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Abstract

This paper is concerned with a variant of the multi-goal path planning in which goals are represented as convex
polygons. The problem is to find a closed shortest path in a polygonal map such that all goals are visited. The
proposed solution is based on a self-organizing map algorithm for the traveling salesman problem. Neurons’ weights are
considered as nodes inside the polygonal domain and connected nodes represent a path that evolves according to the
proposed adaptation rules. In addition, a reference algorithm based on the solution of the traveling salesman problem
and the consecutive touring polygons problem is provided to find high quality solutions of the created set of problems.
The problems are designed to represent various inspection and patrolling tasks and can form a kind of benchmark set for
multi-goal path planning algorithms. The performance of the algorithms is examined in this problem set, which includes
an instance of the watchman route problem with restricted visibility range. The proposed algorithms provide a unified
approach to solve various visibility based routing problems in polygonal maps while they provide competitive quality of

solutions to the reference algorithm with significantly lower computational requirements.
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1. Introduction

A problem to find a path visiting a set of given goals
by a robot is called the multi-goal path planning problem
(MTP). In particular, the MTP stands to find a shortest
path connecting a given set of goals located in a robot
working environment. Approaches for the MTP are mo-
tivated by practical problems that include planning for a
robotic arm [1, 2], where the found path leads to minimiza-
tion of the execution time providing a better utilization of
the tools, or, in a case of a mobile robot, inspection plan-
ning [3], e.g., motivated by a search and rescue missions [4],
where the time to find possible victims is critical.

A robot working environment can be represented by the
polygonal domain W and goals may be represented by
points. In such a case, the MTP can be formulated as
the traveling salesman problem (TSP) [5]. Thus, the MTP
becomes a combinatorial optimization problem to find a
sequence of goals’ visits, e.g., using all shortest paths be-
tween goals found in a visibility graph by Dijkstra’s algo-
rithm.

A more general variant of the MTP can be more ap-
propriate if objects of interest may be located in certain
regions of W, e.g., when it is sufficient to reach a particular
part of the environment to “see” or measure the requested
object. A practical example of such a problem is collect-
ing samples from particular areas, e.g., taking snapshots
of objects or measuring concentration levels of substances’
in regions or ponds, which are accessible from various di-
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rections.

In such a problem formulation, a goal is a polygonal
region rather than a single point. Several algorithms ad-
dressing this problem can be found in literature; however,
only for its particular restricted variant. For example goals
form a disjoint set of convex polygons attached to a sim-
ple polygon in the safari route problem [6], which can be
solved in O(n?) [7]. If the route enter to the convex goal
is not allowed, the problem is called the zoo-keeper prob-
lem, which can be solved in O(nlogn) for a given starting
point and the full shortest path map [8]. However, both
problems are NP-hard in general.

A combinatorial approach [2] can be used for the MTP
with partitioned goals, where each goal is represented by
a finite (small) set of point goals. However, combinatorial
approaches are unsuitable for continuous sets because of
too many possibilities how to connect the goals.

In this paper, we present a self-organizing map (SOM)
based algorithm for the general variant of the MTP with
polygonal goals. The algorithm is based on SOM for the
TSP in W [9]. Contrary to combinatorial approaches or
other soft-computing techniques [10], a geometrical inter-
pretation of SOM evolution in W allows easy and straight-
forward extensions to deal with polygonal goals. To show
flexibility of the SOM approach, several modifications of
the adaptation rules are proposed and evaluated in a set
of problems, which also demonstrates a geometric relation
between the learning network and polygonal goals.

The main advantage of the proposed approach is abil-
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ity to address general multi-goal path planning problems
in W (not only in a simple polygon) and with goals not
necessarily attached to W; thus, the approach provides a
unifying framework to solve various MTP variants.

Beside the SOM based algorithms, we present an alter-
native approach to address the MTP with polygonal goals
that provides a reference solution of the problems solved.
It is based on the solution of the TSP with point goals
and a consecutive solution of the touring polygons problem
(TPP). Although, a polynomial algorithm for the TPP
in a simple polygon has been proposed in [11], our refer-
ence algorithm is able to solve problems in W (not only
in a simple polygon) and it also does not require disjoint
convex goals. In addition, it is also probably easier to im-
plement; thus, it represents a suitable reference algorithm
for a comparison.

The rest of this paper is organized as follows. The next
section provides an overview of the related work and sim-
ilar problem formulations. Besides, it also contains a brief
description of the SOM adaptation schema for the TSP
in W, because the proposed algorithms for the MTP with
polygonal goals are its extensions. The addressed problem
formulation and evaluation methodology of the solution
quality and algorithms’ comparison is presented in Sec-
tion 3. A reference algorithm based on the solution of the
related TSP and the consecutive TPP is presented in Sec-
tion 4. In Section 5, the proposed modifications of the
SOM’s adaptation rules to deal with the polygonal goals
are presented. The results and comparisons of the pro-
posed algorithms and discussion of the results achieved are
presented in Section 6. Concluding remarks are presented
in Section 7.

