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Physical Orienteering Problem for Unmanned
Aerial Vehicle Data Collection Planning in

Environments with Obstacles
Robert Pěnička, Jan Faigl, and Martin Saska

Abstract—This paper concerns a variant of the Orienteering
Problem (OP) that arises from multi-goal data collection sce-
narios where a robot with a limited travel budget is requested
to visit given target locations in an environment with obstacles.
We call the introduced OP variant the Physical Orienteering
Problem (POP). The POP sets out to determine a feasible,
collision-free, path that maximizes collected reward from a subset
of the target locations and does not exceed the given travel budget.
The problem combines motion planning and combinatorial opti-
mization to visit multiple target locations. The proposed solution
to the POP is based on the Variable Neighborhood Search (VNS)
method combined with the asymptotically optimal sampling-
based Probabilistic Roadmap (PRM*) method. The VNS-PRM*
uses initial low-dense roadmap that is continuously expanded
during the VNS-based POP optimization to shorten paths of
the promising solutions, and thus allows maximizing the sum
of the collected rewards. The computational results support the
feasibility of the proposed approach by a fast determination
of high-quality solutions. Moreover, an experimental verifica-
tion demonstrates the applicability of the proposed VNS-PRM*
approach for data collection planning for an unmanned aerial
vehicle in an urban-like environment with obstacles.

Index Terms—Motion and Path Planning; Aerial Systems:
Applications

I. INTRODUCTION

IN this paper, we study a generalization of the Orienteer-
ing Problem (OP) [1] to address robotic route planning

problems in environments with obstacles and with an arbitrary
motion model of the used vehicle. The introduced problem is
called the Physical Orienteering Problem (POP), and it can
be considered as the OP explicitly deployed in the configu-
ration space [2] where both the obstacles and vehicle motion
constraints can be addressed. The OP belongs to multi-goal
routing problems with profits where each target location has
associated reward, and the problem sets out to maximize the
sum of collected rewards without exceeding the specified travel
budget. The POP stands, for the given initial and terminal
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Fig. 1. Experimental verification of the proposed VNS-PRM* solution of the
introduced Physical Orienteering Problem (POP) in outdoor data collection
scenario with obstacles. We refer to https://youtu.be/xUXYEt4Gnvk for the
video from the experimental verification.

locations, to select a subset of the locations and a sequence
to visit them together with the determination of cost-efficient
and collision-free paths between the individual locations to
maximize the sum of collected rewards by saving vehicle
travels to fit the budget. Hence, the route and path planning
needs to be addressed in a single optimization problem to find
a high-quality solution of the POP.

The motivation for the introduced problem is in data
collection missions with Unmanned Aerial Vehicles (UAVs)
in indoor and urban-like environments where multiple target
locations need to be visited for collecting the requested data.
Such a mission can be, e.g., to collect desired measurements
at the particular locations of interest using UAV equipped with
an onboard camera. Another example can be found in wireless
sensor networks [3] where a UAV can be used to collect data
from the sensors placed in the environment.

The flight time of today’s UAVs is usually limited and
visiting all target locations can be unfeasible, and therefore,
each location can be assigned with a reward to prioritize the
most important locations. The existing Euclidean OP [4] or
its extension for Dubins vehicle [5] can be used to find the
data collection plan. However, in a realistic robotic scenario,
the operational environment can contain obstacles and motion

https://youtu.be/xUXYEt4Gnvk
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constraints of the utilized vehicles can be more complicated
than the Dubins vehicle. Therefore, the POP is introduced to
allow deploying budget-limited UAVs in realistic data collec-
tion missions in environments with obstacles, see a snapshot
of the experimental deployment in Fig. 1.

The proposed solution of the introduced POP is denoted
VNS-PRM* because it is based on the Variable Neigh-
borhood Search (VNS) [6] metaheuristic tightly coupled
with the asymptotically optimal sampling-based Probabilistic
Roadmaps method (PRM*) [7]. The VNS-based combinatorial
optimization searches for the rewarding subset of the target
locations and order to visit them such that the interconnecting
paths are further shortened by the PRM*. The PRM* is
employed to create an initial low-dense roadmap of collision-
free paths between the target locations. The initial roadmap is
then incrementally expanded during the iterative optimization
of the OP to improve paths of promising OP solutions. In
this way, the VNS-PRM* simultaneously searches both the
OP solution and configuration spaces.

The rest of the paper is organized as follows. An overview
of related work is summarized in the next section. Section III
formally introduces the POP and the proposed VNS-PRM*
is described in Section IV. Evaluation results are reported in
Section V and concluding remarks are outlined in Section VI.

II. RELATED WORK

The addressed POP combines motion planning and the OP,
and thus we briefly overview the relevant sampling-based
planning approaches, the most related OP methods, and also
existing approaches combining routing with motion planning.

The Rapidly-Exploring Random Trees (RRT) [8] and the
Probabilistic Roadmaps (PRM) [9] can be considered as the
most fundamental approaches with many modifications and
variants [2]. Regarding the addressed POP, the RRT* and
PRM* [7] are considered as the most relevant approaches,
albeit other methods with path optimality criteria can be
utilized [10]. The introduced POP is a multi-goal planning
problem which requires a multi-query search, and thus the
PRM* is a suitable technique for the proposed solution.

