaptation of the network
towards all sensing locations, which are presented to the
network in a random order to avoid local optima [24]. In
the used growing SOM, the best matching neuron to the
presented location s is determined as the closest point ps
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Fig. 3. Principle of determining the winner neuron to the presented sensing
location s. The winner neuron ν∗ is created at the location ps which is the
closest point of the sequence of Bézier curves connecting the neurons. An
intersection of the straight line segment (ps, s) with the disk (or ball in R3)
shaped δ-neighborhood of s is used to determine the alternate location sp
towards which the network is adapted instead of s to save the travel time. The
point sp is inside the δ-neighborhood of s to ensure the waypoint location
(the winner neuron) would be at the distance to s shorter than δ.

on the trajectory represented by the ring. Then, the winner
neuron ν∗ is created at the location corresponding to the
point ps. However, instead of an adaptation towards s, the
δ-neighborhood is utilized to save the travel time and a point
sp inside the neighborhood is determined, e.g., a point on
the segment (ps, s) close to the perimeter δ. Notice, if ps
is already inside δ-neighborhood, only the respective winner
neuron ν∗ is created and the network is not adapted. In a case
of δ = 0, the winner neuron is adapted towards s, i.e., sp = s.
The proposed selection of the winner neuron is visualized in
Fig. 3.

The adaptation follows the standard SOM learning [25] and
it can be considered as a movement of the neurons towards
sp and a new location of each adapted neuron ν becomes ν′

ν′ = ν + µf(σ, d)(sp − ν), (10)

where µ is the learning rate, f(σ, d) is the neighbouring
function, σ is the learning gain, and d is the distance of ν
from the winner neuron ν∗ in the number of neurons in the
ring. The neighbouring function defines active neurons around
ν∗ that are adapted and it has the standard form utilized in
SOM [25] adjusted for the TSP [24]

f(σ, d) =

{
e

−d2

σ2 for d < 0.2M
0 otherwise

. (11)

The learning gain is decreased after each learning epoch
according to the cooling schedule σ = (1−α)σ, where α is the
gain decreasing rate. Besides, a ring regeneration is performed
after each learning epoch to remove all non-winner neurons
and keep the total number of neurons less than 2n during the
learning.

The adaptation is terminated if all winner neurons become
negligibly close to their respective sp, and thus inside the δ-
neighborhood of each s. Then, the sequence of Bézier curves
connecting the winner neurons represents a feasible solution to
the surveillance planning problem. If the network convergence
is not fast enough, the learning can be explicitly terminated

after imax learning epochs and a feasible solution can be
constructed from traversing the ring and using sp associated
with the winner neurons. 1 For the used learning rate µ = 0.5,
the network converges [27] and for the initial learning gain
σ = 12.41n+ 0.6 and the gain decreasing rate α = 0.1 [24],
the network is stabilized in less than 100 learning epochs.

Although the learning procedure follows SOM for the
TSPN [23] where neurons are waypoint locations adapted
towards the sensing locations, the connection of neurons by
Bézier curves to minimize the TTE of the whole trajectory is
the most important part of the proposed surveillance planning.
The smooth connection of the sequence of Bézier curves has
to satisfy (5) and because it is assumed the multi-rotor UAV
can follow any 3D path, we propose to support evaluation of
(5) by the vehicle position (x, y, z) expressed as ẋ

ẏ
ż

 = v

 cos θ cosψ
sin θ cosψ

sinψ

 , (12)

where θ is the turning angle and ψ is the climb/dive angle of
the trajectory at the point (x, y, z) of the path.

The waypoint locations (the neurons) and the particular
angles θ and ψ are not sufficient to specify the control points
of the Bézier curve connecting two neighboring neurons νi−1

and νi. Therefore, each neuron is further associated with
the tangent vectors and each Bézier curve is defined by two
tangent vectors separately. Thus, each neuron νi corresponds
to the waypoint location νi ∈ R3. Besides, it is also associated
with angles θi and ψi, and with the lengths of two tangent
vectors lia and lib. Each neuron νi is incident with two Bézier
curves, and therefore, the tangent vector for the Bézier curve
Xi−1 that terminates at νi is

ti−1
b = lib

cos(θi) cos(ψi)
sin(θi) cos(ψi)

sin(ψi)

 (13)

and the tangent vector tib defines the initial part of the Bézier
curve Xi, which starts at νi, is determined as

tia = lia

cos(θi) cos(ψi)
sin(θi) cos(ψi)

sin(ψi)

 . (14)

A new neuron νi is inserted into the ring in the winner
neuron selection and its initial values of the angles θi and
ψi are determined together with the lengths lia and lib from
its neighboring neurons to fit the current neighboring Bézier
curves. During the learning epoch, only the waypoint locations
of the neurons are modified in the adaptation of the network
towards the respective sp, i.e., the two control points of the
Bézier curves, similarly as in the TSPN.

