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Multi-vehicle Dynamic Water Surface Monitoring

František Nekovář , Jan Faigl , Martin Saska

Abstract—Repeated exploration of a water surface to detect
objects of interest and their subsequent monitoring is important
in search-and-rescue or ocean clean-up operations. Since the
location of any detected object is dynamic, we propose to
address the combined surface exploration and monitoring of the
detected objects by modeling spatio-temporal reward states and
coordinating a team of vehicles to collect the rewards. The model
characterizes the dynamics of the water surface and enables the
planner to predict future system states. The state reward value
relevant to the particular water surface cell increases over time
and is nullified by being in a sensor range of a vehicle. Thus,
the proposed multi-vehicle planning approach is to minimize
the collective value of the dynamic model reward states. The
purpose is to address vehicles’ motion constraints by using model
predictive control on receding horizon and fully exploiting the
utilized vehicles’ motion capabilities. Based on the evaluation
results, the approach indicates improvement in a solution to the
kinematic orienteering problem and the team orienteering prob-
lem in the monitoring task compared to the existing solutions. The
proposed approach has been experimentally verified, supporting
its feasibility in real-world monitoring tasks.

I. INTRODUCTION

I
N this letter, we present a novel formulation of the model-

based multi-vehicle planning, denoted Incremental Motion

Planning with Dynamic Reward (IMP-DR), to address contin-

ual exploration and monitoring of water surface with objects

of interest using dynamic spatio-temporal reward model. The

studied problem belongs to a class of robotic scenarios in

which repeated monitoring for state (or location) changes is

needed upon encountering an object of interest during the

initial exploration. Besides, repeated monitoring can identify

new objects that become detectable in time.

The motivational scenario is to employ a fleet of Unmanned

Aerial Vehicles (UAVs) in top-down visual monitoring of large

water surfaces surrounding a central ship, where the water

surfaces that are not static due to tidal and weather conditions.

The problem is most closely related to the informative motion

planning to maximize information gathering along the planned

trajectory [1], the kinematic Orienteering Problem (OP) [2] to

find vehicle’s constrained reward-collecting trajectory and per-

sistent monitoring with limited sensing range [3]. Hence, we

model the information gained from exploration and monitoring

as dynamic reward states similar to the discretized field in [3],

where the states’ position might change.
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Figure 1. Experimental UAV performing a water surface monitoring mission.

The underlying spatio-temporal reward model dynamics

influence the expected information gain, and we thus formulate

the combined information-collecting task as maximizing the

collected reward on a receding horizon with minimizing the

weighted sum of the reward states. While the value of any

reward state steadily increases in time, it is nullified by its

presence in the vehicle’s sensor range. Besides, the informa-

tion gain is constrained by limited sensor range, and movement

planning needs to consider vehicle motion constraints.

We propose to address the studied problem using the

Model Predictive Control (MPC) approach that allows us to

consider dynamical models of the vehicles, reward states,

and positions of objects being monitored. The dynamical

models enable predicting future environment and vehicle

states, with computational complexity exponentially increasing

with prediction horizon length. Thus, information-gathering

trajectories are computed on a limited control horizon, and

the iterative closed-loop operation scheme of the MPC planner

with the system model is used for the continual exploration

and monitoring using multiple vehicles. The approach has been

experimentally verified using a real vehicle shown in Fig. 1.

A top-down snapshot from the deployment is depicted in Fig. 2

with overlaid reward states’ values spaced on a symmetric grid.

The main contributions are considered as follows.

• Novel IMP-DR problem formulation to coordinate a team

of vehicles to search a priory unknown (water) surface

and monitor detected dynamic objects continually.

• IMP-DR solution using MPC-based planning on receding

horizon with a dynamic environment and vehicle models,

predicting future states of the dynamic environment.

• Evaluation of the proposed solution and comparison with

the most related (to the best of the authors’ knowledge)
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Figure 2. Reward value overlay during monitoring experiment using two
UAVs. The reward collection range is shown as red circles around the vehicles.

approach to the Team Orienteering Problem (TOP) [4]

adapted for the receding horizon planning with dy-

namic model and solved by the state-of-the-art meta-

heuristic [5]. The proposed approach is also compared to

the state-of-the-art kinematic OP methods [2] for a single

vehicle showing improved results on evaluation scenarios.

• Experimental deployment of the proposed approach in

real-world flight in a water surface monitoring scenario.