The OP belongs to routing problems with profits, and
it has been introduced by Tsiligirides [4] in 1984. Since
then, numerous algorithmic solutions have been proposed [1]
together with a wide range of formulation variants [11]. The
OP can be defined as an Integer Linear Programming (ILP)
problem [1] and solved by Branch-and-Bound [12] or Branch-
and-Cut [13] algorithms. Existing heuristics, e.g., particle
swarm optimization [14] or ant colony optimization [15],
provide solutions of similar quality but within a fraction of
time required for finding the optimal solution. In particular,
the VNS-based [16] solution of the OP performs as one of the
best considering the computational time and solution quality,
and therefore, the proposed solution builds on the VNS-based
optimization operators.

The POP is also related to variants of the OP where the
travel cost is not a length of the straight lines connecting
the locations as in the regular Euclidean OP. The Dubins
Orienteering Problem (DOP) [5] is an extension for Dubins

vehicle [17] that requires to optimize the heading angle of
the vehicle to find the most rewarding paths. The proposed
VNS-PRM* significantly extends the VNS-based method for
the DOP [5] by considering the OP in the configuration
space with obstacles addressed by tightly coupled PRM* with
online roadmap expansion. Besides, the DOP has been used
for UAVs in wildfire observation planning [18] and further
extended to the DOP with Neighborhoods (DOPN) addressed
by the VNS [19] and unsupervised learning [20]. To the best
of the authors’ knowledge, the only OP variant considering
the environments with obstacles is the approach presented
in [21]. The method is based on a low level A* search in
a grid of Dubins maneuvers to get around obstacles, which
limits its application to instances without narrow passages and
predefined heading angles. On the other hand, the proposed
VNS-PRM* employs sampling-based motion planning that
can be used to find collision-free paths also in the 3D with
various vehicle motion constraints.

The motion planning combined with routing has been
mostly studied in the context of the Traveling Salesman
Problem (TSP) where the Physical TSP (PTSP) [22] com-
bines TSP with real-time motion planning in video games.
In robotics, a multi-tree Transition-based RRT [23] has been
proposed for creating a collision-free roadmap for arbitrary
routing problem. Several existing approaches combining the
routing problems with motion planning have been introduced
for scenarios with Autonomous Underwater Vehicles (AUV),
e.g., planning mine countermeasures missions based on the
PTSP [24], the Clustered TSP [25] and high-level mission
planning [26] combined with motion planning.

The most similar existing problem to the POP is a variant
of the Prize Collection Traveling Salesman Problem (PC-TSP)
for AUV [27] that uses sampling-based methods for finding
collision-free PC-TSP plans. The approach uses initially cre-
ated PRM navigation roadmap for guiding a sampling-based
motion tree considering the vehicle dynamics. A separate PC-
TSP solver is used to prioritize the expansion of the motion
tree along PC-TSP solutions found on the static navigation
roadmap. Contrarily, the proposed VNS-PRM* uses tightly
coupled asymptotically optimal PRM*, where vehicle dynam-
ics is considered by different motion primitives, with the VNS-
based OP solver within a single optimization algorithm that
deals with narrow passages better than the decoupled approach
of [27], as shown in Section V.

III. PROBLEM STATEMENT

The proposed Physical Orienteering Problem (POP) com-
bines collision-free path planning with the combinatorial rout-
ing of the Orienteering Problem in a single optimization
problem. Therefore, we outline the path planning first; then
the POP is introduced as an extension of the regular OP with
path planning to determine the most rewarding path that does
not exceed the given travel budget Tmax.

Having the world W = R2 or W = R3 with the obstacles
O = {O1, . . . ,Om} ⊂ W , the point-to-point path planning
problem is to determine a collision free-path for a robot
A ⊂ W between two locations in W such that the path
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avoids O. The problem can be formulated using the notion of
the configuration space C [2], which consists of all possible
robot configurations q ∈ C. Let A(q) ⊂ W denotes geometry
of the robot at a configuration q. The robot can move in the
free space Cfree = C \Cobs, where Cobs = {q ∈ C|A(q)∩O 6=
∅} ⊆ C is a set of configurations where the robot A(q) collides
with O. A solution of the point-to-point path planing between
initial qI ∈ Cfree and goal qG ∈ Cfree configurations is a
path τ : [0, 1] → Cfree with τ(0) = qI and τ(1) = qG,
respectively. The cost to travel the path τ can be expressed as
a cost function c(τ)→ R≥0. In this work, w.l.o.g. we consider
the cost to be the length of the path, i.e., c(τ) =

∫ 1

0
|τ(t)|dt.

In addition to have a feasible path τ that avoids obstacles
τ ∈ Cfree, we are searching for the optimal path τ∗ such
that c(τ∗) = min{c(τ)|τ is feasible} to find a solution of the
introduced POP. Moreover, a single point-to-point collision-
free optimal path planning is only a part of the POP, as we
need to address finding a path over multiple target locations
that can be arbitrarily ordered as in the solution of the OP.

