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Fast Heuristics for the 3D Multi-Goal Path Planning
based on the Generalized Traveling Salesman

Problem with Neighborhoods
Jan Faigl, Petr Váňa, and Jindřiška Deckerová

Abstract—In this paper, we address the multi-goal path plan-
ning problem to determine a cost-efficient path to visit a set of
3D regions. The problem is a variant of the Traveling Sales-
man Problem with Neighborhoods (TSPN) where an individual
neighborhood consists of multiple regions, and the problem is to
determine a shortest multi-goal path to visit at least one region
of each neighborhood. Because each neighborhood may consist
of several regions, it forms a neighborhood set, and the problem
is called the Generalized TSPN (GTSPN) in the literature. We
propose two heuristic algorithms to provide a feasible solution
of the GTSPN quickly. The first algorithm is based on a
decoupled approach using a solution of the Generalized TSP
that is further improved by a quick post-processing procedure.
Besides, we propose to employ the existing unsupervised learning
technique called the Growing Self-Organizing Array (GSOA)
to quickly find a feasible solution of the GTSPN that can be
further improved by more demanding optimization. The reported
results on existing benchmarks for the GTSPN indicate that both
proposed heuristics provide better or competitive solutions than
the state-of-the-art reference algorithm, but they are up to two
orders of magnitude faster.

Index Terms—Motion and Path Planning; Planning, Schedul-
ing and Coordination; Aerial Systems: Applications

I. INTRODUCTION

MULTI-GOAL path planning (MTP) [1] can be consid-
ered as a robotic variant of the Traveling Salesman

Problem (TSP). It as a well-studied combinatorial optimiza-
tion problem of the operational research with many existing
approaches [2], [3]. Having a set of locations, the problem is
to determine an optimal sequence to visit all the locations such
that the length of the path to the locations is minimal. Since
we are looking for the optimal permutation of the visits to the
locations, the problem is also studied for the industrial robotic
applications as the robotic task sequencing problem [1], [4] in
addition to, e.g., routing problems with aerial vehicles [5].

On the other hand, it is not always desirable to visit the
target location precisely as a single point, and it may be more
suitable to describe the targets as regions that allow exploiting
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Fig. 1. An instance of the GTSPN with 3D regions and its solution
found by the proposed method. An individual neighborhood set Si =
{Qi,1, . . . , Qi,mi} is shown in a rectangular bounding box and consists
of particular regions Qi,k ⊂ R3. Each region is specified by its centroid
ci,k ∈ R3. Regions of the set S9 are further visualized in Fig. 2.

a certain degree of freedom [6]. Then, the problem becomes
a variant of the TSP with Neighborhoods (TSPN), which
is reported to be a suitable problem formulation for robotic
data collection and monitoring missions [7], [8], [9], but also
for complex manipulator tasks [10], [11], [12]. Continuous
neighborhoods in the TSPN can be sampled into discrete
sets, and the problem becomes a variant of the Generalized
TSP (GTSP) [13] which can be addressed by heuristic ap-
proaches [14], [15] or further transformed to the TSP [16]
at the cost of significantly increased problem size. Although
the GTSP-based approach provides a feasible solution of
the TSPN, even the Euclidean TSPN is known to be APX-
hard [17], and therefore, specific variants of the TSPN with
restricted types of the neighborhoods are studied [18], [19].
However, the TSPN is still challenging problem for most of
the neighborhood types [20].

Regarding robotic applications, the TSPN with disk-shaped
neighborhoods attracts the attention of the community as
the Close Enough TSP (CETSP) formulation that has been
introduced for data collection planning using wireless com-
munication in [21], where the authors propose a concept
of supernodes. The supernodes are explicit samples of the
neighborhood regions, and several heuristic methods have been
proposed in the literature [21], [22], [9]. An extensive com-
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putational survey of existing approaches is presented in [23],
where the author reports that the best trade-off between the
solution quality and computational requirements is provided
by his sampling of the supernodes in the Steiner zones,
which are the overlapping parts of the neighborhood regions.
Besides, he reports that the best results are provided by
the GTSP-based solution, but with very high computational
requirements (in hours). In [24], the CETSP is addressed
by an unsupervised learning technique called the Growing
Self-Organizing Array (GSOA) in which the neighborhood
regions are sampled during the learning and solution of the
sequencing part of the problem. Therein reported results for
the benchmarks [23] show competitive solutions to the Steiner
zones while the GSOA-based approach is about one order
of magnitude faster. Moreover, in several cases, new best
solutions are found in a fraction of second, which significantly
outperforms GTSP-based approaches with an explicit sampling
of the neighborhood before the solution of the sequencing part.

The promising results of the GSOA reported in [24] moti-
vates us to employ the technique in a more challenging variant
of the multi-goal path planning with 3D regions. In particular,
we consider an extended variant of the TSPN defined for sets
of neighborhoods introduced in [25] to overcome limitations
of the continuous and discrete formulation of the TSPN. The
problem is called the Generalized TSPN (GTSPN) in [11],
where the authors propose to use their Hybrid Random-
Key Genetic Algorithm (HRKGA) [26] to find high-quality
solutions of the introduced GTSPN benchmark instances. The
GTSPN instances provided in [26] are motivated by tasks
for redundant robotic manipulators, computer vision-based
inspection with multiple possible views [10], but also multi-
goal aircraft missions [27]. The authors proposed to model
each neighborhood as a set of regions to provide enough
flexibility for a definition of the target regions and solution
of practical problems. In particular, the regions are defined
as ellipsoids, polyhedra, and a combination of both; and
the benchmark instances include 30 problems with up to 50
neighborhood sets, where each set consists of six 3D regions.
An example of the GTSPN is visualized in Fig. 1 and region
types are in Fig. 2.