The remainder of the letter is organized as follows. Related

work is overviewed in the following section. The addressed

IMP-DR is formally introduced in Section III. The sensor and

reward models are described in Section IV together with the

vehicle model and its motion constraints. The proposed MPC-

based solution is presented in Section V. Evaluation results

and experimental deployment are reported in Section VI.

Concluding remarks are summarized in Section VII.

II. RELATED WORK

Environment monitoring can be formulated as a problem

of creating a quantifiable phenomena model using sampled

data from the environment [6] with the regression about

the phenomena state using regression models such as Gaus-

sian Processes (GPs) [7] and sensor model, such as in [8].

Nevertheless, the studied continual monitoring task has to

address vehicle motion constraints and information dynamics.

Therefore, path planning is a part of the navigation toward the

locations where the studied phenomena can be measured, such

as the signal strength [9]. Thus, informative path planning [10]

is to determine the most informative path improving the phe-

nomena model with respect to motion constraints of informa-

tion collecting vehicles [1], [11]. However, these approaches

are suitable for modeling spatial phenomena in environment

monitoring tasks, but they do not address the underlying

temporal dynamics that we call information dynamics and its

interaction with the vehicles.
Persistent multi-vehicle monitoring of changing environ-

ments with limited vehicle sensing range and pre-determined

closed vehicles’ paths is presented in [3]. Continuous dynamic

scalar field monitoring with value estimation based on indi-

vidual filtered measurements is proposed in [12], where the

authors employ Pontryagin’s minimum principle for planning

locally optimal, single-vehicle sensing trajectories minimizing

the estimation uncertainty. However, single-order integrator

vehicle dynamics is considered with unconstrained input.

In our addressed task, we explicitly model the environment

information dynamics similarly to the accumulation func-

tion [3] in combination with sensor and vehicle dynamics

as a set of Discrete Algebraic Equations (DAEs) used for

moving-horizon prediction and control. The limited prediction

horizon allows planning to visit only some locations to collect

measurements. Hence, we need to select the most informative

locations reachable, and the task can be formulated as a gen-

eralization of the Orienteering Problem (OP) [13].

Although not directly addressing the information dynamics,

existing OP formulations can be utilized in receding horizon

reward collection planning schemes. Multi-vehicle planning

for search-and-rescue operations with grid-sampled rewards

determined by satellite imaging of the area of interest is

formulated in [5]. However, exact visits of the sampled grid

positions are required, constraining the vehicle’s movement

and neglecting its dynamics. Non-zero sensor range and Du-

bins vehicle dynamics are addressed in [14]. The authors

of [2] address the OP with time-optimal multi-rotor vehicle

kinematic trajectory generation. The OP with multiple Dubins

vehicles si studied in [15], providing background work on

existing solutions to the planning problem with a limited travel

budget.

Furthermore, we consider discretized environment repre-

sentations inspiring, such as in exploring flooded areas [16],

where the collection of the information reward is addressed

by the uniform sampling of grid cells with travel budget-

constrained vehicle-driving policy. The Correlated OP [17]

formulates cyclic informative tours with the information gain

correlated between neighboring nodes of the graph-based

environment representation to estimate a scalar field. However,

the sensor range is limited to the individual nodes, and the

approaches do not account for the vehicle dynamics.

The dynamic position of the target objects is addressed

in [18] by receding horizon planning and dynamic clustering

to maximize the reward collected from moving targets with

uncertain dynamics. In [19], the approach is generalized to

address obstacles in cooperative planning that can also be

based on the Fisher information matrix model, for example,

used in multi-UAV target tracking [20].

In [21], the dynamics of water surface debris show addi-

tional effects to the local oscillations to be taken into account,

such as water currents, sail effect, and locally most dominant

Stokes drift [22]. Therefore, we model the target movement as

a combination of local oscillations and time-dependent drift.

The existing receding horizon formulations address targets’

and vehicles’ position dynamics but not the reward values’

dynamics for continual monitoring. Therefore, we generalize

the existing approaches to account for all the dynamics in the

studied problem of combined water surface monitoring and

tracking of the detected object of interest.
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III. PROBLEM STATEMENT

The Incremental Motion Planning with Dynamic Reward

(IMP-DR) problem is formulated as a multi-vehicle scenario

in a two-dimensional environment represented by np sampled

locations or predicted positions of objects of interest, further

referred to as targets, each encoded by a position vector pi.