The OP belongs to a class of routing problems with
profits where each of all n predefined target locations S =
{s1, . . . , sn}, si ∈ W have associated reward ri ≥ 0 for
i ∈ {1, . . . , n}. The OP stands to maximize the sum of the
collected rewards R by visiting a subset Sl ⊆ S such that
the path to visit Sl does not exceed the given limited travel
budget Tmax. The initial and terminal locations of the path
are prescribed and for simplicity they are denoted s1 and sn,
respectively, both with the zero reward r0 = rn = 0. The
OP is an optimization problem to find the subset Sl of l
target locations together with a sequence to visit the target
locations in Sl within Tmax. The sequence can be expressed as
a permutation of the target location indexes Σ = (σ1, . . . , σl)
with 1 ≤ σi ≤ n, σi 6= σj for i 6= j, σ1 = 1 and σl = n,
because of the prescribed initial and terminal locations. The
locations in the sequence have to be connected by a collision-
free path not exceeding Tmax, and thus we need to combine
routing and path planning for a solution of the introduced POP.

In the POP, the target locations si ∈ W of the OP
correspond to the target configurations Q = {q1, . . . , qn}, qi ∈
Cfree, such that si ∈ A(qi) for all 1 ≤ i ≤ n. A solution
of the POP is a sequence Σ of the configurations Ql ⊆ Q
that maximizes R using collision-free paths with the sum of
the cost satisfying Tmax. We propose to combine the solution
of the combinatorial OP with path planning to determine
paths τi connecting locations Sl in the sequence Σ such
that the individual paths are feasibly connected at the target
configurations τi(0) = qσi and τi(1) = qσi+1 for 1 ≤ i ≤ l−1.
Besides, the total path length is limited by the travel budget∑l−1
i=1 c(τi) ≤ Tmax. The POP can be understood as the OP in

C and can be summarized in a single optimization problem (1).

maximize
l,Ql,Σ,τi

R =

l∑
i=1

rσi

s.t.
l−1∑
i=1

c(τi) ≤ Tmax,

σ1 = 1, σl = n, τi ∈ Cfree,
τi(0) = qσi , τi(1) = qσi+1

, i = 1 . . . l − 1

(1)

The POP objective is to maximize the sum of the collected
rewards R by visiting the target configurations Ql. However,
the budget limit Tmax requires to evaluate the cost of the
path to visit Ql, and thus it requires to find the appropriate
sequence Σ of the configurations together with collision-
free paths connecting the configurations in the sequence.
Finding the collision-free paths is a challenging problem and
determining all possible paths connecting all the locations S
is computationally very demanding. Moreover, optimal paths
should be determined to ensure Tmax while visiting as many
highly rewarding locations as possible, which is even more
computationally demanding. On the other hand, it is likely
that a subset Ql contains only a small portion of Q, and
thus determining all paths is not necessary. Therefore, we
propose to address the introduced POP by a combination of the
asymptotically optimal motion planner PRM* with the VNS-
based solution of the routing part of the POP to continuously
improve the PRM* roadmap using the combinatorial solutions
to expand the roadmap only in parts of C that can contribute
to the solution of the POP.

IV. PROPOSED VNS-PRM* METHOD FOR THE POP

The proposed approach to solve the POP combines asymp-
totically optimal sampling-based PRM* [7] with the com-
binatorial metaheuristic VNS [6] to solve the OP on the
incrementally constructed roadmap. The POP is addressed by
a single VNS-based algorithm with an online improvement
of the roadmap using PRM* to support finding collision-
free trajectories in the configuration space to visit multiple
target configurations. The selection of the target locations
and sequence to visit them to maximize the sum of the
collected rewards is thus optimized together with the paths
connecting the selected target locations. The proposed VNS-
PRM* combines both feedbacks from (i) the PRM* for finding
the OP solution (i.e., the selection and sequence of targets) on
the improving roadmap; (ii) the search space of the OP to
guide the PRM* sampling of Cfree.

A. PRM* for the Physical Orienteering Problem

The PRM* is a multi-query asymptotically optimal motion
planning algorithm that firstly randomly samples configura-
tions in Cfree and creates a graph G = (V,E) (further denoted
as the roadmap) by connecting k neighboring samples with a
collision-free path. Contrary to the ordinary PRM with a fixed
k, in the employed k-nearest PRM*, the value of k increases
with the number of vertices m in G as k(m) = kPRM log(m)
where kPRM > k∗PRM = e(1 + 1/d) and d is the dimension
of C [7]. Hence, the VNS-PRM* uses a low-dense initial
roadmap consisting of minit random configurations and the
target configurations Q. Dijkstra’s algorithm is then used to
interconnect the target configurations using shortest paths in
G between all configurations qi, qj ∈ Q with the respective
lengths ci,j = c(τ), τ(0) = qi, τ(1) = qj .

The maximization of the collected rewards needs minimal
path lengths ci,j to visit valuable target configurations within
Tmax. High-quality paths require a large number of samples
minit, where most of the samples would not be used for
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the paths of the final solution of the POP. Therefore, the
roadmap is continuously expanded during the VNS-based
optimization with the focused sampling on the paths between
promising target configurations, i.e., configurations that are in
highly rewarded POP solutions found so far. The roadmap
initialization and expansion are summarized in Alg. 1.