In this paper, we consider the 3D benchmark instances
of the GTSPN provided in [11], and we propose two new
heuristics for solving the GTSPN with neighborhoods defined
as polyhedra and ellipsoids to quickly find a feasible solution.
In particular, we propose to utilize centroids of the regions
and a solution of the GTSP followed by local iterative post-
processing optimization. Besides, we propose a simple heuris-
tic to quickly determine shortest distances from the array of
the GSOA to the neighborhood regions that enables to use
the existing GSOA [24] to solve 3D instances of the GTSPN.
Based on the herein reported results, the proposed approaches
provide competitive or better solutions than the HRKGA [11].
Moreover, they are up to two orders of magnitude faster than
the reported computational times for the HRKGA. Hence, the
proposed fast heuristics are suitable alternatives for solving the
GTSPN. In addition, new best-found solutions of the evaluated
instances have been established using multiple trials of the
proposed approaches.

The rest of the paper is organized as follows. The GTSPN
is formally defined in the next section together with the
description of the neighborhood sets. The decoupled approach
to the GTSPN based on the GTSP and post-processing local
optimization is proposed in Section III. The GSOA-based solu-
tion to the GTSPN is presented in Section IV and results from
the empirical evaluation are reported in Section V. Concluding
remarks together with our future work are summarized in
Section VI.

II. PROBLEM STATEMENT

In the addressed Generalized Traveling Salesman Problem
with Neighborhoods (GTSPN), the neighborhoods are repre-
sented as neighborhood sets and the problem is to determine
a shortest path such that, each set is visited by the path.
We follow the notation used in [11] and since we consider
3D instances of the GTSPN proposed there, the problem is
formulated for 3D regions and a cost function computed as the
Euclidean distance between two points pi,pj ∈ R3 denoted∥∥(pi,pj)

∥∥.
Let S be the given set of n neighborhood sets, S =
{S1, . . . , Sn}, where each set Si ∈ S consists of mi regions
Si = {Qi,1, . . . , Qi,mi

}, Qi,k ⊂ R3 for 1 ≤ i ≤ n and
1 ≤ k ≤ mi, see an example of the GTSPN instance in
Fig. 1. Then, the GTSPN stands to determine a sequence of
visits Σ = (σ1, . . . , σn) to the sets Sσi

∈ S together with
the corresponding waypoint locations P = {p1, . . . ,pn} such
that pi ∈ Si, i.e., pi is inside of at least one region Qi,k ∈ Si,
which can be expressed as

⋃mi

k=1({pi} ∩ Qi,k) 6= ∅, and the
path connecting the locations P has the minimal length.

Problem 2.1 (GTSPN):

minimizeΣ,P

L(Σ, P ) =

n−1∑
i=1

∥∥∥(pσi
,pσi+1

)
∥∥∥+

∥∥(pσn
,pσ1

)
∥∥

s.t.
Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n, σi 6= σj for i 6= j
P = {p1, . . . ,pn},

⋃mi

k=1({pi} ∩Qi,k) 6= ∅

.

Notice, there is no explicit constraint that each neighbor-
hood set is visited exactly once, e.g., as in the formulation [11];
however, each set is considered visited only at a single
waypoint location p ∈ P from eventually infinite possibilities.
On the other hand, a single waypoint can be inside multiple
neighborhood sets, e.g., as in the overlapping regions in the
CETSP [24]. In such a case, we consider multiple (consecu-
tive) identical waypoint locations, which does not affect the
length of the path L(Σ, P ).

The GTSPN combines the combinatorial optimization in
determining the sequence Σ with the continuous optimization
to determine the waypoint locations P that are restricted to be
inside the respective regions of the neighborhood sets.

A. Representation of 3D Regions of the Neighborhood Sets

3D instances of the GTSPN are specified as neighborhood
sets that consist of individual 3D regions. The authors of [11]
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Fig. 2. Example of 3D regions: the ellipsoid is shown in the gray, the
polyhedra are in the green, and the hybrid regions are in the blue.

propose three types of the regions: ellipsoid, polyhedron, and
their combination, see Fig. 2. Even though a detail description
of the regions and also the process of their creation can be
found in [11], the utilized representation is presented in this
section to make the paper self-contained.

A region Qi,k of the ellipsoid type is defined by its center
ci,k and symmetric positive definite matrix Pi,k with the
dimension (3 × 3) as a set of all points x ∈ R3 satisfying

(x− ci,k)TP−1
i,k (x− ci,k) ≤ 1. (1)

The polyhedron is defined by 12 half-spaces, and a point x
is inside the polyhedron region Qi,k if the corresponding set
of equations holds1

Ai,kx− bi,k ≤ 0, (2)

where Ai,k is a matrix of the dimensions (12 × 3) and bi,k
is a matrix (vector) with the dimensions (12× 1). We assume
the center of the polyhedron ci,k is inside the polyhedron,
which holds for the instances [11] because the polyhedra are
convex. Since the neighborhood set may consist of multiple
(overlapping) regions, the assumption on the convexity still
provides sufficient flexibility, e.g., using a decomposition of a
complex polyhedron to convex polyhedra.