2. Related Work

In this section, we present an overview of approaches
to address the visibility based routing problems, i.e., vari-
ous formulations of the MTP. Mainly because once a point
robot is assumed, W directly represents the robot configu-
ration space and many visibility based approaches can be
applied to solve such a variant of the MTP. As the pro-
posed approach is based on the SOM algorithm for the
TSP, its brief description is presented in Section 2.1.

The multi-goal path planning can be considered as a
type of path planning under visibility constraints [12]. The
goals in the MTP can represent sensing locations, where
a robot takes measurements. Such locations can be found
by a sensor placement algorithm that aims to find a min-
imal set of locations from which the whole W is covered
(“seen”) by a robot sensing device.

The sensor placement problem is related to the art
gallery problem (AGP), which is a classical problem stud-
ied in the computational geometry. The AGP was posed
by Klee in 1973 and its most basic form is [13]: “What
is the smallest number of guards needed to guard an art
gallery?”. The guards are static in the AGP and sev-
eral problem variants for segment guards (representing pa-

trolling guards) have been proposed [14, 15]. Besides, a
patrolling route for a single robot can be found as a solu-
tion of the traveling salesman problem (TSP) where guards
locations become cities that have to be visited [5]; hence,
the problem becomes the MTP. Even though optimal al-
gorithms for the AGP have been proposed for a restricted
class of polygons [16, 17], the AGP is known to be NP-hard
for a polygon with holes [18], and therefore, approximate
algorithms are preferred to find guards [19, 20]. More-
over, additional visibility constraints can be considered,
which is the reason why authors of [12] call the problem
the sensor placement problem rather than the AGP. The
constraints can restrict the visibility to a distance d, or
an incident angle that regards a situation where a guard
prefers to watch a scene directly rather than under un-
suitable angle [21]. Several approximate algorithms have
been proposed to address the sensor placement problem,
e.g., based on deterministic convex partitioning [22] or ran-
domized approaches [23, 3]. Once a set of guards covering
the environment is determined, the problem to be solved
is (again) the TSP.

The aforementioned approaches (consisting of finding
the guards and the consecutive solution of the TSP) rep-
resent the so-called decoupled approach of the inspection
planning to cover the whole W. In the decoupled ap-
proach, the sensing of the environment is performed at
discrete places, i.e., at the guards positions, and therefore,
the problem of guarding/searching W by one robot leads
to minimize visiting period of the sensing places. Regard-
ing the cost of sensing and the cost of motion the number
of places is minimized in the AGP part while the length
of the path is minimized in the TSP. Due to independent
solutions of the AGP and TSP, the decoupled approach is
suitable for cases where the sensing cost is dominant over
the motion cost [12].

A continuous sensing can be assumed if the motion cost
is dominant and the sensing cost is relatively cheap. For
such a case the problem can be formulated as the watch-
man route problem (WRP) that is a problem to find a
closed shortest path such that all points of W are visible
from at least one point of the path [24]. The WRP is NP-
hard for the polygonal domain and similarly to the AGP,
polynomial algorithms have been proposed for restricted
class of polygons [25]. The main difficulty of the problem
is that the sensing locations are not explicitly prescribed,
therefore approaches based on the TSP cannot be directly
used as they will lead to the decoupled approach. Here,
it is worth to mention that a problem of finding a mini-
mal set of guards lying on the shortest watchman route is
called the vision points problem and is NP-hard [26].

A multi-robot variant of the WRP is the m-watchman
routes problem (MWRP) that aims to find a route for each
of m watchmen such that each point of the polygon W is
visible from at least one route. For m=1 the problem is the
WRP and if m is so large that the total length of the routes
is zero, the problem is the stationary AGP. Nilsson proved
that MWRP is NP-hard even in simple polygons [27].



Probably the first heuristic approach for the MWRP in
a polygon with holes has been proposed by Packer in [28].
The approach is based on a set of static guards S found
by the heuristic A; of [20] and constructing the minimum
spanning tree of S. Distances between two guards are
found as the length of the shortest path from the visibility
graph. The tree is split to m sub-trees (for m watch-
men) and Hamiltonian routes on each sub-tree are inde-
pendently constructed. Vertices along a route are substi-
tuted by others that shorten the length of the route and
maintain the full coverage. Finally, redundant vertices of
the route are removed. Although this approach is based
on a solution of the AGP, only unrestricted visibility range
has been considered by the author.