Algorithm 1: PRM* Initialization and Expansion
In/Out: G(V,E) – existing roadmap, Q – target configurations,

P = {ρi,j}i,j=1,...,n – sampling density
Input : M = {mi,j} number of samples to add between qi, qj

1 Vnew ← ∅ ; Enew ← ∅
2 if q1 qn not connectable in G then // roadmap initialization
3 V ← ∅ ; E ← ∅
4 Vnew ← Q ∪ {UniformSample Cfree}1,...,minit
5 else // roadmap expansion
6 foreach pair i, j ∈ (1, . . . , n), i 6= j do
7 Vnew ← Vnew ∪ {EllipsoidSample(qi, qj , ci,j)}1,...,mi,j
8 ρi,j ← ρi,j +mi,j/EllipsoidVolume(qi, qj , ci,j)

9 foreach v ∈ Vnew do
10 U ← kNearest((V ∪ Vnew, E), v, k(|V |+ |Vnew|)) \ v
11 foreach u ∈ U do
12 if CollisionFree(v, u) then
13 Enew ← Enew ∪ {(v, u)}

14 V ← V ∪ Vnew ; E ← E ∪ Enew

During the roadmap expansion, new random configurations
Vnew are sampled in the hyperellipsoids (Line 7, Alg. 1) corre-
sponding to all target configurations pairs. The hyperellipsoids
are defined by their foci in the respective target configurations
qi and qj , and by the major axis length equal to the actual
shortest path length ci,j between the corresponding target
configurations. An individual hyperellipsoid between qi and qj
is equidistantly sampled for mi,j times [28]. The value of mi,j

thus defines a priority in which particular path is optimized,
and it is updated at each iteration of the VNS-based solution of
the POP. The sampling densities of particular ellipsoids ρi,j are
stored and further used to prioritize sampling of low-density
sampled ellipsoids.

B. VNS-based method for the POP

The VNS is based on the two main procedures called shake
and local search to iteratively improve a single incumbent
solution. The shake procedure performs a random change of
the currently best-found solution v to leave a possible local
optimum. The local search optimizes a randomly changed so-
lution v′ using a set of neighborhoods (described as operators)
to increase the quality of the incumbent solution.

In the VNS for the POP, a solution is represented as a
vector v = (qσ1

, . . . , qσl , . . . , qσn) of all target configurations
Q, where the first l items (qσ1

, . . . , qσl) represent a path within
Tmax and the remaining part of v gathers the unvisited target
configurations. The initial and terminal configurations are pre-
scribed, and thus qσ1 is always q1 and qσl is qn. The operators
of the shake and local search procedures change the order of
target configurations in v to maximize the sum of the collected
rewards R(v) = R(v(l, Ql,Σ)) =

∑l
i=1 rσi while keeping the

path length L(v) = L(v(l, Ql,Σ)) =
∑l−1
i=1 cσi,σi+1 within

Tmax by moving qσl inside v. Thus, the operators change not
only the sequence Σ but also the subset of the visited target
configurations Ql. The path of a solution v is found as the

shortest path in the roadmap over the sequence of targets
(qσ1

, . . . , qσl).
The proposed VNS-PRM* is summarized in Alg. 2. The

algorithm starts with PRM*initialSampling() that uniformly
samples Cfree using minit random configurations. Adding
minit samples is repeated until the initial q1 and terminal qn
configurations are connectable by a path with c1,n ≤ Tmax or
until the maximal computational time is reached. The lengths
ci,j are determined as the shortest paths between all pairs of
the target configurations (Line 2). A greedy procedure is used
to create initial incumbent solution v (Line 3) by inserting
target configurations between q1 and ql (for ql = qn) according
to the minimal path prolongation per target reward. The VNS-
PRM* then iteratively improves the incumbent solution during
which the roadmap expansions are performed to minimize
lengths of promising solutions. The algorithm terminates if
one of the stopping condition occurs: the maximal number of
iterations, or the number of iterations without improvement,
or the maximal computational time.

Algorithm 2: VNS-PRM* for the POP
Input : Q – target configurations, Tmax – budget, minit – VNS-PRM* initial

number of samples, mexp – number of expanding samples
Output: v – Found data collecting path

1 G← PRM*initialSampling(minit)
2 updateRoadmapDistances ci,j∀i, j ∈ (1, . . . , n), i 6= j
3 v ← createInitialPath(Q,Tmax) // greedy initial solution
4 while Stopping condition is not met do
5 p← 1 ; B ← 0 // βi,j = 0 for all i, j ∈ (1, . . . , n), i 6= j
6 while p ≤ pmax do
7 v′ ← shake(v, p)
8 v′′ ← localSearch(v′, p)
9 if L(v′′) ≤ Tmax and

10 [R(v′′) > R(v) or [R(v′′) = R(v) and L(v′′) < L(v)]] then
11 v ← v′′ ; p← 1
12 else
13 p← p+ 1

14 M ←calculateSampling(B,P,mexp)
15 G← PRM*roadmapExpansion(G,M)
16 ci,j ← updateRoadmapDistances(G,Q) for ∀i, j ∈ (1, . . . , n)

In each VNS-PRM* iteration, the operators of shake and
local search procedures try to increase the sum of the col-
lected rewards. The reward contribution B = {βi,j}∀i, j ∈
(1, . . . , n), i 6= j of each target configuration pair is stored for
further focused roadmap expansion. After performing all pmax
neighborhood operators, the number of additional samples per
each target pair, M = {mi,j} for all i, j ∈ (1, . . . , n), i 6= j,
is calculated (Alg. 2 Line 14) and the roadmap is expanded
(Line 15) together with the update of the shortest paths
between all target configurations ci,j (Line 16). The number
of additional samples M is based on the reward contributions
B and sampling densities P = {ρi,j} used in the proposed
sampling strategy.