Finally, the hybrid region Qi,k is represented as the ellipsoid
defined by (1) with its center ci,k and six half-spaces defined
similarly as (2), but with dimensions of the matrix Ai,k (6×3)
and correspondingly bi,k with the dimensions (6 × 1). For
the hybrid region, we consider ci,k is inside the region and
satisfies both equations for the ellipsoid and also for six half-
spaces, which is assured for all instances of the GTSPN
benchmarks introduced in [11].

The centroid ci,k of each region, which is inside the region
itself, is assumed in the proposed heuristics for determination
of suitable waypoint locations inside Qi,k ∈ Si in the proposed
solutions to the GTSPN. Besides, it is assumed the regions are
convex, but they can mutually overlap. The assumptions on

1There is a mistake in (7) presented in [11] and it should be as the herein
presented (2) also regarding the provided GTSPN instances [28].

the centroid and convexity are satisfied for all the addressed
instances reported in [11]. Besides, the proposed methods
would also work for any point inside the region instead of
its centroid ci,k, but we can expect a decrease in the solution
quality. However, it is not considered an issue, as the proposed
solutions are intended to be a fast construction heuristic.

III. DECOUPLED APPROACH TO THE GTSPN

The main idea of the decoupled approach is to determine
the sequence of visits to the regions prior determination of
the waypoint locations for the found sequence. Since the
neighborhood sets consist of a set of convex regions, the
centroids of the regions can be used as possible locations
of visits and the sequence can be determined by solving
the Euclidean GTSP [14]. Such a solution of the GTSP for
the centroids of the regions is a rough approximation of the
original GTSPN because it unnecessarily enters the regions.
Therefore, we can improve the solution by post-processing
procedure as follows.

c1

c3

c2

p'1

p'2

p'3

Initial GTSP solution

Refined solution

(a) Initial GTSP and refined solutions

c1

c3

c2

p3

p1p2

Final solution

(b) Iterative solution adjustment

Fig. 3. Principle of the decoupled approach with post-processing optimization.
For simplicity, we consider centroids of the GTSP solution be c1, c2, and c3.
The initial solution is a tour connecting the centroids from which the point p′1
can be determined at the boundary of the first region and the segment (c3, c1).
Similarly, p′2 at the boundary of the second region can be determined using
(p′1, c2), etc. The sequence (p′1,p

′
2,p
′
3) forms a refined solution which can

be further iteratively adjusted by a local optimization.

First, we can determine a refined solution using intersections
of the regions with the straight line segments connecting the
centroids, see Fig. 3a. Then, we can locally adjust the waypoint
locations at the boundary of the regions using the hill-climbing
technique, which is schematically visualized in Fig. 3b. Hence,
each waypoint location in the tour is iteratively optimized to
shorten the tour until the sampling step of the hill climbing
optimization is negligibly small, e.g., less 10−10. The locations
are optimized locally, and thus all the regions in the sequence
are consecutively examined, and the whole tour is processed
several times, e.g., 10 000 times.

The GLKH [29] solver for the GTSP can be used to find a
feasible solution of the GTSPN as a tour connecting centroids
of the selected regions. We refer such a straightforward
approach as Centroids-GTSP. Then, the solution can be further
improved by the described post-processing procedure denoted
as pp_optimization and the whole decoupled approach is
denoted Centroids-GTSP+. Due to the convexity of the regions,
the local optimization quickly converges and based on the
empirical evaluation; the complete post-processing procedure
is computationally efficient.
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IV. PROPOSED GSOA-BASED SOLUTION TO THE GTSPN
The proposed heuristic solution to the GTSPN is based

on the Growing Self-Organizing Array (GSOA) for routing
problems [24]. It is a growing array of nodes that is iteratively
adapted towards the neighborhood sets S in a finite number
of learning epochs. The number of nodes M in the array
N = {ν1, . . . , νM} is varying during the adaptation as new
nodes are added to the array, and nodes from the previous
epoch are removed. Each node νi ∈ N is associated to the
node location νi in the input space νi ∈ R3. The following
notation is used to distinguish regions, sets, and locations
that are associated with the particular node νi. The covered
region Qj,k of the neighborhood set S visited at the waypoint
location of νi is νi.Qj,k and νi.Qj,k ∈ νi.S. The waypoint
location at which νi.S is visited is denoted νi.p. The array
defines a sequence of visits Σ to S, and the associated
waypoint locations to the nodes N form P . The connected
node locations ν ∈ N form a closed path that evolves in R3

to visit all the neighborhood sets S, and the array converges
to a stable state where nodes fit their waypoint locations [24].