If a visibility range is restricted to a distance d, two
variants of the WRP can be found in literature [7]. The
d-watchman route problem is a variant to see only the
boundary of the polygon, while the d-sweeper route prob-
lem aims to sweep a polygonal floor using a circular broom
of radius d, so that the total travel of the broom is min-
imized [6]. Approximate algorithm for the MWRP with
the d-visibility has been presented in [29].

The aforementioned safari route [6] and zoo-keeper
route [30] problems introduced in Section 1 are also moti-
vated by the WRP with restricted visibility range. These
problems are variants of the MTP with polygonal goals,
as in both of them the problem is to find a route inside
a polygon P that visits a given collection of sub-polygons
of P. Also in both original problem formulations the sub-
polygons are convex and are entirely inside the polygon P.
Although these problems are very close to the problem ad-
dressed in this paper, the main difference is that their orig-
inal formulations are only for a simple polygon, for which
the polynomial algorithms have been proposed, but the
problems are NP-hard for the polygonal domain.

Routing problems with polygonal goals can be con-
sidered as variants of the TSP with neighborhoods
(TSPN) [31]. The TSPN is studied for graphs or as a
geometric variant in a plane but typically without obsta-
cles. Approximate algorithms for restricted variants of the
TSPN have been proposed, e.g., the TSPN with arbitrary
connected neighborhoods with comparable diameters and
for disjoint unit disk neighborhoods [32], or disjoint con-
vex fat neighborhoods of arbitrary size [33]. However, the
TSPN is APX-hard and cannot be approximated to within
a factor 2 — €, where € > 0, unless P=NP [34].

Having a sequence of polygonal goals (Py, Ps,..., P),
one can ask for a shortest path visiting in order at least
one point of each polygon in the sequence. This problem is
called touring polygons problem [31], and it is a strict gen-
eralization of the safari, zoo-keeper, and watchman route
problem in a simple polygon [11]. In a case of convex
polygons in a plane, and given start and target points, an
O(knlog(n/k)) algorithm for disjoint polygons has been
proposed by the authors of [11], where n is the number of
vertices specifying the polygons. In addition, the authors
also proposed an O(nk?logn) algorithm for arbitrarily in-

tersecting polygons lying in a simple polygon. If polygons
are non-convex, the TPP is NP-hard [11].

In [35], an approximate algorithm for the TPP in a plane
is proposed. The algorithm is based on an iterative pro-
cedure refining the path until the selected accuracy e is
achieved. In each iteration, a new point at a polygon p; is
eventually computed to shorten the path connecting three
consecutive polygons p;_1, p;, and p;+1. Once the length of
new path is shorter than the previous path’s length (about
less than €), the refinement is terminated. A proof that the
algorithm finds a global solution of the TPP is based on
an approximate algorithm for solving the Euclidean short-
est path problem in a three dimensional polyhedral space
presented in [36].

2.1. SOM for Routing Problems in W

A SOM algorithm for routing problems, in particular the
SOM for the TSP in W [9], is Kohonen'’s type of unsuper-
vised two-layered learning neural network. The network
contains two dimensional input vector and an array of out-
put units that are organized into a uni-dimensional struc-
ture. An input vector represents coordinates of a point
goal, and connections’ weights (between the input and out-
put units) represent coordinates of the output units. Con-
nections’ weights can be considered as nodes representing
a path, which provides direct geometric interpretation of
the neurons’ weights. So, the nodes form a ring in W be-
cause of the uni-dimensional structure of the output layer,
see Fig. 1.
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Figure 1: A schema of the two-layered neural network and
the associated geometric representation.

The network learning process is an iterative stochastic
procedure in which goals are presented to the network in
a random order. The procedure basically consists of two
phases: (1) selection of winner node to the presented goal;
(2) adaptation of the winner and its neighbouring nodes
toward the goal. The learning procedure works as follows.

1. Initialization: For a set of n goals G and a polyg-
onal map W, create 2n nodes N around the first
goal. Let the initial value of the learning gain
be 0=12.41n+0.06, and adaptation parameters be
1=0.6, a=0.1.



(e) step 58

(f) step 78

Figure 2: An example of the ring evolution in a polygonal map for the MTP with point goals, small green disks represent

goals and blue disks are nodes.

2. Randomizing: Create a random permutation of goals
I(G).

3. Clear Inhibition: I + (.

4. Winner Selection: Select the closest node v* to the
goal g € TI(G) according to:

V¥ argmin, ¢ nr ¢ |S(v, 9)|,

where |S(v,g)| is the length of the shortest path
among obstacles S(v, g) from v to g.
5. Adapt: Move v* and its neighbouring nodes along a
particular path toward g:
e Let the current number of nodes be m, and N
(N C N) be a set of v*’s neighborhoods in the
cardinal distance less than or equal to 0.2m.

e Move v* along the shortest path S(v*, g) toward
g by the distance |S(v*, g)|p.

e Move nodes v € N toward g along the path
S(v,g) by the distance |S(v,g)|puf(o,1), where
f is the neighbouring function f = exp(—1%/0?)
and [ is the cardinal distance of v to v*.

e Update the permutation: II(G) + II(G) \ {g}.

e Inhibit the winner: I + I U{v*}.
If III(G)| > 0 go to Step 4.