1) Shake: The shake procedure creates a new solution v′

to get the incumbent solution v from possible local optima. Its
two operators (pmax = 2) tries to randomly select a part of v
and alter its position within the vector, but always keep qσ1

and
adjust the terminal configuration qσl to maximize l but ensure
L(v) ≤ Tmax. The first Path move operator (p = 1) randomly
selects a part of v and moves it to a different position. The
Path exchange operator (p = 2) selects two random non-
overlapping parts of v and exchanges their positions. Thus, v′
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can have changed both the subset Ql and sequence Σ to visit
the configurations in Ql.

2) Local search: The local search procedure tries to
optimize solution v′′ (initialized by v′) by a sequence of
simple one target operations. The employed Randomized
VNS (RVNS) variant of the VNS uses randomized local search
operators where each operator examines |Q|2 simple changes
of the solution vector v′′. Each change is applied to v′′ only
if it improves the new solution w, i.e., R(w) > R(v′′) or
decreases the path length L(w) < L(v′′) for the same reward.
The One target move operator (p = 1) examines changes
where a randomly selected target is moved to a different place
within the solution vector. The One target exchange operator
(p = 2) examines changes where two randomly selected
targets are exchanged. The procedure is summarized in Alg. 3.

Algorithm 3: Local Search Procedure
Input : Q – target configurations, Tmax – budget, p – actual neighborhood

number, v′ – actual solution
Output: v′′ – created solution, B – target pairs rewards

1 v′′ ← v′

2 for |Q|2 do
3 if p = 1 then // One target move
4 wu ← v′′ with one randomly moved target

5 else // (p = 2) One target exchange
6 wu ← v′′ with one randomly exchanged target

7 B ←updateTargetPairRewards(B, wu)
8 w ← wu maximize l such that wσl is within Tmax

9 if R(w) > R(v′′) or [R(w) = R(v′′) and L(w) < L(v′′)] then
10 v′′ ← w

The local search operators firstly create a possibly unfea-
sible solution wu without adjusted position of qσl within
wu, and thus L(wu) � Tmax. It is because the paths con-
necting the configurations in wu can be shortened by a
roadmap expansion. Therefore, wu is used for updating B
in updateTargetPairRewards() where the reward of each
target pair contributing to wu is stored for the prioritization of
the promising solutions in the sampling strategy of roadmap
expansion. In this way, promising solutions are stored during
the search over the POP combinatorial solution space to guide
the expansion of the roadmap.

3) Sampling strategy: The sampling strategy of the
roadmap expansion uses equidistant sampling within the ellip-
soid (Alg. 1) based on the solution space search done by the
randomized local search procedure. The update of the reward
contribution B in updateTargetPairRewards() is performed
for all consecutive pairs of the target configurations qi, qj in
the solution wu. The reward of each pair βi,j is considered to
be increased by ∆β(wu) computed from the average reward
per a single target in wu, using the solution reward R(wu),
multiplied by a relative budget overshoot of the solution length
L(wu) determined as

∆β(wu) =
R(wu)

l − 1

(
1− L(wu)− Tmax

roTmax − Tmax

)
. (2)

The ratio ro is introduced to allow tuning of the overshoot.
The pair reward βi,j is then updated by

βi,j +=

{
0 for L(wu) > roTmax

∆β(wu) for L(wu) ≤ roTmax, R(wu) ≤ R(v)

10∆β(wu) for L(wu) ≤ roTmax, R(wu) > R(v)

. (3)

In (3), we further distinguish solutions wu satisfying roTmax
with the higher reward R(v) than the current best solution for
which the increase of βi,j is 10× higher to focus sampling
of the roadmap. The roadmap expansion thus depends on the
rewards B to focus sampling on the promising sequence of
configurations. Besides, the sampling strategy is also designed
to depend on its densities P = {ρi,j} to avoid adding samples
to already densely sampled ellipsoids. Thus, the sampling
priority m′i,j of each configuration pair (qi, qj) is proportional
to the reward βi,j and inversely proportional to the sampling
density ρi,j . This leads to disabling sampling of almost straight
line paths with high density.

m′
i,j =

βi,j

ρi,j
, mi,j = dmexp

m′
i,j∑i=n

i=1

∑j=n
j=1 m

′
i,j

e (4)

The number of samples mi,j added to the ellipsoid correspond-
ing to the path between qi and qj is determined using (4),
where mexp is the number of samples intended to be added
to the roadmap during each roadmap expansion.

V. RESULTS

The proposed VNS-PRM* for the introduced POP is eval-
uated in three simulation scenarios and verified in realistic
field deployment. First, the feasibility of the approach is
verified for instances with a point robot q = (x, y) ∈ R2 and
compared to the optimal solution found by the Integer Linear
Programming (ILP) using visibility graph for the shortest paths
between the target locations. Besides, the proposed online
roadmap expansion is compared with the usage of a single
static high-density roadmap. The VNS-PRM* is then applied
to the POP with the curvature-constrained Dubins vehicle,
q = (x, y, θ) ∈ SE(2) and compared with our implementation
of [27]. Finally, the method is used for q = (x, y, z) ∈ R3

environment and further verified in a small real outdoor
experiment with a hexarotor UAV.