During the adaptation of N to each Sj ∈ S, a new node
ν∗ is determined together with the corresponding waypoint
location to visit Sj . The new node ν∗ is determined from
the shortest distance of the path defined by the connected
node locations of the array N to Sj . The two points defining
the shortest distance are a new node location ν∗ on the path
and the corresponding waypoint location p∗, which is at the
boundary of Sj or it is identical to ν∗ if the path intersect Sj .
Since the path created from the node locations N consists
of the sequence of straight line segments defined by the
consecutively connected nodes (νi,νi+1), the new node ν∗

is inserted to the array between the nodes νi and νi+1 with
the position set to ν∗, see Fig. 4.

p*
cj,k

νi

νi+1

ν*

Qj,k

(a) Shortest distance between the path
defined by N and Qj,k

p*
cj,k

νi

νi+1

ν*

Qj,k

(b) Proposed heuristic based on the
shortest distance to the centroid cj,k

Fig. 4. Principle of the new node determination using shortest distance of
the path (formed from the array N ) to the region Qj,k . For better readability,
a 2D case is shown as a projection of the 3D regions. In the GSOA, the
new node ν∗ is determined together with the waypoint location p∗ using
the shortest distance between N , which forms a sequence of straight line
segments (νi,νi+1), and a particular region. The shortest distance can be
quickly determined in 2D, but it is not trivial in 3D cases. Therefore, a new
node location ν∗ is found as the closest point of segments (νi,νi+1) to
cj,k , which is always inside Qj,k . Then, the segment defined by (ν∗, cj,k)
is used to determine p∗, see Fig. 5.

The deployment of the GSOA [24] to the solution of the
GTSPN is relatively straightforward and the main challenge
is in computationally efficient determination of the shortest
distances between the path defined by the array of nodes

N and the neighborhood sets S. In the solution of the
CETSP [24], the neighborhood Sj is a disk with the radius
δi, and therefore, the location of the new node ν∗ and its
corresponding p∗ can be found analytically using equations
for lines and circle, which is fast and straightforward to
compute. However, it is not the case of 3D regions defined
as ellipsoids and polyhedra. Therefore, we propose simple
heuristic overviewed in Fig. 5 that is based on the centroids
of the individual regions. Besides, each neighborhood set
Sj ∈ S consists of multiple regions Qj,k ∈ Sj , and thus
the regions are iteratively examined and the region with the
shortest distance ‖(ν∗,p∗)‖ is considered to be visited using
the corresponding new node ν∗ and its waypoint location ν∗.p
becomes the determined p∗. Based on the performed empirical
evaluation, the heuristic show to be computationally efficient
while yielding competitive solutions to the approach [11],
which is reported in Section V.

Algorithm 1: GSOA for solving GTSPN with 3D regions
Input: S = {S1, . . . , Sn} – a set of 3D regions
Input: cmax – the number of learning epochs
Output: (Σ, P ) – Σ sequence of visits to Si ∈ S and

corresponding waypoint locations P
1 c← 0 // set the learning epoch counter

2 N ← {ν1}, ν1 is a geometric center of all regions in S
3 σ ← 10; α← 0.0005; µ← 0.6 // init. learning params

4 cmax ← min(cmax, 1/α) // ensure σ will be above 0

5 while c ≤ cmax and termination cond. is not satisfied do
6 foreach Sj in a random permutation of S do
7 (ν∗,p∗, νi, νi+1)← new node(N , Sj)
8 N ← insert node(ν∗, νi, νi+1,N )
9 N ← adapt(µ, σ, ν∗,p∗,N )

10 c← c+ 1 // update the epoch counter

11 N ← Remove all nodes from the epoch c− 1
12 σ ← (1− c · α)σ // decrease the learning gain

13 (Σ′,Q′, P ′)← Traverse N , determine Σ′, a sequence of
the visited regions Q′, and P ′ using the node waypoints

14 if c = 1 or L(Σ′, P ′) ≤ L(Σ, P ) then
15 (Σ,Q, P )← (Σ′,Q′, P ′) // update the solution

16 (Σ, P )← two opt(Σ, P ) // call Two-opt heuristic [30]

17 P ← pp optimization(Σ,Q, P ) // improve the solution

18 return (Σ, P )

A summary of the GSOA learning algorithm for the GTSPN
is depicted in Algorithm 1. The learning starts with the
initialization of the array N using a node ν1 placed at the
geometric center of the regions, but it can also be randomly
set to any point within the bounding box of S . The learning
parameters are the gain decreasing rate α, the learning rate µ,
and the initial value of the learning gain σ that are set to the
values recommended in [24] that originate from the evaluation
study [31]. The maximal number of learning epoch is adjusted
according to α to avoid negative value of the learning gain σ
because it is decreased after each learning epoch (see Line 12,
Algorithm 1).

The algorithm continues with the iterative adaptation of N
to S for up to cmax learning epochs. In each learning epoch, a
new node ν∗ is determined (Line 7, Algorithm 1) together with
the respective waypoint location p∗ for each Sj ∈ S , which
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ν*

p*

cj,k

(a) Ellipsoid

cj,k

ν*

νi

νi+1

p*

(b) Polyhedron

Fig. 5. Proposed determination of the waypoint location for ellipsoid and
polyhedron (defined by a set of half-spaces) regions, which are visualized in
2D for better readability. The centroid cj,k is always inside the region, and
therefore, it is used to determine the new node location ν∗ at the shortest
distance from N to cj,k , i.e., using an iterative examination of all segments
defined by two nodes (νi,νi+1) from N . For the ellipsoid, (1) is used to
examine if ν∗ is already inside the ellipsoid; otherwise, the waypoint location
p∗ is determined as a new point on (ν∗, cj,k) for which the left side of (1)
is equal to one. For the polyhedron, intersection points of (ν∗, cj,k) with
all half-spaces are found and p∗ is the intersection point that is closest to
ν∗ while still inside the polyhedron Qj,k , i.e., it satisfies (2). The point
p∗ becomes the waypoint location ν∗.p associated with the new node ν∗
inserted into N between νi and νi+1 with the location set to ν∗. The unused
intersection points are shown as small gray disks.