Each pi represents coordinates pi = [pi,x, pi,y], and targets

form a discrete finite set P = {pi ∈ R
2 : 1 f i f np}.

The number of targets np can evolve during the mission as

new targets might be added by the object detection. Targets’

coordinates can change with predictable dynamics, a model

that is assumed to be known. However, the model parameter-

ization can change during the monitoring based on the visual

observations. Thus, the target set is a function of time P(t).
The presence of m vehicles is assumed at qi = [qi,x, qi,y]

forming the set Q = {qi ∈ R
2 : 1 f i f m}. Since

the vehicles move in time, we denote Q(t). Besides, the

vehicles are subject to dynamical constraints given by the

maximum velocity magnitude vmax and acceleration in the

axes amax. Mutual vehicle collision avoidance and safety are

addressed by the constraint on the minimum allowed distance

between the vehicles dmin at any time event t, such that

∥qi(t)− qj(t)∥ g dmin, ∀qi(t),qj(t) ∈ Q(t), i ̸= j, and

i, j ∈ {1, . . . ,m}.

We seek to minimize the time elapsed between visits to

the targets in Pt on a planning horizon Th while penalizing

maximal value. It is addressed by defining the dynamical

reward state, analogous to the information in the informative

planning approaches. The reward states ri(t) ∈ R
+

0 : 0 f
i f np are modeled for each pi ∈ P(t). In the presence

of any of the vehicles near the reward state position pi,

its reward value ri is nullified. Squared reward state value

is used in optimization problems to penalize high values

and improve solver performance. The function fr(ṙ, r,P,Q)
describes implicit reward dynamics with relation to the targets

and positions of the vehicles. The variables of fr are functions

of time; the notation is omitted for clarity. We formulate the

IMP-DR planning problem step as follows.

min
Q

=

np
�

i=1

� t0+Th

t0

r2i dt

s.t.

0 = fr(ṙ, r,P,Q).

(1)

We use the IMP-DR to perform monitoring tasks by iterative

solution of (1), incrementing the initial time t0 with the

sampling period Ts f Th on each iteration and utilizing the

current reward state feedback.

IV. DYNAMIC MODELS

The sensor model, reward model, and second-order multi-

rotor UAV model used in the proposed monitoring solution

are presented in this section.

A. Sensor Model

The UAV sensor range, modeled as a radius around the

vehicle where the reward is collected, is depicted in Fig. 3.
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Figure 3. (a) The Butterworth function (2) plotted for different values of
nb. The red vertical dashed line denotes the cut-off range parameter cb = 1.
The function satisfies fb(cb) = 0.5; therefore, the value of cb indicates an
approximate sensor range. (b) The sensor range model is a function of two
variables (3), plotted for nb = 8 and cb = 1.

The proposed sensor range model is based on the continuous

differentiable Butterworth function (2) employed to serve as a

reward collection indicator function in the reward model.

The degree nb of the Butterworth function influences the

convergence rate in limits and function shape. The value of cb
specifies the effective sensor range as fb approximates square

shape with increasing nb. It enables us to model the sensor

coverage range as a function of the UAV’s position (3).

fb(x) =
1

1 + ( x
cb
)nb

(2)

fb2(x, y) =
1

1 + (

√
x2+y2

cb
)nb

(3)

Due to the asymptotic convergence in lim
x→±∞

fb(x) = 0, the

modeled reward collection is exhibited even for large distances

k cb; the model reward values are approximate. It positively

influences solution convergence of interior-point methods, as

the value of fb, which directly affects the reward gain, is

always non-zero for all reward pairs of state-vehicle (up to

the limits of the numerical precision). On a UAV visit to the

neighborhood of a rewarding target, the related reward state is

approximately nullified due to fb(0) = 1; the overall reward

state error is assumed to converge to some finite value during

the continual monitoring.

B. Reward Model

The dynamics of discrete reward state ri, where 1 f i f np,

are modeled as a DAE (4), which is similar to the information

accumulation function in [3].

ri,k+1 =(ri + Tskgain)

(1− max(1,
m
�

j=1

fb2(pi,x,k − qj,x,k, pi,y,k − qj,y,k))

(4)

The reward variables’ dynamics is autonomous if no vehicle

is present proportional to kgain. On the presence of a vehicle

in the reward state neighborhood indicated by (3), the reward

state is nullified. We consider the sampling rate of the discrete

dynamical system Ts. Limiting the maximal influence of the

multiple vehicles on the reward states is necessary for the
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model, as the reward state values are assumed to be non-

negative.