Two different environments denoted potholes and dense
with 17 and 52 target locations, respectively, and with the
dimension of 2000×2000 map units are used for the evalua-
tions. The initial roadmap is constructed with minit = 1000
uniformly sampled configurations. The number of samples in
the roadmap expansion is mexp = 50 and the budget overshoot
ratio ro is empirically set to ro = 1.2. The optimization
is terminated after the maximal number of 1000 iterations,
50 iterations without improvement, or after one hour of the
computational time. The proposed method1 is implemented in
C++, and all the reported results are achieved using a single
core of the Intel Xenon processors cluster (2.2GHz-3.3GHz).
An example of solutions found by the proposed VNS-PRM*
for q ∈ R2 are depicted in Fig. 2.

The first evaluation scenario is focused on the comparison of
the proposed method with the optimal solutions for q ∈ R2 that
has been found using ILP OP formulation [1] in CPLEX 12.6.1
that is denoted ILP-VIS. The VNS-based solution without the
PRM* is denoted VNS-VIS and both the ILP-VIS and VNS-
VIS use path lengths determined from the visibility graph. The

1Method implementation, benchmark instances and obtained solutions are
available at https://github.com/ctu-mrs/vns-prm-pop

https://github.com/ctu-mrs/vns-prm-pop
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(a) potholes, Tmax = 5500, R = 214 (b) potholes, Tmax = 5500, R = 204

(c) dense, Tmax = 6000, R = 406 (d) dense,Tmax = 6000, R = 360

Fig. 2. Example of the POP solutions for q ∈ R2 in (a) and (c), and q ∈
SE(2) for ρ = 60 in (b) and (d) for both simulation testing environments.

achieved results from fifty trials of all considered instances and
budget constraints Tmax are reported in Table I, where Rm and
R is the maximal and average collected reward, respectively,
σ is the standard deviation, Lr is the ratio of the average
path length with respect to the particular Tmax, and T is the
average computational time (in seconds). The best solutions
are highlighted in bold.

TABLE I
RESULTS ON THE POP INSTANCES WITH VISIBILITY GRAPH FOR q ∈ R2

Pr. Tmax
ILP-VIS VNS-VIS VNS-PRM*

Rm T Rm T Rm R± σ Lr T

po
th

ol
es

1500 48 0.01 48 0.07 48 48.0± 0.0 0.87 4.0
2500 91 0.06 91 0.11 91 89.1± 0.4 0.90 4.4
3500 143 0.11 143 0.14 143 131.1± 8.1 0.98 9.3
4500 176 0.08 176 0.17 168 161.6± 7.9 0.94 13.2
5500 214 0.05 214 0.19 214 204.0± 8.3 0.97 17.4
6500 247 0.09 247 0.21 245 235.8± 8.0 0.97 24.6
7500 270 0.07 270 0.18 270 266.5± 4.7 0.97 24.4
8500 292 0.06 292 0.20 292 292.0± 0.0 0.94 21.5
9500 299 0.02 299 0.19 299 298.6± 1.7 0.93 18.6

de
ns

e

2000 121 1.22 121 1.06 121 117.8± 2.7 0.96 31.9
4000 284 0.99 284 1.43 284 274.5± 6.4 0.98 71.8
6000 406 3.71 406 1.70 406 397.9± 7.0 0.99 210.3
8000 522 2.08 514 1.88 498 485.0± 9.2 0.98 264.0

10000 630 16.06 618 2.32 613 568.5±17.9 0.99 489.9
12000 741 0.99 718 2.51 705 667.7±20.7 0.99 937.6
14000 827 0.75 803 2.20 791 745.0±22.8 0.99 1221.1
16000 892 1.10 883 2.00 881 826.8±22.0 0.99 1884.0
18000 922 4.11 922 1.97 922 891.1±16.8 0.99 2187.9

Although the ILP-VIS provides optimal solutions, the ap-
proach is usable only with the point robot and configuration
space where the visibility graph can be used to determine
the shortest collision-free paths. The heuristic VNS-VIS pro-
vides competitive results to the optimal solutions, but most
importantly, the proposed VNS-PRM* provides the optimal
solutions in most of the cases, except the dense environment
which contains many obstacles. The ILP-VIS and VNS-VIS

utilize precomputed visibility graph (not counted in their
computational times), and therefore, the high computational
requirements of VNS-PRM* are not surprising. The main ad-
vantage of the VNS-PRM* is in the applicability for different
motion model, e.g., Dubins vehicle, and extendibility for more
complex robot shapes. The reported results for the VNS-VIS
and VNS-PRM* indicate that the inability to find the optimal
solutions using VNS-PRM* is caused by the VNS part of the
method as the optimal solution is not found using the shortest
paths in the VNS-VIS. Nevertheless, based on the reported
results, we consider the proposed approach feasible, and we
further report on the impact of the proposed sampling strategy.