is selected from the neighborhood sets in a random order to
avoid possible local extremes. The new node ν∗ is inserted
to N between the corresponding nodes νi and νi+1 (Line 8,
Algorithm 1), see Fig. 5 for the relation of the nodes. The array
N becomes M nodes long and ν∗ is adapted towards its ν∗.p
(Line 9, Algorithm 1). The adaptation is not performed only
for the winner node ν∗ but also for its neighboring nodes that
are in the distance d < 0.2M from ν∗ in the array (i.e., d is
counted in the number of nodes in N ); and the node locations
are updated according to

ν ← ν + µf(σ, d)(ν∗.p− ν) (3)

with decreasing power for the farther nodes from ν∗ using the
neighboring function f(σ, d) = exp(−d2/σ2). The adaptation
is schematically visualized in Fig. 6.

p*
ν*

νd=1
ν'd=1 Sj,k

(a) Winner node and its neighbor-
ing nodes before adaptation

p*ν*

Sj,k

(b) Adapted nodes towards the
waypoint location p∗

Fig. 6. Visualization of the adaptation of the winner node ν∗ and its
neighboring nodes towards the determined waypoint location ν∗.p = p∗.

After adaptation to all neighborhood sets, only the newly
added nodes toN are preserved (Line 11, Algorithm 1) and the

array has exactly n nodes, each with the associated waypoint
location. Therefore, a feasible solution can be extracted by
traversing N . The adaptation is repeated for the next learning
epoch until a stable solution is found or cmax is reached.
A solution is considered stable if nodes are negligibly close
to their waypoint locations, e.g., ‖(ν, ν.p)‖ ≤ 10−4 for
all ν ∈ N . The final solution found as the best solution
from the performed epochs is optimized by the Two-opt
heuristic [30] and further improved by the post-processing
procedure (Line 17, Algorithm 1) described in Section III.

A. Approximate Shortest Distance for the GSOA Learning

The proposed approach is intended to be a fast constructive
heuristic to find a feasible solution quickly. The computational
times reported in [24] for the CETSP are in milliseconds, and
we have been motivated to achieve similar times also for the
herein addressed 3D instances of the GTSPN. The learning
procedure is identical, and the only change is in the increased
dimension of the node and waypoint locations. In addition to
the number of regions because of the neighboring sets, the
most important part is the determination of the new node and
its waypoint which depends on the shape of the regions. Here,
we can exploit the convexity of the region Qj,k and use the
centroid cj,k to determine the closest point of N to Qj,k
as the location ν∗. Notice, if ν∗ is already inside Qj,k, its
waypoint is set to ν∗.p = ν∗. Otherwise, we distinguish the
cases according to the type of the region as follows.

For the ellipsoid, the segment (ν∗, cj,k) is used to determine
p∗ on the segment and also be inside the ellipsoid. Let
λ be the left side of (1); then for λ ≤ 1, ν∗ is already
inside the ellipsoid. Otherwise, p∗ is determined as a point
on (ν∗, cj,k) that is at the distance 1/λ using (1) from cj,k,
which is certainly inside the ellipsoid because λ > 1, and thus
1/λ ≤ 1. For the polyhedron, intersection points of (ν∗, cj,k)
with the polyhedron’s half-spaces are computed. The waypoint
is chosen as the closest intersection point to ν∗ that is inside
the polyhedron according to (2), see Fig. 5b. Finally, both
methods are combined for the hybrid regions, and p∗ is the
closest point to ν∗ that satisfies (1) and (2).

B. Improving Shortest Distance Approximation

The shortest distance between a straight line segment and a
3D region may not necessarily be part of the connection of the
segment and centroid of the region. However, the initial rough
approximation of the shortest distance (visualized in Fig. 5)
can be further improved by a local optimization to find a more
suitable location on the boundary of the region. The approach
is similar to the post-processing procedure (Section III), and
it is schematically visualized in Fig. 7.

The initial step size is 0.1 and the waypoint location is
iteratively updated to shorten the distance between ν∗ and p′.
The optimization is terminated for p′ with the shortest dis-
tance, and the step size is lower than 10−10. The shape of the
regions is convex, and thus the algorithm quickly converges to
a local extreme. A real impact of the algorithm performance
is reported in the next section.
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νi

νi+1

ν*

p'

cj,k

p*

(a) Ellipsoid

cj,k

ν*

νi

νi+1

p'
p*

(b) Polyhedron

Fig. 7. Improved shortest distance approximation by a local search. The
improvement is demonstrated for the cases visualized in Fig. 5. New locations
(small red disks) are iteratively sampled around the candidate waypoint
location using sampling step with decreasing size.