Due to the approximate sensor range radius cb, the results

of the proposed monitoring approach are processed by the

evaluation model (5). Discrete vehicle positions qj,x,k, pj,y,k
at sampled time-steps k are used as the inputs of an indicator

function to determine if a vehicle passed through the reward-

collecting range during continual monitoring

reval
i,k+1 =

�

0, if di,j f ne, ∀1 f j f m,

reval
i,k + Tskgain otherwise,

(5)

where di,j =
�

(pi,x − qj,x,k)2 + (pi,y − qj,y,k)2.

C. Vehicle Model

The vehicles are modeled as the second-order DAE systems

of m multi-rotor UAV agents in (6a) to (6d) with the acceler-

ations ai,x, ai,y as the inputs. The model is subject to motion

constraints expressed in (7a) to (7c).

qi,x,k+1 = vi,x,kTs + ai,x,k
T 2
s

2
(6a)

qi,y,k+1 = vi,y,kTs + ai,y,k
T 2
s

2
(6b)

vi,x,k+1 = ai,x,kTs (6c)

vi,y,k+1 = ai,y,kTs (6d)

for 1 f i f m.

�

v2i,x + v2i,y f vmax (7a)

− amax f ai,x f amax (7b)

− amax f ai,y f amax (7c)

for 1 f i f m.

Collision avoidance puts minimal mutual distance con-

straints (8a) and (8b) on the agents as:

di,j g dmin, (8a)

di,j =
�

(qi,x − qj,x)2 + (qi,y − qj,y)2, (8b)

for 1 f i, j f m, i ̸= j.

D. Water Surface Model

The water surface area is modeled as a finite grid of target

points. The movement of dynamic debris on the surface is

modeled as local periodic oscillations combined with a time-

dependent drift, a simplified combination of the water currents’

influence, sail effect, and Stokes drift. Precise modeling of

underlying causes might improve the movement prediction,

but it is considered out of this letter’s scope. The model is ex-

pressed for each axis as simplified time-dependent function (9)

parameterized by the amplitude Ap, angular velocity ωs, and

the drift velocity vd.

xd(t) = tvd +Ap sin (tωp) (9)

The function parameters are assumed to be known but might

vary during the monitoring for each target. Then, parameter

changes can be determined from the visual measurements

during the adaptive monitoring.

V. PROPOSED MPC-BASED SOLUTION FOR IMP-DR

We propose to address the motivational problem of multi-

vehicle dynamic water surface monitoring using the proposed

IMP-DR formulation and planning solution method based on

the MPC (10). In the combined adaptive exploration and

monitoring problem, we seek to maximize the information

gained from the specified targets. The information is quantified

as a reward value associated with the targets. As the reward

values continually increase, the planning goal is to minimize

the values present in the reward states of the modeled envi-

ronment.

We propose employing an MPC-based control technique

to solve the multi-vehicle planning problem, as it is suitable

for addressing vehicle constraints and time-evolving reward

dynamics. The utilized Optimal Control Problem of the MPC

on Ns steps, where Ns =
Th

Ts
, is stated as

min
x,u

=

Ns−1
�

k=0

(fl(xk) + ∆u
T
k kR∆uk) + fm(xNs

), (10)

s.t. xlb f xk f xub,

ulb f uk f uub,

zlb f zk f zub.

The state vector x (11) and input vector u (12) are:

x =
�

q1,x, q1,y, q2,x, q2,y, . . . , qm,x, qm,y,

v1,x, v1,y, v2,x, v2,y, . . . , vm,x, vm,y,

r1, r2 . . . , rnp

�T
, (11)

u =
�

a1,x, a1,y, a2,x, a2,y, . . . , am,x, am,y

�T
. (12)

The functions fl(x) = fm(x) =
�np

k=1
r2k are the Lagrange

and Meyer terms. Input penalty kR = 10−3 is used to penalize

the system input changes ∆uk = uk+1 − uk. Including the

penalty term prevents oscillatory behavior, and it was empiri-

cally observed to decrease solution times. The constant vectors

xub, xlb, uub, and ulb enforce state and input constraints.

Algebraic vector z(x,u) and its bounding vectors zub and

zlb enforce minimum vehicle distance and velocity magnitude

constraints.