6. Decrease the learning gain: o < (1 — a)o.

7. Termination condition: If all goals have the winner in
a sufficient distance, e.g., less than 1073, or o < 1074
Stop the adaptation. Otherwise go to Step 2.

8. Final path construction: Use the last winners to de-
termine a sequence of goals’ visits.

The algorithm is terminated after a finite number of
adaptation steps as o is decreased after presentation of
all goals to the network. Moreover, the inhibition of the
winners guarantees that each goal has associated a distinct
winner; thus, a sequence of all goals’ visits can be obtained
by traversing the ring at the end of each adaptation step.

The computational burden of the adaptation procedure
depends on determination of the shortest path in W, be-
cause 2n? node—goal distance queries (Step 4) and (0.8n +
1)n node—goal path queries (Step 5) have to be resolved in
each adaptation step. Therefore, an approximate shortest
path is considered using a supporting division of W into
convex cells (convex partition of W) and pre-computed
all shortest path between map vertices to the point goals.



The approximate node—goal path is found as a path over
vertices of the cells in which the points (node and goal) are
located. Then, such a rough approximation is refined us-
ing a test of direct visibility from the node to the vertices
of the path. Details and evaluation of refinement variants
can be found in [9].

Beside the approximation, the computational burden
can be decreased using the Euclidean pre-selection [37],
because only the node with a shorter Euclidean distance
to the goal than the distance (length of the approximate
shortest path) of the current winner node candidate can
become the winner.

In Fig. 2, a ring of nodes connected by an approximate
shortest path between two points is shown to provide an
overview of the ring evolution in W.

3. Problem Statement

The problem addressed in this paper can be formulated
as follows: Find a closed shortest path visiting given set of
goals represented as convex polygons (possibly overlapping
each other) in a polygonal map W. The problem formu-
lation is based on the safari route problem [6]; however,
it is a more general in three aspects. First, polygons can
be placed inside a polygon with holes. Also, it is not re-
quired that convex polygons are attached to the boundary
of W like in the original safari route problem formulation.
Finally, polygons can overlap each other, and therefore,
such polygons can represent a polygonal goal of an arbi-
trary shape.

The proposed problem formulation comprises the WRP
with restricted visibility range d. The set of goals can be
found as a convex cover set of W, i.e., a set of convex poly-
gons whose union is W. The advantage of an algorithm
solving the formulated problem is that it is not required to
have a minimal cover set. The restricted convex polygons
to the size d can be found by a simple algorithm based on
a triangular mesh of W [29].

3.1. The Quality of Solution

In this paper, the studied SOM based algorithms are
randomized, and therefore, to examine the quality of found
solutions 100 trials of each particular problem is consid-
ered. The solution quality can be then measured as the
percent deviation from the reference path’s length of the
mean solution value (PDM)

L-L
= el 100%, (1)

ref

PDM =

and as the percent deviation from the reference of the best

solution value (PDB)

Ls - Lre

2 Trel L 100%, (2)
ref

PDB =

where L,y is the length of the reference path, and L and
L, are the average and the shortest path lengths from all

the trials of the algorithm for the particular problem, re-
spectively. The PDM and PDB provide an overview of
the algorithm quality. The PDM can be interpreted as
an expected solution quality and the PDB as what can be
achieved by the algorithm.

It is expected that the reference value would always be
lower than L and L,; however, it may happen that it
would not be the case, because the reference solution is
also only approximation as an optimal algorithm for the
general MTP is not available. Therefore, negative values
of the PDB and PDM indicate that the evaluated algo-
rithm provides better solutions than the selected reference
algorithm. An algorithm providing the reference solution
is described in the next section.

8.2. Algorithms Comparison

Due to randomized nature of the SOM based algorithm,
it is desired to compare the performance and results of
the proposed modifications of SOM for the TSP statisti-
cally. Therefore, for each modified variant of the SOM
algorithm and each particular problem 100 trials are per-
formed in order to obtain representative samples of two
evaluated distributions. The distributions are the required
computational time of the SOM adaptation procedure, and
the length of the path found. The algorithm compari-
son is based on statistical tests using a null hypothesis
Hy, i.e., Hy represents that the algorithms provide statis-
tically identical results (regarding the required computa-
tional time, or the path length), and the alternative hy-
pothesis is the results are different.