The explicit optimization of the TTE is performed after
each learning epoch during the regeneration. The optimization
of the whole trajectory is performed locally using the LIO
principle [8], and the values of θi, ψi, lia, and lib associated with
each νi are numerically optimized with respect to the velocity

1Here, it is worth noting that using the associated sp to winner neurons as
the waypoint locations is used in the SOM for the DTSP [11], and the Dubins
tour is found as a solution of the Dubins touring problem [26].



FAIGL et al.: SURVEILLANCE PLANNING WITH BÉZIER CURVES 5

(a) Learning epoch 6 (b) Learning epoch 22 (c) Learning epoch 37

(d) Learning epoch 46 (e) Learning epoch 57 (f) Final solution

Fig. 4. SOM evolution during surveillance planning with Bézier curves.

profile of the trajectory defined by the three consecutive
neurons in the ring νi−1, νi, and νi+1. The LIO procedure
is a multi-variable variant of the hill-climbing optimization
technique, where particular variables are consecutively opti-
mized in each iteration of this local numerical optimization,
see [8] for further details. The representation (12) enables an
independent optimization of the particular variables θi, ψi, lia,
and lib because tangents computed by (13) and (14) implicitly
satisfy the smooth constraint (5).

The numerical optimization is performed with the step 0.5%
of the particular variable range, and thus the step for the
angles θi and ψi is 0.01π. Three iterations of the local
optimization of the whole ring are performed to reduce the
computational burden. Notice the waypoint locations of the
neurons are only slightly changed in the final learning epochs
(see an example of the network evolution in Fig. 4), and
thus the optimization is actually performed multiple times for
almost the same waypoint locations. The velocity profile for
Bézier curve is computed numerically using 200 uniformly
distributed samples for the range τ ∈ [0, 1] according to (1)
and the procedure described in Section II-A.

The proposed algorithm can be summarized as follow.2

B Initialization:
1) Create the ring N with n neurons around the depot s1.
2) Set the learning gain σ = 12.41n+0.6, the learning rate

µ = 0.5, and the gain decreasing rate α = 0.1. Set the
epoch counter i = 1.

B Learning Epoch:
3) For each s in the randomized set s ∈ Π(S)

a) Winner neuron: determine ν∗ and sp as in Fig. 3.
b) Adapt ν∗ and its neighbors towards sp using (10).

2An implementation of the algorithm is available at https://purl.org/faigl/sw.

B Update and Termination:
4) Ring regeneration: remove all non-winner neurons and

perform LIO-based optimization of the trajectory.
5) Update learning parameters: σ = (1− α)σ, i = i+ 1.
6) Termination condition: If i ≥ imax or winner neurons

are negligibly close to their respective sp (e.g., less
than 10−3) or all winner neurons are inside the δ-
neighborhood of the respective sensing location Stop
the adaptation. Otherwise go to Step 3.

7) Return the found trajectory.

The computational complexity of a single learning epoch
depends on the number of objects of interest n and the number
of neurons M , which does not exceed 2n because of the ring
regeneration, and thus it can be bounded by O(n2). Notice,
the network adapts to all n objects of interest, therefore n
winner neurons is the lower bound of the number of neurons
because of the ring regeneration in Step 4. The number of
learning epochs is set to the constant imax = 100, and thus the
computational complexity depends on LIO which is performed
three times for the whole ring with up to n neurons. Hence the
computational complexity of the proposed learning procedure
can be bounded by O(n2). The real required computational
time is reported in Section IV.