VI. RESULTS

The proposed solution has been empirically examined in

several scenarios to evaluate its properties. In Section VI-A,

we present results on computational performance according to

the problem size, number of vehicles, and planning horizon

length. Furthermore, the introduced IMP-DR generalizes both

the Kinematic and Team OP. Therefore, the proposed approach

is utilized to address these problems as well. In particular, the

proposed approach’s performance is compared to the state-

of-the-art Kinematic OP planner [2] and Team OP meta-

heuristic planner [5] with the results reported in Section VI-B

and Section VI-C, respectively. Finally, simulation results and

reports on experimental field deployment on continual water

surface exploration and monitoring tasks are presented in

Section VI-D and Section VI-E, respectively.
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A. Computational Evaluation

For the computational evaluation, the static targets are sam-

pled on a symmetric two-dimensional grid of the width wgrid.

The spacing of targets is 1m on both axes if not otherwise

specified. The reward increase rate is set to kgain = 1 s−1.

The initial reward state value is set to r0 = 10, as the system

input change is penalized in the solver cost function. The

vehicle dynamics is limited by the maximum velocity vector

magnitude vmax = 1ms−1 and acceleration amax = 2ms−1 in

each axis. The sensor model is set to cb = 0.25 and nb = 8.

The solutions were determined at each planning step with the

period of Ts = 0.25 s. The number of sampling steps in the

planner is set to Ns = 20 with the resulting planning horizon

of 5 s. Monitoring was performed for 5min, translating to

S = 1200 planning steps.
The proposed approach is implemented using the do-mpc

toolbox [23] with the Ipopt [24] non-linear optimization

framework. The MA97 sparse linear system solver, part of

the HSL collection [25], was utilized. The evaluation was per-

formed using Robot Operating System (ROS) control pipeline

of the MRS UAV System [26] and the AMD Ryzen 4750U

processor running at the base clock of 1.7GHz, accompanied

with 32GB RAM. The solution convergence tolerance of 10−8

was used as the stopping criterion during evaluation.
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Figure 4. (a) Average computational time tavg per planning step for the
number of targets np and m vehicles. The time tavg does not necessarily
increase with np due to the utilization of multi-threading for larger problems
by the MA97 solver; however, the overall tendency is linear with increasing
problem size, as shown for m = 6. (b) Average reward state values ravg in
time of the GRASP-based TOP planner [5] and the proposed IMP-DR-based
approach for the 1st order (velocity only) and the full 2nd order vehicle
dynamics models. The monitoring problem is to minimize the system reward
states by repeatedly visiting targets, nullifying the dynamic value.

The influence of the number of vehicles m and targets np

on the computational performance is depicted in Fig. 4a and

listed in Table I. Since the computational time differs at each

planning step, the average twall planning time is reported as tavg

and the maximal planning time as tmax. The average reward

state value ravg = 1

np

�np

i=1
ri is continually stable around the

equilibrium value req, the maximum system state reward is

reported in the column rmax in Table I. From the observations

of ravg, its value exhibits Lyapunov stability as it does not

diverge from a neighborhood of req for t → ∞ that has been

pragmatically examined for 300 s as an average of ravg. It

demonstrates the numerical stability of the proposed continual

monitoring approach in indefinite operation. The average step

computational time tavg increases linearly with the number of

targets np and polynomially with the number of vehicles m.

Table I
COMPUTATIONAL RESULTS FOR np TARGETS AND m VEHICLES

np m tavg [s] tmax [s] req [-] rmax [-]

25 1 0.05 1.5 32.7 109.8
25 2 0.12 2.0 27.6 139.2
25 3 0.55 5.8 16.7 97.7
25 4 0.77 8.9 9.9 56.2
25 5 1.06 8.8 13.7 94.6
25 6 1.22 12.1 16.4 86.2

49 1 0.18 5.8 31.3 125.0
49 2 0.49 4.3 32.3 143.5
49 3 1.42 19.9 18.3 80.6
49 4 1.63 21.1 25.5 98.5
49 5 3.30 18.3 14.4 94.6
49 6 3.53 33.0 13.3 70.0

100 1 0.43 20.9 55.2 279.9
100 2 1.50 8.9 33.4 149.0
100 3 1.85 26.9 28.1 164.1
100 4 2.67 28.5 28.2 118.9
100 5 4.16 31.8 24.5 136.5
100 6 7.07 77.3 22.7 118.4