The online sampling strategy with the preference of sam-
pling between target configurations of the promising solutions
found by the VNS is compared with a solution found on
a roadmap created only by the initial sampling, but with a
high number of samples minit. The evaluation is performed
for the potholes environment and the results are reported
in Table II, where VNS-Static Roadmap denotes the variant
with only initial sampling that has been considered with
minit ∈ {1× 104 , 3× 104 , 6× 104 , 1× 105 , 1.5× 105 }
uniform samples in Cfree without the online expansion. In
addition to the maximal sum of the collected rewards Rm from
fifty trials and the corresponding average computational time T
in seconds, the average time of the last solution improvement
of the VNS-PRM* is reported in the column Ti.

TABLE II
ONLINE SAMPLING STRATEGY VS. INITIAL SAMPLING ONLY

Tmax

VNS-PRM* VNS-Static Roadmap with minit samples

104 3× 104 6× 104 105 1.5× 105

Rm T Ti Rm T Rm T Rm T Rm T Rm T

1500 48 4 1 48 34 48 92 48 153 48 223 48 361
2500 91 4 1 89 42 89 83 89 155 91 259 91 419
3500 143 9 4 125 43 132 78 132 177 127 299 143 521
4500 168 13 5 168 39 168 115 168 219 168 369 168 569
5500 214 17 6 204 41 204 95 214 222 214 395 214 721
6500 245 25 8 245 47 245 123 245 204 245 478 237 916
7500 270 24 9 270 45 270 120 270 292 270 515 270 818
8500 292 21 6 292 52 292 122 292 260 292 511 292 836
9500 299 19 7 299 40 299 119 299 252 299 519 299 1056

The average computational time of the VNS-PRM* solution
is similar to the initial sampling with minit = 104, but
the time of the last solution improvement Ti is significantly
lower. Therefore, the relatively high number of 50 iterations
without improvement, which however causes the termination
in a majority of cases, can be decreased without affect-
ing the solution quality. The computational time of VNS-
Static Roadmap is dominated by the roadmap construction
and finding the shortest paths between all target pairs using
Dijkstra’s algorithm. The computational requirements of VNS
itself using already known shortest paths can be seen for
VNS-VIS approach in Table I. The VNS-PRM* finds the best
solutions in all instances while the computationally demanding
high number of initial samples does not provide the best solu-
tion for all considered Tmax. The average number of samples
needed to find solutions using VNS-PRM* in Table II is 6678.
Furthermore, the VNS-PRM* is an anytime algorithm which
starts with a relatively small number of samples to quickly find
a feasible solution that is then continuously improved if more
computational time is available, which is shown in Fig. 3.
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Fig. 3. Evolution of the average and maximal sum of the collected rewards
for the potholes scenario and selected budgets Tmax.

The proposed VNS-PRM* has been further examined for
curvature-constrained planning with Dubins vehicle, configu-
ration space SE(2), and compared with our implementation
of [27] for the POP. In SE(2), the optimal Dubins maneuvers
are used as the distance between every two configurations.
Because of Dubins vehicle, each target location is considered
as 12 configurations with equidistantly spread heading angle
θ to allow each target location to be visited using a different
vehicle heading. Only a single such sample is, however,
allowed to collect the reward associated with the particular
target location which transforms the problem into an instance
of the Set Orienteering Problem [29]. The implementation
of [27] for Dubins vehicle and the POP (denoted as the
PRM-MT) uses the navigation PRM roadmap in R2 with
1000 samples to guide the expansion of the motion tree in
SE(2). Since [27] does not address the POP, the following
modifications have been made: an ILP OP solver is used
instead of the PC-TSP solver, a solution has to reach proximity
of the terminal location, the solution length is used instead of
the execution time, and the sum of the rewards of unvisited
target locations is used instead of the PC-TSP penalty. The
results for solved instances with the turning radius of ρ = 60
are reported in Table III.

TABLE III
RESULTS ON THE POP INSTANCES WITH DUBINS VEHICLE – q ∈ SE(2)

Pr. Tmax
PRM-MT VNS-PRM*

Rm R± σ Lr Ti Rm R± σ Lr Ti

po
th

ol
es

1500 48 35.6±11.0 0.87 3 48 48.0± 0.0 0.89 5
2500 89 70.5±11.0 0.91 21 89 89.0± 0.0 0.94 6
3500 118 94.6±15.7 0.94 145 127 122.7± 4.3 0.93 56
4500 153 107.8±27.4 0.90 263 168 161.8± 7.7 0.98 109
5500 179 109.4±26.9 0.79 363 204 190.3±13.3 0.96 124
6500 221 120.1±35.0 0.74 370 242 226.0±10.8 0.97 165
7500 234 88.5±41.5 0.61 407 263 257.1± 5.9 0.95 221
8500 167 92.4±32.9 0.54 545 292 281.3±11.2 0.97 103
9500 219 91.7±43.1 0.52 552 299 295.2± 3.5 0.94 67

de
ns

e

2000 80 67.6± 9.5 0.90 219 108 107.8± 1.4 0.90 95
4000 154 74.9±26.4 0.54 2514 237 225.2± 4.8 0.96 560
6000 110 66.9±14.6 0.30 2513 360 339.5±10.5 0.98 812
8000 144 34.3±32.4 0.13 2522 472 429.0±11.7 0.98 1065