The required computational time is evaluated using the
Wilcozon test of the null hypothesis, because the distri-
butions of the time are not Gaussian. The algorithms are
considered different, i.e., one is faster than the other, if the
p-values obtained by the Wilcoxon test are less than 0.001.
In such a case, the difference between the required compu-
tational times of the compared algorithms is statistically
significant.

The comparison according to reference paths is evalu-
ated in a different way. It is because the reference path is
found using a deterministic algorithm, which always pro-
vides the same solution, while paths found by the SOM-
based algorithm differ due to randomization. Therefore,
the One-sample Wilcozon test is used as it is suggested
by the authors of [38]. Similarly to the above comparison,
once the p-values of the test statistics are less than 0.001,
the null hypothesis is rejected; thus, the paths provided
by the algorithms differ.

It is expected, the SOM algorithm would provide a bit
worse solution (in terms of path length) than the refer-
ence algorithm, and therefore, an interesting question is
how much are the solutions found by SOM worse than the
reference solution. The One-sample Wilcoxon test is used
to find such a qualitative measure. It is performed as fol-
lows. The reference path’s length is iteratively increased
by a given percentage level py, and such a length is com-
pared with the distribution of the paths found by the SOM



algorithms. Once the null hypothesis is accepted, the iter-
ative procedure is terminated, and the current value of py,
denotes the desired qualitative measure. In a case that a
basic quality of solution indicator (e.g., PDM) is negative,
the reference path’s length is decreased in similar manner,
and the qualitative measure p; indicates how much the
SOM based solution is better than the reference one.

4. Reference Algorithm

The multi-goal path planning problem is de facto the
TSP once the paths between goals are known. Therefore,
for a point goals, approximate algorithms guaranteeing the
solution quality of the TSP can be used for a particular
restricted problem variant of the MTP. However, the au-
thors of [39] note that approximate factors characterize
algorithms in the worst case, which are often several times
worse than the optimal solution, and such loose bounds
are not valuable in real-world situations.

Similarly, the main drawback of the approaches address-
ing the safari or zoo-keeper route problems is their focus
only on the particular restricted problem variant. Also
a more general MTP formulation as the TSPN does not
really help due to the complexity of the general TSPN.
For restricted variants of the TSPN, the situation is sim-
ilar to the safari route problems, i.e., the approaches are
considered only in a plane.

The aforementioned reasons lead us to propose a prac-
tical approach to find a reference solution of the MTP,
which will provide solution “good” enough for comparing
it with the SOM based approaches, and which will also be
easy to implement. The main idea of the proposed refer-
ence algorithm is based on a transformation of the MTP
to the TPP using the optimal solution of the underlying
TSP. The algorithm is following.

4.1. Transformation of the MTP with polygonal goals to
the TPP

The main difference between the MTP and the TPP is
that in the TPP, the sequence of goals visits is known;
however, the difficulty is how to connect the consecutive
goals, i.e., which point of each goal has to be visited in
order to minimize the total traveled distance. Therefore,
the TPP is obtained by solving the MTP as the TSP with
point goals. Thus, for each polygonal goal a single point
representative is determined.

Convex goals are assumed in the addressed problem,
therefore a centroid of each polygonal goal can be used
as a point goal in the TSP. More formally, let G =
{91,92, -, 9n} be a set of n convex goals in the polygonal
map W with v vertices, and ¢(g) denotes the centroid of
the goal g. Then, all shortest paths between the centroids
are found using Dijkstra’s algorithm and the complete vis-
ibility graph that is found in O((n + v)?) [40]. Such an
instance of the TSP with n point goals is solved exactly
by the concorde solver [41]. The found solution of the

TSP is then used to retrieve a sequence of the goals’ visits
for the consecutive TPP.

4.2. Approximate solution of the TPP

Even though approaches for optimal [11] or approximate
solution of the TPP [35] have been proposed, their main
drawback is that they consider goals only in a plane or in
a simple polygon. Therefore, a simple approximate algo-
rithm to deal with goals in the polygonal domain is pro-
posed here. The algorithm is inspired by the iterative pro-
cedure proposed in [35] while the obstacles are addressed
by sampling the boundary of each polygonal goal into a fi-
nite set of points. For simplicity, the sequence of goals’ vis-
its obtained from the solution of the TSP is (g1, 92, - --,9n)
in the rest of this section.

Having a given sampling distance p and each polygo-
nal goal g represented by a set of straight line segments
Sy = {s1,52,..., 5k}, the sampling is performed as follows.
First, for each goal only segments entirely lying inside W
are considered, as the path never goes through an obsta-
cle. Then, each such a segment s is sampled using its end
points. If the length of the segment |s| is less than 2p
then a middle point is an additional representative point
of s, otherwise additional points are sampled equidistantly
using p. At the end of the sampling, each goal g; has as-
sociated a set of the representative points P;.

The reference solution of the MTP with polygonal goals
is found as a path over the goals using the sequence of the
representative points. The path is found by the following
refinement procedure.