Table II
COMPUTATIONAL RESULTS FOR m VEHICLES AND HORIZON Ns

m Ns tavg [s] tmax [s] req [-] rmax [-]

1 10 0.05 0.4 78.4 309.7
1 15 0.16 11.9 64.9 268.2
1 20 0.34 2.8 61.0 237.5
1 25 0.61 6.0 59.3 299.2
1 30 1.12 9.9 54.7 255.0

3 10 0.23 2.3 71.0 294.9
3 15 1.32 19.3 28.6 191.8
3 20 1.63 10.4 28.3 155.5
3 25 3.17 17.6 26.6 138.7
3 30 5.39 33.2 26.2 135.0

5 10 0.5 11.1 52.5 279.2
5 15 1.61 9.4 23.4 153.4
5 20 4.29 26.5 20.4 133.3
5 25 11.02 84.5 17.1 100.9
5 30 21.68 224.7 21.2 137.7

The influence of the planning horizon Ns on the compu-

tational performance with wgrid = 10 is depicted in Table II.

While increasing Ns yields an exponential increase in tavg,

it does not necessarily lead to improved average reward

equilibrium req and the maximal reward rmax. Hence, lower

values of Ns can be preferred.

Here, it is worth noting that the used Ipopt solver relies on

the third-party code to solve sparse symmetric indefinite linear

systems repeatedly, and the choice of the third-party solver

influences the required computational time and the quality of

the solution. A solution is needed in less than the sampling

rate Ts for the ideal operation of the proposed monitoring

approach. Although planning at each sampling step provides

the best performance, it can be performed at a reduced rate to

allow for a longer computational time. Besides, the solver can

be terminated prematurely before its convergence to obtain an

intermediate solution suitable for field deployment, which is

used for the results presented in Section VI-E.

B. Kinematic Orienteering Problem (Kinematic OP)

The IMP-DR problem can be formulated as the Kinematic

OP if the reward dynamics is non-existent and end-point

constraints are introduced. The proposed MPC-based approach

can provide an approximate solution to the single-vehicle



6

Kinematic OP formulated in [2]. Therefore, the proposed

IMP-DR is compared with the state-of-the-art solutions to the

Kinematic OP denoted KOP-1 and KOP-6lns [2].
For the comparison, the OP is addressed by modeling the

neighborhood size negligible to the overall target distances in

the problem instance. The sampling of Ts = 0.1 s was used

with the input penalties of kQ = 10−3. The cost function terms

were modified as: fl(x) =
�np

k=1
rk, fm(x) = 103((qx −

xfinal)
2 + (qy − yfinal)

2) to apply a quadratic soft-constraint on

the final vehicle position qNs,x, qNs,y . The sensor parameters

were set to cb = 0.05 and nb = 2, approximating a spiking

function at each target position. Dynamical constraints were

vmax = 3ms−1 and amax = 1.5m s−2.

Table III
RESULTS FOR THE KINEMATIC ORIENTEERING PROBLEM

Cmax [s] KOP-1 KOP-6lns MPCbest tavg [s]

10 95 80 115 1.7
15 180 165 200 2.8
20 250 250 260 8.7
25 325 330 370 11.4
30 390 390 450 15.9
35 430 435 450 22.8
40 450 450 450 45.7

Furthermore, since the Ipopt solver provides a locally

optimal solution, a potentially better solution can be obtained

by perturbing the initial reward values in the dynamic model.

Thus, a noise with N (0, 0.1) distribution was added to the ini-

tial reward values on each solution iteration, and 10 iterations

were performed for each benchmark instance. The best-found

results are presented in Table III under the column MPCbest

and shown in Fig. 5. The average computational time of the

proposed MPC-based solver is denoted tavg.
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Figure 5. Velocity profiles of two solutions to the Kinematic OP on the
Tsigilirides-2 problem instances with the travel budget Cmax along the traveled
path. The path color indicates the velocity for the scale depicted at the right
of the plot in ms−1. The solutions were obtained using the proposed MPC-
based reward collection approach adjusted for solving the Kinematic OP.

The proposed solution method provided improved reward

gain in all but one testing instance, where the travel budget

Cmax [s] is sufficiently large for the compared methods to catch

up with the proposed approach performance. The trajectory

deviation from the visited targets and final position does not

exceed 0.02m in all benchmark instances, which we consider

negligible with regard to the problem scale. As the number of

planning steps is fixed, the provided solutions are not time-

optimal. They, however, satisfy the travel budget constraint.