IV. RESULTS

The proposed 3D surveillance planning has been verified in
a series of scenarios for our multi-rotor UAV with vvert =
1 ms-1, avert = 1 ms-2, vhoriz = 5 ms-1, and ahoriz =
2 ms-2. First, we consider a 2D scenario and compare the
proposed approach with the solution of the DTSP with various
minimal turning radii ρ and the forward velocity limited to
v =
√
ρahoriz . However, the TTE for the DTSP is computed

from the velocity profiles in which the vehicle accelerates on
straight line segments up to vhoriz and then decelerates to pass
the turn maneuver with v. The selected DTSP approaches are
heuristics AA [1] and LIO [8] where the sequence of visits
is found as the optimal solution of the ETSP [28], SOM-
based algorithm [11], and Memetic algorithm [14] with the
computational time limited to 10 and 100 seconds. In addition
to the DTSP, the evaluated approaches can also solve instances
of the DTSPN, and therefore, a solution of the DTSPN has
been compared to the proposed surveillance planning with
Bézier curves and sensing distance δ > 0. The AA relies on a
sequence of waypoint locations, and therefore, a solution of the
ETSP with Neighborhoods (ETSPN) found by [29] has been
used. The proposed SOM-based algorithm with Bézier curves
is denoted SOM (Bézier), and the DTSPN approach [11] is
denoted SOM (Dubins). The particular SOM-based learning
parameters are set as in Section III and [11], respectively. The
population size of the Memetic algorithm is set to 20n [14].

All algorithms are considered as randomized and the pre-
sented results are average values from 20 trials, i.e., the
solution quality is reported as the average value of the TTE.
The reported computational times have been measured for the
C++ implementation of all algorithms that have been run on
the same single core of the i7-67000K CPU running at 4 GHz.

https://purl.org/faigl/sw


6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017

●

●

●

●

●

●

●

●
●

0
5
0

1
5
0

2
5
0

4 6 8 10 12 14

Dubins vehicle minimal turning radius − ρ [m]

T
T

E
 [

s]

● ● ● ● ● ● ● ● ●

● ETSP−AA [1]

ETSP−LIO [8]

Memetic 10 s [13]

Memetic 100 s [13]

SOM (Dubins) [11]

SOM (Bézier)

●

●
●

● ● ●

●
● ●

0
.1

0
.5

5
.0

5
0
.0

5
0
0
.0

4 6 8 10 12 14

Dubins vehicle minimal turning radius − ρ [m]

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
[s

]

● ● ● ● ● ● ● ● ●

● ETSP−AA [1]

ETSP−LIO [8]

Memetic 10 s [13]

Memetic 100 s [13]

SOM (Dubins) [11]

SOM (Bézier)
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Fig. 6. Influence of the δ-neighborhood to the TTE and computational time.

Comparison with DTSP Solvers

The average values of the TTE for 5 m ≤ ρ ≤ 12.5 m in
the problem with 22 sensing locations are depicted in Fig. 5.
Although trajectories found as a solution of the DTSP with a
short ρ provide a similar value of the TTE as the proposed ap-
proach based on the Bézier curves, the most suitable ρ depends
on the particular instance. Moreover, the Dubins vehicle model
assumes a constant forward velocity, and therefore, without
accelerating along the straight segments, the found DTSP
solutions would always require more time than trajectories
composed of Bézier curves along which the vehicle accelerates
and decelerates according to the trajectory curvature. The
solutions as Bézier curves are found in less than 10 seconds.

Influence of Increasing δ and Comparison with DTSPN Solvers

A reduction of the TTE by exploiting a non-zero sensing
distance δ has been studied for the same problem as in the
previous case and with δ in the range 0 ≤ δ ≤ 5 m. Based on
the results in Fig. 5, the DTSPN solvers have been used with
ρ = 5 m because of the fastest trajectories in the DTSP.

Regarding the results in Fig. 6, solutions provided by all
algorithms, except the AA, benefit from δ > 0, but the best
results are provided by the proposed surveillance planning

(a) δ = 2.5 m, TTE = 68.8 s (b) δ = 5.0 m, TTE = 57.6 s

Fig. 7. Selected best found solutions provided by SOM (Bézier) algorithm
for the sensing distance δ.
with Bézier curves. The computational requirements slightly
decrease because of faster convergence caused by entering
the winner neurons into the δ-neighborhood of the sensing
locations. The SOM-based DTSPN solver requires less than
0.3 seconds because of the close-form solution of the Dubins
maneuvers, which is far faster than the numerical optimiza-
tions of the Bézier curves in the proposed approach. However,
SOM (Dubins) provides significantly worse results than SOM
(Bézier) for δ > 0. Selected solutions are depicted in Fig. 7.