1. Initialization: Construct an initial touring polygons
path using the first representative points of each
polygonal goals. Let the path be defined by Path =
(p1,p2,-..,Dn), where p; € P; is the selected repre-
sentative point of the ith goal, and let L = |Path| be
the length of the shortest path induced by Path, e.g.,
found using the visibility graph of the points P; in W.

2. Refinement:

e Forvt=1,2,....n
— Find p; € P; minimizing the length of the
path d(pi—1, p})+d(p;, pi+1), where d(px, p1)
is the length of the shortest path (among
obstacles) from pp to p;, po = pn, and
Pn+1 = P1-
— If the total length of the current path over
point p} is shorter than over p;, replace the
point p; by p;.
e Compute new path length L,,,, using eventually
refined representative points.

3. Termination condition: If L,., — L < € Stop the
refinement. Otherwise L < L, and go to Step 2.

4. Final path construction: Use the last sequence of the
representatives points of the goals and construct the
path using the shortest paths among obstacles be-
tween two consecutive points.



The refinement procedure is repeated until the change of
the path length is not significant (smaller than the value
€). The value of € can be set arbitrarily, but it is clear
a smaller value improves the solution quality. Similarly
a smaller value of the sampling distance p can provide a
better path; however, it also increases the number of repre-
sentatives, thus increases the computational burden. The
algorithm has been used to find a reference solution of the
problem set presented in Section 6.1. During the compu-
tation, € = 0 has been used and it has also been observed
that the quality of found solutions is almost independent
of the value of p, e.g., for p less than 0.1 m (except the
jhio-coverage problem). It is caused mainly because the
convex goals are formed from segments that typically con-
tains several segments with length about 0.1 m, because
the goals are created on top of a triangular mesh of the
polygonal maps.

4.3. Comments

An eventual issue of the proposed reference algorithm
could be high computational requirements for a high num-
ber of the representative points. This is mainly related to
the computation of the visibility graph and determination
of the shortest paths among obstacles. Moreover, if the
distance matrix (or paths) are pre-computed and stored
in a memory, the algorithm can be computationally infea-
sible due to memory requirements. In particular, this is
the case of the jhig-coverage problem, which represents an
instance of the WRP.

These issues can be resolved using approximate shortest
path between two points in W [29], which is principally
similar to the node—goal path described in Section 2.1.
For the problems examined in this paper the approxima-
tion provides the same paths, while it is up to two orders of
magnitude faster than the pre-computation of the required
shortest path and construction of the complete visibility
graph using the approach [40], because of saved initializa-
tion phase.

(a) (b)

Figure 3: An example of the shortest between goals, (a)
problem denses-A, (b) shortest paths between consecutive
goals.

Here, it should be noted that the number of required
paths is relatively small, as only paths between two con-

secutive goals need to be determined. In Fig. 3, polygonal
goals of the denses-A problem and particular paths be-
tween each consecutive goals are presented.

The optimal solution of the TSP can be computation-
ally demanding, therefore a heuristic algorithm like the
Chained Lin-Kernighan approach [42] can be a more prac-
tical approach. However, the optimal solution together
with the proposed solution of the TPP provide strictly
deterministic approach, which does not require statistical
evaluation of the reference solutions; thus, it simplifies the
algorithms’ comparison a bit.

Convezity of the Goals and Randomization

Although the convexity of the goals is used for determin-
ing the representative points for the TSP as the centroids
of the polygonal goals, the convexity is not mandatory. Al-
ternatively any point can be used as a representative of the
polygonal goal, because the sequence of polygons’ visits is
retrieved from the TSP; thus, each point is associated to
the selected polygon.

The proposed reference algorithm is strictly determin-
istic; however, it can be straightforwardly randomized.
First, the initial path can be created from a randomly
selected sampled point of each polygon. In addition, each
loop of the refinement can be started from a random goal.
Such a randomization has been extensively evaluated and
its significant benefit has not been observed as it mainly
affects the number of required refinements to find the same
final path. It is because the refinement itself is very fast,
while the initialization phase using the visibility graph and
pre-computed shortest path is computationally demand-
ing.

5. Adaptation Rules for Polygonal Goals

Although it is obvious that a polygonal goal can be sam-
pled into a finite set of points and the problem can be
solved as the MTP with partitioned goals, the aforemen-
tioned SOM procedure can be straightforwardly extended
to sample the goals during the self-adaptation. Thus, in-
stead of explicit sampling of the goals three simple strate-
gies how to deal with adaptation toward polygonal goals
are presented in this section. The proposed algorithms
are based on SOM for the TSP using centroids of the
polygonal goals as point goals, see Section 2.1. However,
the select winner and adapt phases are modified to find
a more appropriate point of the polygonal goal and to
avoid unnecessary movement into the goal. Therefore, a
new point representing a polygonal goal is determined dur-
ing the adaptation and used as a point goal, which leads
to computation of a shortest path between two arbitrary
points in W. Similarly to the node—goal queries an ap-
proximate node—point path is considered to decrease the
computational burden. The approximation is also based
on a convex partition of W and the shortest path over
cells’ vertices (detailed description can be found in [29]).