In addition to better performance than the existing solvers

in the collected reward, the proposed MPC-based approach

can further address the reward dynamics, neighborhood, and

multiple vehicles.

C. Team Orienteering Problem (Team OP)

A variant of the multi-vehicle monitoring scenario can be

formulated as the Team OP, for which the proposed solver can

also be utilized. Therefore, we compared its performance with

the grid-based Team OP planner proposed in [5]. The Greedy

Random Adaptive Search Procedure (GRASP) meta-heuristic

planner [5] determines paths to maximize the collected reward

gain from the sampled grid locations using multiple vehicles

with the given travel budget. Hence, it was generalized for

use in the receding horizon planning scenario by removing

the end-point constraint and using individual vehicle starting

locations. Besides, the GRASP cost function was modified

to fl(x) =
�np

i=1
r2i . It provides a trade-off between the

computational requirements and solution quality compared to

the exact Mixed Integer Linear Programming solution. The

computational effectiveness is essential for the real-time oper-

ation of the proposed monitoring approach, where the Team

OP is solved repeatedly on each sampling step. Therefore, we

consider the heuristic approach in the comparison.
Grid width wgrid = 10 with np = 100 and m = 3 vehicles

were used. The GRASP planner was limited to movement

in the 4-neighborhood of a two-dimensional grid at 1m s−1.

Neglecting the second-order dynamics and utilizing maximal

vehicle velocity provides a Lower Bound (LB) on the GRASP-

based monitoring performance. Assuming the vehicles have to

accelerate and decelerate between the targets at 2m s−2 pro-

vides an Upper Bound (UB) solution cost. As the second-order

dynamics become negligible (due to large target distances), the

UB converges to the LB.
Five GRASP planning iterations were performed on each

planning step to obtain a quality solution. The planning was

performed on the horizon of the 20 steps, i.e., 20 s for the

LB and 40 s for the UB. The tuning of the proposed IMP-

DR solver was the same as for the Kinematic OP reported in

Section VI-B with the sampling rate Ts = 0.1 s, input penalties

kQ = 10−3, neighborhood cb = 0.05, nb = 2, and Ns = 20
planning steps. Solutions were obtained addressing the first-

order velocity dynamics and the second-order acceleration

dynamics vehicle models. The benchmark was run for 300 s,
and the average system state reward values ravg provided by

the evaluation model are plotted in Fig. 4b. On the target visit,

vehicles did not exceed the neighborhood of 0.02m as in the

KOP benchmark.
The proposed IMP-DR planning approach demonstrates

a lower average reward ravg in continual monitoring over the

GRASP-based TOP planner. The IMP-DR planning perfor-

mance is similar for both the first- and acceleration-constrained

second-order models. The results demonstrate the importance

of the dynamic reward model in continual monitoring as

it leads to lower req. However, IMP-DR is impractical for

planning multi-vehicle information-gathering tasks with large

travel budgets, as the tavg increases exponentially with plan-

ning horizon length.



7

D. Water Surface Monitoring and Flotsam Monitoring

The addressed motivational scenarios of repeated water

surface exploration to detect objects of interest and dynamic

object monitoring are presented. In the formulated exploration

task, a symmetric target grid of wgrid = 20 with the target

spacing of 0.5m was used. The sensor function was set

to cb = 0.5 and nb = 4, modeling the reward collection

dependent on the distance. The MPC parameters were set to

Ts = 0.25 s and Ns = 20. The evolution of the system state
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Figure 6. Water surface monitoring scenario on 20× 20 large grid utilizing
two vehicles. The color of the cells indicates the reward state value according
to the scale depicted at the right part of the plot. A circle with the radius 1m
is shown in the red around each vehicle at the time instant t, approximating
the maximal reward collection range. The paths traveled by vehicles are in
blue and orange.

rewards at a particular time instant t is depicted in Fig. 6

together with the visualization of the vehicles’ trajectories.

The task was experimentally evaluated, and results are reported

in Section VI-E.
Regarding the motivational scenario of monitoring debris

or flotsam on a water surface with predictable movement

dynamics, we consider the following problem setup. The

targets are within a 3×4 large grid with the spacing of 2m and

the exact vehicle dynamic constraints as in the previous water

surface monitoring scenario. The target dynamics in the x-

axis are modeled as (9) with Ap = 0.5, ωp = π
10

, and vd = 0.