Influence of Altitude Differences for 3D Surveillance Scenarios

The influence of different altitudes of the sensing locations
to the TTE has been studied for 3D scenarios created from the
same 2D instances with three ranges of the altitude differences:
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Fig. 8. Influence of altitude differences to the TTE and computational time.

(a) n = 50, low, TTE =
109.6 s

(b) n = 50, high,
TTE = 161.4 s

(c) n = 100, high,
TTE = 319.8 s

Fig. 9. Selected best found solutions found by the proposed SOM-based
approach with Bézier curves for problems with n sensing locations and
low and high altitude differences. The found trajectories are shown as 2D
projections with the altitude visualized by the curve color (from green to red
for a low altitude to the highest altitude).

low in the range [5, 10] meters; moderate with differences in
the range [5, 15]; and high altitude differences in the range
[5, 20]. The low altitude differences mostly require horizontal
travels, and thus it is expected the vehicle velocity would be
saturated in vhoriz while for high altitude differences, the
vehicle would be limited by vvert. For each range of the
altitude differences, ten random instances have been created
from the same 2D instances with 22 sensing locations and two
random instances with 50 and 100 sensing locations.

Average values of the TTE and the required computational
time are reported in Fig 8. The results support the expectation
that higher altitude differences increase the TTE as the vehicle
is saturated at the vertical velocity limit. This can be seen in an
example of the found solutions shown in Fig. 9 where the red
parts of the found surveillance trajectories are at a high altitude
and green parts are at a low altitude. The visualized solutions
also indicate that a consecutive visitation of the waypoints at
a similar altitude is preferred because of the limited vertical
velocity. Examples of the velocity profile are shown in Fig. 10.
The results also indicate that higher altitude differences cause
optimization of Bézier curves more demanding as the required
computational time is noticeably increased.

Real Experimental Verification

Finally, a feasibility of the determined 3D trajectories has
been experimentally verified in a practical deployment in a
scenario with sensing locations at different altitudes. The task
of the UAV was to take a snapshot of objects of interest by
a camera attached to the UAV with the field of view limited
to 4 meters. However, we set the sensing distance δ = 2 m
because of possible error of the employed model predictive
controller [21] used for the trajectory following, which ensures
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(b) high altitude differences

Fig. 10. An example of the 3D surveillance problems with low and high
altitude differences and the velocity and acceleration profiles.

that all the objects of interest would be successfully captured
also in cases of small disturbances. The real trajectory has been
captured by the RTK GPS with the precision less than 2 cm,
which has also been used to control the UAV along the planned
trajectory. A snapshot from the experiment and the planned
trajectory and two real trajectories (from two performed trials)
are visualized in Fig. 11. It can be noticed from the real
trajectories that in few cases, the real trajectory does not pass
the δ-neighborhood, but it passes (δ+2)-neighborhood, and
thus all objects have been captured in both experimental trials.

V. CONCLUSION

In this paper, we propose a novel unsupervised learning
based solution of the surveillance planning with a 3D smooth
trajectory parameterized as a sequence of Bézier curves. The
proposed approach employs an adaptation procedure of the
Self-Organizing Map (SOM) for a solution of the sequencing
part of the problem, i.e., a determination of the sequence
to visiting the given set of sensing locations. The presented
results indicate the proposed solution is a suitable alternative
to the solution of the Dubins Traveling Salesman Problem
(DTSP) in 2D scenarios, where the Bézier curves better fit
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Fig. 11. A snapshot of UAV deployed in the experimental verification of
the 3D surveillance scenario with the planned and real vehicle trajectories
from two trials. The planned and real profiles of the horizontal and vertical
velocities are shown at the bottom.

the motion constraints of the multi-rotor vehicles that are
limited by the maximal velocity and acceleration and not by
the vehicle’s minimal turning radius. In addition, the proposed
approach allows to exploit the non-zero sensing distance δ and
save the travel time by determination of waypoint locations
in the δ-neighborhood of the sensing locations. However,
the main benefit of the proposed approach is the ability
to find 3D smooth trajectories to visit sensing locations at
different altitudes. On the other hand, the proposed approach
is more demanding than the SOM-based solution of the DTSP
because of the relatively complex computation of the velocity
profile and TTE. Besides, the SOM for the DTSP has been
generalized to multi-vehicle planning, which might also be
possible for the presented approach, and thus it is a subject of
our future work.
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