(a) a path found using ter-
mination of the adaptation if
all winners are inside goals,
L=78.4m

(b) a path found with avoid-
ing adaptation of winners in-
side goals, L=65.0 m

Figure 4: Examples of found paths without and with
consideration of winners inside the goals. Goals are repre-
sented by yellow regions with small green disks represent-
ing the centroids of the regions. Winner nodes are rep-
resented by small orange disks. The length of the found
path is denoted as L.

5.1. Interior of the Goal

Probably the simplest approach (called goal interior
here) can be based on the regular adaptation to the cen-
troids of the polygonal goals. However, the adaptation,
i.e., the node movement toward the centroid, is performed
only if the node is not inside the polygonal goal. Determi-
nation if a node is inside the polygonal goal with n vertices
can be done in O(n) computing the winding number or in
O(logn) in the case of a convex goal. So, in this strat-
egy, the centroids are more like attraction points toward
which nodes are attracted because the adaptation process
is terminated if all winner nodes are inside the particular
polygonal goals. Then, the final path is constructed from
a sequence of winner nodes using the approximate shortest
node-node path. An example of solutions using the new
termination condition and with the avoiding adaptation of
winners inside the goals is shown in Fig. 4.

This adaptation strategy clearly demonstrates one of the
SOM’s advantages that is ability to reflect local properties
of the environment during the adaptation, which, in this
case, is the test if a node is inside the polygonal goal.

5.2. Attraction Point

The strategy described above can be extended by deter-
mination of a new attraction point at the border of the
particular polygonal goal toward which is being adapted.
First, a winner node v* is found regarding its distance to
the centroid ¢(g) of the goal g. Then, an intersection point
p of g with the path S(v,¢(g)) is determined. The point p
is used as a point goal to adapt the winner and its neigh-
bouring nodes. This modification is denoted as attraction
in the rest of this paper.

the winner node

the interseciion point

(a) an intersection point (b) a path found, L=59.5 m

Figure 5: Examples of an intersection point and a path
found using the attraction algorithm variant, blue disks
are nodes.

An example of determined intersection point p and the
final path found is shown in Fig. 5. The path is about
five meters shorter than a path found by avoiding adap-
tation of winner nodes inside the goals. Determination of
the intersection point increases the computational burden,
and therefore, an experimental evaluation of the proposed
algorithm variants is presented in Section 6.

5.8. Selection of Alternate Goal Point

A polygonal goal can be visited using any point of its
border. The closest point at the goal border to a node
can be determined in the winner selection phase. To find
such a point, straight line segments forming the goal are
considered instead of the goal centroid. Moreover, a goal
can be attached to the map, and therefore, only segments
laying inside the free space of W are used. Let S, =
{s1,82,...,8k} be the border segments of the polygonal
goal g that are entirely inside YW. Then, the winner node
v* is selected from a set of non-inhibited nodes regarding
the shortest path S(v,s) from a point v to the segment
5,5 € 84. Beside the winner node, a point p at the border
of g is found in the winner selection procedure as a result of
determination of S(v, s). The border point p is then used
as an alternate point goal for the adaptation, therefore this
modification is denoted as alternate goal.

Determination of the exact shortest point—segment path
can be too computationally demanding, therefore the fol-
lowing approximation is considered. First, the Euclidean
distance between the node v and the segment s is deter-
mined. If the distance is smaller than the distance of the
current winner node candidate, then the resulting point
p of s is used to determine an approximate path among
obstacles between p and v. If |S(p,v)| is shorter than the
path length of the current winner node candidate to its
border point, ¥ becomes the new winner candidate and p
is the current alternate goal (border) point.

Even though this modification is similar to the modifi-
cation described in Section 5.2, it provides sampling of the
goal boundary with a less distance of the goal point to the



thé alternate goal
(border) point

(b) a path found, L=57.4 m

(a) an alternate goal point

Figure 6: An example of the alternate goal point and the
final path found. Red straight line segments around the
goal regions denote parts of the goal border inside the free
space of W.

winner node; thus, a shorter final path can be found. An
example of found alternate goal point and the path found
is shown in Fig. 6.

6. Results

6.1. Problems Description

The proposed adaptation rules in Section 5 have been
experimentally verified in a set of problems. Due to lack
of commonly available multi-goal path planning problems
with polygonal goals several problems have been created
within a map of real and artificial environments'. An

Table 1: Properties of environments and their polygonal
representation

Map Dimensions No. No.