Modeling target movement is possible by introducing time-

varying parameters in the MPC planner. The parameters for

the scenario instance are set to Ts = 0.25 s and Ns = 40, and

the sensor function to cb = 0.5 and nb = 8.
The monitoring for the time horizon of 25 s is shown

in Fig. 7. The vehicle positions are initiated from the oppo-

site left-most targets and proceed to monitor moving targets

continuously. Note that the locally optimal solutions provided

by the utilized solver tend to degrade if vehicles are in close

−1 0 1 2 3 4 5

x [m]

−1

0

1

2

3

4

5

6

7

y
[m

]

7.2

11.0

11.0

2.6

5.8

3.7

2.5

0.0

11.0

11.0

1.1

5.6

(a) t = 10 s

−1 0 1 2 3 4 5

x [m]

−1

0

1

2

3

4

5

6

7

y
[m

]

12.2

16.0

16.0

7.6

10.8

0.0

1.8

3.8

15.8

0.7

2.7

4.7

(b) t = 15 s

−1 0 1 2 3 4 5

x [m]

−1

0

1

2

3

4

5

6

7

y
[m

]

2.5

0.3

21.0

12.6

3.6

4.8

6.8

8.8

4.0

2.0

0.4

9.7

(c) t = 20 s

−1 0 1 2 3 4 5

x [m]

−1

0

1

2

3

4

5

6

7

y
[m

]

7.5

5.3

3.3

0.0

8.6

9.8

4.4

2.9

9.0

7.0

1.5

1.0

(d) t = 25 s

Figure 7. Flotsam monitoring scenario with dynamic target positions and
two vehicles. The red (dashed) circles denote the reward collection radius of
0.5m. Paths traveled by vehicles are shown in blue and orange.

proximity, as seen in Fig. 7a, where one of the vehicles is

stuck in a feasible solution space.

E. Experimental Field Deployment

The feasibility of the proposed solution has been further

examined in an experimental field deployment with limited

computational resources. The proposed approach was experi-

mentally tested with two UAV research platforms based on

DJI F450, shown in Fig. 8a, performing a water surface

exploration task as depicted in Fig. 2. The vehicles were

equipped with GPS-based navigation and a top-down visual

sensor. The connection between the vehicles and the planning

computer was established over a Wi-Fi network using ROS.

The used communication network introduced transport delays

due to networking limits over long distances. Therefore, the

parameters of the planning scheme from Section VI-A were

modified to identical re-planning rate and horizon length of

5 s and the maximum solver processing time was limited to

twall f 3 s.
After obtaining a solution, time-stamped command tra-

jectories were passed to the UAV trajectory trackers using

ROS messages for open-loop monitoring control. The onboard

trackers adjusted to the trajectories on the ROS message

arrival. The planner loop initiated from the UAV states 5 s in

the future. The 2 s long window left for data transfer ensured

the continuity of the flight trajectories. The vehicles operated

over the surface of the Orlík dam, located on the Vltava river
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(a) F450 UAV platforms (b) Top-down view of the UAVs

Figure 8. Snapshots from the real field deployment of the proposed approach.
Supporting material and media from the experiment are available at [27].

in southern Bohemia. The vehicles are depicted in Fig. 8b.

Compared to req = 18.9 provided by the ideal planning rate

identical to Ts = 0.25, the monitoring performance of adjusted

real-world setup was req = 43.7 during the 5min flight. The

performance degradation over an ideal configuration due to

the limited computational time and resources can be mitigated

using more powerful computational hardware. Nevertheless,

the presented monitoring approach was shown to be feasible

in a real-world deployment.

VII. CONCLUSION

We propose a novel formulation of the introduced IMP-DR

model-based multi-vehicle monitoring approach. The proposed

solution is based on the MPC on receding horizon evaluated

on several problem instances. Based on the reported results,

the performance of the proposed approach surpasses the state-

of-the-art Kinematic OP solver in static reward collection and

the grid-based Team OP solver in dynamic monitoring tasks.

The proposed approach has been utilized in the combined

dynamic water surface exploration and monitoring missions

with multiple UAVs and limited sensor range. The results

demonstrated the IMP-DR in theory, and the experimen-

tal deployment supports its practical viability in monitoring

tasks. Future research is directed at formulating the planning-

oriented model prediction to increase performance and address

multi-rotor vehicle limited-thrust model and battery charge

constraints in prolonged monitoring missions.
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