Notice, the proposed improvement adjusts only p∗ and the
winner node location ν∗ is fixed. A further improvement
of the shortest distance approximation can also adjust the
winner node location at the cost of more demanding algorithm.
However, we consider such optimization out of the scope of
this paper, and we dedicate it for future work.

C. Computational Complexity

The computational complexity of the proposed GSOA-based
algorithm depends on the number of nodes and number of
regions as each region has to be considered individually. Let n
be the number of neighborhood sets and the maximal number
of the regions in any set be nr. A region can consist of
polyhedra, each defined by up to nh half-spaces. The number
of nodes can be bounded by O(2n) because one node is
created for each set in every learning epoch, and only new
nodes are preserved for the next epoch. Therefore, a new node
is determined in less than 2n examination of the segments of
N , each examined for nr regions with possible nh half-spaces,
which gives O(2nnrnh) and a single learning epoch can be
bounded by O(n2nrnh). The number of learning epochs is
fixed, and the post-processing procedure depends on n, and
Two-opt heuristic can be bounded by O(n2). Furthermore,
we can consider that each set consists of a fixed number of
regions, and also the regions may consist of a fixed maximal
number of half-spaces, and thus we can consider n� nr and
n � nh, and the complexity of the proposed algorithm can
be bounded by O(n2).

The local optimization described in Section IV-B is per-
formed in a fixed number of steps because of the convex shape
of the regions, but it is expected to be more demanding than
the simple heuristic from Section IV-A. The real computational
requirements are reported in Section V.

V. RESULTS

The proposed decoupled and GSOA-based heuristics have
been empirically evaluated in 3D instances of the GTSPN
proposed in [11]. We evaluate 30 instances with the number
of neighborhood sets n ∈ {30, 35, 40, 45, 50}, where each set
consists of six regions of variate type (ellipsoid, polyhedra,

and hybrid) [28]. To the best of the authors’ knowledge, the
only existing GTSPN solver capable of solving the addressed
instances is the HRKGA proposed in [11], and therefore, we
consider the results reported therein for a comparison.

The GLKH [29] used for the solution of the GTSP in
the decoupled heuristic and also the GSOA are randomized
algorithms, and thus we solve every problem instance 50
times by each method. The GLKH is used with the default
options, but with a random seed and only with a single run
per individual solution. We distinguish Centroids-GTSP and
Centroids-GTSP+ to report on the performance of improving
post-processing procedure and its computational requirements.
The recommended values of the GSOA learning parameters
are used, but we further employ the local optimization of the
waypoint location from Section IV-B which is denoted GSOA-
OPT. Thus, four proposed methods are evaluated.

The quality of the found solutions is measured as the
percentage deviation from the reference solution of the
best solution value among the performed trials as PDB =
(L− Lref )/Lref · 100%, where Lref is the best-known
solution of the particular problem instance, and L is the
length of the best solution found among the performed tri-
als. Besides, the robustness of the algorithm is measured
as the percentage deviation from the reference of the mean
solution value over the performed trials that is computed
as PDM = (Lavg − Lref )/Lref · 100%, where Lavg is the
average solution length among the performed trials. Notice
that zero value of the PDB indicates the particular method
provides the best-known solution.

n = 30 n = 35 n = 40 n = 45 n = 50

0
.0

0
.1

1
.0

1
0
.0

1
0
0
.0

T
C

P
U

 [
s]

HRGKA Centroids−GTSP

Centroids−GTSP
+

GSOA

GSOA−OPT

Fig. 8. Average computational requirements of the evaluated methods.

The GLKH is implemented in C [29], and the proposed
post-processing procedure and GSOA have been implemented
in C++ and they are made available [32]. All the algorithms
have been compiled by the Clang version 6.0.1 with the -O3
and -march=native flags, and all the reported results have been
obtained using a single core of Intel i7-6700K CPU running
at 4.0 GHz. In [11], the authors note the reported results
for the HRKGA have been computed using Intel Xeon CPU
running at 3.2 GHz, which is supposed to be Intel Xeon E3-
1225 v3. Therefore we normalized the computational times
regarding [33] that indicates the proposed methods have been
run on about 1.17 faster computer for a single thread rating.
Hence, the computational times reported in [11] are divided
by 1.17. The achieved results for the 3D instances of the



FAIGL et al.: FAST HEURISTICS FOR 3D MULTI-GOAL PATH PLANNING 7

TABLE I
COMPUTATIONAL RESULTS FOR 3D INSTANCES OF THE GTSPN

Set Lref
HRGKA [11] Centroids-GTSP Centroids-GTSP+ GSOA GSOA-OPT

PDB PDM TCPU PDB PDM TCPU PDB PDM TCPU PDB PDM TCPU PDB PDM TCPU

3D 30 6 a 3 540.55 0.57 1.06 45.1 3.52 3.67 0.357 0.00 0.27 0.358 0.03 4.08 0.081 0.57 3.87 0.196
3D 30 6 b 3 856.31 0.60 1.14 43.9 3.97 4.37 0.329 0.06 0.51 0.330 0.08 3.06 0.085 0.00 3.05 0.211
3D 30 6 c 3 687.14 0.74 1.46 47.6 3.68 3.83 0.332 0.00 0.14 0.333 0.35 1.34 0.086 0.54 1.55 0.200
3D 30 6 d 3 598.01 0.27 0.77 34.7 5.79 5.96 0.357 0.37 0.53 0.357 0.39 3.64 0.082 0.00 3.89 0.199
3D 30 6 e 3 543.01 1.42 1.97 44.6 4.21 4.67 0.317 0.24 0.54 0.318 0.01 1.94 0.083 0.00 2.47 0.217
3D 30 6 f 3 611.44 0.38 1.09 45.5 5.08 5.47 0.416 0.20 0.65 0.417 0.19 2.12 0.082 0.00 1.97 0.196