10000 130 9.7±21.7 0.03 3042 564 510.9±17.0 0.99 1363
12000 52 2.8±10.2 0.01 3144 646 596.7±21.2 0.98 1827
14000 121 8.1±23.1 0.02 2815 719 670.7±20.9 0.99 2356
16000 84 3.5±13.9 0.01 2510 806 742.3±23.9 0.99 2136
18000 55 8.9±16.2 0.02 2879 839 798.8±22.8 0.98 2488

Regarding the reported results, the VNS-PRM* outperforms
the PRM-MT in both the maximal achieved rewards Rm and
the average rewards R with smaller σ. The average ratio of the
used budget Lr for the PRM-MT indicates that the method is
unable to exploit the available travel budget. This is caused by
uniform sampling of PRM-MT along the navigation roadmap
without considering the ability of the motion tree to reach
these random samples. This can be improved by generating

samples according to the progress of the motion tree [30].
The average time of the last solution improvement Ti of the
VNS-PRM* is also lower than for the PRM-MT in most of the
cases. Low values of the collected rewards in dense scenarios
suggest that the PRM-MT [27] struggles with narrow passages
and the guidance along solutions found in static roadmaps
becomes less effective for longer Tmax with the possibility to
visit more targets.

The VNS-PRM* is further verified in 3D scenario denoted
as building that is 20×30×6 large and has seven rooms in each
of the two floors, see Fig. 4. One target location is in each
room with the reward in the range 5–30, thus 14 targets in the
total. The upper floor is accessible only by tight windows and
the robot is modeled as a cylindrical object with 0.7 diameter
and 0.5 height with the configuration q ∈ R3.

Fig. 4. Example solution of the POP in the building environment for Tmax =
140 with the collected reward R = 230 and solution length of 136.3.

The computational results for the building scenario are
depicted in Table IV, where Tinit denotes the average time
to find initial solution with the average reward Rinit and i is
the average number of the VNS-PRM* iterations.

TABLE IV
RESULTS ON THE POP INSTANCES FOR q ∈ R3

Pr. Tmax
VNS-PRM*

Rinit Rm R± σ Lr i Tinit T

bu
ild

in
g

60 4.8 60 29.2±14.5 0.92 71 0.6 6.7
80 30.5 100 76.8± 8.5 0.95 97 0.5 14.5

100 45.4 120 101.4±20.3 0.94 108 0.6 23.5
120 52.6 150 132.1±13.9 0.96 140 0.6 45.5
140 73.0 175 163.2±11.0 0.96 143 0.6 52.9
160 81.1 205 179.4±28.5 0.95 137 0.6 47.6
180 87.2 215 203.7± 7.9 0.96 150 0.6 68.0
200 92.0 225 215.7± 7.4 0.96 155 0.6 70.5
220 100.1 230 224.7± 4.3 0.95 147 0.7 67.1

Table IV shows that the VNS-PRM* finds an initial solution
within one second with the average solution quality of 35.3%
of the best-found solution. The number of iterations i indi-
cates that the algorithm terminates after the maximum of 50
iterations without improvement. Furthermore, the comparison
of computational times for q ∈ R2, SE(2), and R3 show the
increased computational requirements of planning in SE(2),
which is caused by the nearest neighborhood search of the
PRM* where k-d trees are not effective in SE(2).
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Finally, the VNS-PRM* has been experimentally verified
in a small data collection mission with a hexarotor UAV. The
scenario consists of three walls and four cylindrical obstacles
representing the indoor- or urban-like environment, see Fig. 1
with the visualization of the results. The environment was
about 9×10 m large with ten target locations, including initial
and terminal locations, with the constant altitude, and thus
the VNS-PRM* search space is R2. The UAV is modeled
as a cylindrical object with 1.4 m diameter and 0.5 m height
which corresponds to 1.75× enlargement of the real physical
dimension of the UAV to compensate possible localization
inaccuracies. The considered travel budget limit was set to
Tmax = 25 m and the solution found onboard of the UAV
before flight by the VNS-PRM* within T = 8.4 s is 24.11 m
long with the collected reward R = 75. The model predictive
trajectory tracking [31] was used to precisely follow the
trajectory and visit all six planned target locations.

VI. CONCLUSIONS

A novel generalization of the Orienteering Problem (OP)
for robotic data collection scenarios is introduced in this
paper. The problem is called Physical Orienteering Problem
(POP), and it is suitable for cases where collision-free paths
in environment with obstacles are required together with the
maximization of collected rewards from the given target loca-
tions using the limited travel budget. The proposed solution of
newly introduced POP is based on the Variable Neighborhood
Search (VNS) metaheuristic for the OP that is combined
with the asymptotically optimal motion planner PRM*. The
proposed VNS-PRM* starts with a low-dense roadmap that is
continuously expanded during the VNS-based route optimiza-
tion by selecting the most promising solutions for shortening
the collision-free paths and thus allowing to maximize the col-
lected rewards. The presented results show that the proposed
VNS-PRM* is a feasible and vital method and it can provide
optimal solutions when compared on 2D instances with a point
robot. Furthermore, the proposed roadmap expansion strategy
demonstrates computational benefits in comparison to a very
dense initial roadmap. The main benefit of the approach rests
in the generalization of the OP for more complex configuration
spaces demonstrated in a solution of the POP in R3 and with
Dubins vehicle in SE(2).
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