3D 35 6 a 4 301.46 0.40 0.82 56.0 4.35 4.53 0.630 0.00 0.28 0.631 0.99 3.39 0.113 0.76 3.14 0.252
3D 35 6 b 4 174.98 0.95 1.99 45.3 5.21 5.21 0.422 0.20 0.24 0.423 0.09 3.72 0.105 0.00 4.41 0.267
3D 35 6 c 3 683.72 0.45 1.20 52.2 4.31 4.38 0.551 0.00 0.11 0.554 2.34 6.41 0.113 2.45 6.80 0.261
3D 35 6 d 4 274.05 0.68 1.63 52.8 4.22 4.41 0.494 0.03 0.31 0.495 0.00 1.42 0.110 0.14 1.18 0.254
3D 35 6 e 3 881.87 0.44 1.51 51.8 4.31 4.40 0.494 0.27 0.41 0.516 0.58 6.19 0.113 0.00 6.48 0.260
3D 35 6 f 4 039.00 0.46 1.93 51.1 5.26 5.56 0.508 0.00 0.50 0.509 1.24 2.63 0.110 1.14 2.40 0.280

3D 40 6 a 4 465.79 0.53 1.46 48.6 4.68 4.84 0.683 0.00 0.32 0.684 0.39 2.08 0.139 0.38 2.06 0.298
3D 40 6 b 4 124.42 1.26 2.01 68.5 5.11 5.50 0.669 0.09 0.53 0.671 0.00 1.73 0.140 0.00 1.54 0.298
3D 40 6 c 4 354.23 0.59 1.36 56.2 4.32 4.89 0.768 0.00 0.57 0.769 0.51 3.53 0.149 1.23 4.12 0.310
3D 40 6 d 4 530.89 0.43 1.01 61.0 4.66 5.06 0.773 0.00 0.60 0.814 1.55 3.86 0.145 1.64 4.00 0.306
3D 40 6 e 4 085.19 0.81 1.37 58.7 4.38 4.51 0.677 0.00 0.08 0.678 0.53 5.57 0.140 2.35 6.27 0.294
3D 40 6 f 3 976.35 1.52 2.21 57.4 6.25 6.49 0.688 0.00 0.42 0.690 1.66 2.73 0.142 1.64 2.58 0.283

3D 45 6 a 4 450.18 1.15 2.23 59.1 5.05 5.87 0.960 0.00 0.89 0.963 1.72 4.02 0.175 0.88 3.76 0.348
3D 45 6 b 4 873.62 0.95 1.50 77.4 3.90 4.05 0.874 0.10 0.20 0.875 0.06 4.24 0.184 0.00 4.47 0.373
3D 45 6 c 4 784.13 0.63 1.36 69.2 4.71 5.22 1.048 0.00 0.51 1.049 0.66 2.39 0.173 0.23 2.90 0.352
3D 45 6 d 4 810.52 1.37 2.07 63.0 4.25 4.37 0.947 0.00 0.20 0.948 1.59 4.18 0.180 0.91 3.92 0.375
3D 45 6 e 4 867.92 1.46 2.19 69.7 4.10 4.54 0.908 0.04 0.55 0.909 0.00 3.88 0.181 0.00 4.32 0.359
3D 45 6 f 4 674.98 1.71 2.43 77.1 4.77 5.56 0.935 0.00 1.03 0.937 0.85 4.03 0.180 0.67 4.09 0.362

3D 50 6 a 4 904.12 1.40 2.71 72.3 5.18 5.47 1.250 0.00 0.32 1.251 0.48 3.71 0.216 0.33 3.56 0.419
3D 50 6 b 4 957.25 2.47 4.06 72.0 5.57 6.02 1.245 0.11 0.97 1.248 0.00 0.91 0.223 0.03 1.00 0.417
3D 50 6 c 4 870.90 1.41 2.33 79.7 4.68 5.18 1.238 0.00 0.37 1.239 0.19 4.40 0.227 1.45 4.12 0.419
3D 50 6 d 4 542.25 0.59 2.00 71.7 4.78 5.14 1.219 0.00 0.68 1.220 2.00 3.46 0.228 2.12 3.37 0.433
3D 50 6 e 5 323.22 0.84 1.58 71.8 4.59 5.32 1.260 0.00 0.88 1.262 2.09 4.99 0.218 2.01 4.84 0.416
3D 50 6 f 4 917.35 1.67 2.35 71.5 5.28 5.76 1.187 0.00 0.53 1.190 1.49 3.24 0.218 0.91 3.17 0.432

Average values 0.94 1.76 59.2 4.67 5.01 0.751 0.06 0.47 0.755 0.74 3.43 0.147 0.75 3.51 0.310

All the required computational times TCPU are in seconds.

GTSPN are reported in Table I, where the new best results
are highlighted in bold in the column Lref , and average
performance indicators better than the HRKGA are highlighted
in the last row. An overview of the computational requirements
is depicted in Fig. 8.

The results indicate that both proposed algorithms are
vital heuristics and provide better or competitive solutions
to the HRKGA but with significantly lower computational
requirements. In all cases, new best solutions are found mostly
by the Centroids-GTSP+, but in few cases also by the GSOA-
based approaches. Regarding the average solution quality, the
Centroids-GTSP+ provides the most stable solutions with the
path length less than 1.0% longer than Lref .

Solutions of the GTSP are weak, which is not surprising
as the path connecting the centroids is unnecessarily long.
However, the proposed post-processing procedure improves
the solution significantly while it costs no more than three
milliseconds. Thus it seems to be efficient and effective.

Although implementation details about the HRKGA are not
described in [11], both the decoupled and GSOA-based ap-
proaches are up to two orders of magnitude faster. Considering
the reported times in [11], a solution of the 50 trials by the
GSOA is less demanding, and thus a solution of the similar or

better quality than the HRKGA can be found by the proposed
GSOA with competitive computational time.

Regarding the solution quality of the GSOA, it is known
that unsupervised learning approaches to the TSP provide
about 3-5% worse solution than the optimum [31]. Thus, we
can assume that instances, where the GSOA and GSOA-OPT
provide the best results, need to be solved directly as the
GTSPN because the decoupled approach is stuck at a local
extreme. It is mainly because of close neighborhood sets,
and it would be more evident for instances with overlapping
neighborhoods. The improvement of the shortest distance
approximation based on the local optimization of the waypoint
location noticeably improves the solution quality while it is
only about two times more demanding. Hence, the proposed
method provides a groundwork for further optimization of the
shortest distances and using the GSOA-based approach as a
quick constructive heuristic for solving the GTSPN, especially
for dense instances with overlapping neighborhoods.

VI. CONCLUSION

In this paper, we propose two heuristics for the 3D multi-
goal path planning formulated as the GTSPN where the
particular neighborhoods are sets of 3D regions defined as
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a combination of ellipsoids and polyhedra. First, we propose
a decoupled approach based on the solution of the GTSP that
is followed by simple, yet effective, post-processing proce-
dure that significantly improves the solution quality. Besides,
we propose to employ the GSOA (an unsupervised learning
algorithm for routing problems) to the solution of the 3D
instances of the GTSPN. We propose a simple heuristic to
determine suitable waypoint locations to visit the regions that
is utilized in the online sampling of the regions during the
unsupervised learning of the GSOA. Regarding the reported
empirical evaluation, the both approaches seem to be suitable
heuristics for the addressed variant of the GTSPN, and they
provide competitive or better solutions than the HRKGA,
but they are up two orders of magnitude faster. The low
computational requirements make the proposed approaches
suitable choice for fast construction heuristic to quickly find a
feasible (and relatively high-quality) solutions of the GTSPN,
which can be further improved by additional optimizations.
On the other hand, the HRKGA has also been employed
in a solution of the 7D instances of the GTSPN motivated
by applications of robotic manipulators, while the proposed
heuristics exploit properties of the 3D instances with convex
regions. Although non-convex regions can be eventually split
into a set of convex regions, an extension of the proposed
approach for high-dimensional problems is a subject of our
future work. Moreover, the proposed GSOA to the GTSPN
has been motivated to develop a fast construction heuristic
for the GTSPN, and therefore, we aim to further improve the
solution quality by more optimizations employed directly into
GSOA learning.
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[4] F. Suárez-Ruiz, T. S. Lembono, and Q.-C. Pham, “Robotsp – a fast
solution to the robotic task sequencing problem,” in IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 1611–1616.

[5] P. Oberlin, S. Rathinam, and S. Darbha, “Today’s traveling salesman
problem,” IEEE Robotics & Automation Magazine, vol. 17, no. 4, pp.
70–77, Dec 2010.

[6] S. Alatartsev, M. Augustine, and F. Ortmeier, “Constricting inser-
tion heuristic for traveling salesman problem with neighborhoods,” in
International Conference on International Conference on Automated
Planning and Scheduling (ICAPS), 2013, pp. 2–10.

[7] J. Faigl and G. A. Hollinger, “Autonomous data collection using a self-
organizing map,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 5, pp. 1703–1715, May 2018.

[8] M. Dunbabin and L. Marques, “Robots for Environmental Monitoring:
Significant Advancements and Applications,” IEEE Robotics & Automa-
tion Magazine, vol. 19, no. 1, pp. 24–39, Mar. 2012.

[9] Bo Yuan, M. Orlowska, and S. Sadiq, “On the Optimal Robot Routing
Problem in Wireless Sensor Networks,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 19, no. 9, pp. 1252–1261, 2007.

[10] I. Gentilini, F. Margot, and K. Shimada, “The travelling salesman
problem with neighbourhoods: MINLP solution,” Optimization Methods
and Software, vol. 28, no. 2, pp. 364–378, 2013.

[11] K. Vicencio, B. Davis, and I. Gentilini, “Multi-goal path planning based
on the generalized traveling salesman problem with neighborhoods,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2014, pp. 2985–2990.
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