[m X m] vertices holes
jh 20.6 x 23.2 196 9
pb 133.3 x 104.8 89 3
h2 84.9 x 49.7 1 061 34
dense 21.0 x 21.5 288 32
potholes  20.0 x 20.0 153 23

overview of the basic properties of the environments is
shown in Table 1. Maps jh, pb, and h2 represent real en-
vironments (building plans), and maps dense and potholes
are artificial environments with many obstacles.

Sets of polygonal obstacles have been placed within the
maps in order to create representative multi-goal path
planning problems. The name of the problem is derived
from the name of the map, considered visibility range d in

TAll problems and supporting materials are available at http:
//purl.org/faigl/safari

meters written as a subscript, and particular problem vari-
ant, e.g., the problem name is in a form mapy-variant. The
value of d restricts the size of the convex polygonal goal,
i.e., all vertices of each goal are closer than d. An unre-
stricted visibility range is considered in problems without
the subscript. The convex polygonal goals are found on
top of the triangular mesh, details about the used proce-
dure can be found in [29].

The problems have been designed in order to create rep-
resentative problems particularly focused on specific char-
acteristics. Here, a short description of motivation behind
their design is provided to present the main aim of the
problems. The problems are visualized in Fig. 7, where the
centroids of the convex goals and reference paths found are
showed as well. The map jh represents an office-like en-
vironment with many rooms. Therefore, several problems
within this map are created with a motivation of patrolling
or inspection tasks. The jhy-A problem variant is a general
problem with goals in few rooms and partially trespassing
to corridors. In the jhs-corridors and jh-rooms problems,
the expected path should not enter to rooms. Thus, the
aim of these problems is to demonstrate the ability of the
evaluated algorithms to take an advantage of the polygo-
nal goals, as the centroids are located relatively far from
the border, and visitations of the centroids unnecessary
increase the path.

The jhig-coverage problem represents an instance of the
WRP with restricted visibility range, and therefore, the
algorithm’s performance in this problem can indicate a
flexibility of the tested approach.

The problem h25-A is within a large map, and it is in-
cluded in the problem set mainly because of the map’s
complexity; thus, it serves as a load and study of the algo-
rithm’s performance in maps with many vertices, e.g., to
study the influence of the supporting algorithms like the
approximate shortest path. The pbs-A problem is a very
simple problem; however, a solution can stuck in a local
optima, due to the goal in the middle of the map. The
dense map is a complicated environment, and therefore,
several alternative paths connecting the goals exist, e.g.,
see Fig. 3. In addition, the dense-small problem contains
several goals that are inside another goals. These goals
can show the ability to avoid focus of the algorithm on the
larger goals, as the visit of the inside goals is mandatory.
Finally, the problem potholess-A contains many small ob-
stacles, which are relatively sparse. The “right” sequence
of goals visit is relatively easy to find; however, the final
path length depends on a proper selection of the points at
the border of the polygonal goals.

6.2. Results

Each problem of the aforementioned problem set has
been solved using the reference algorithm described in Sec-
tion 4 and three SOM based algorithms proposed in Sec-
tion 5. Due to randomization of the SOM based algo-
rithms, 100 trials have been performed for each algorithm
and problem; thus, the total number of found solutions
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(b)  jhs-corridors, n=11, (c) jhio-doors, n=21, (d) jh-rooms, n=21,
Lyef=59.5 m Lyef=62.1 m Lyef=87.6 m

i

(e)  jhio-coverage, n=106, (g) pbs-A, n=7, L;.y=263.7T m

Lyc;=108.9 m

(h) dense-small, n=35, (i) denses-A, n=9, Lyy=57.9 m 6) potholesa-A, n=13,
Lyef=103.5 m Lyey=68.4 m

Figure 7: The problems examined and the reference solutions found, n is the number of goals, L,.; is the length of the
reference path, yellow regions are polygonal goals, and small green disks are the goals’ centroids.

by the SOM’s approaches is 3000 for all problems of the rules provide better results. However, it seems it is not

problem set. the case of the computational complexity indicated by the
All results have been obtained using the same compu-  column 7', where the average of the required computa-
tational environment consisting of a C++ implementa- tional time of the adaptation is presented. A statistical

tion of the algorithms compiled by the G++ version 4.6 evaluation of the results is presented in Table 3, where
with -O2 optimization, a single core of the i7-970 CPU at two algorithms are compared using the null hypothesis ap-
3.2 GHz, 12 GB RAM, and 64-bit version of the FreeBSD proach described in Section 3.2. Once the null hypothesis
8.2. Therefore, all the required computational times pre- is rejected (the statistics are not same), an additional null
sented can be directly compared. hypothesis is evaluated to determine if one algorithm is

The basic quality indicators (described in Section 3.1)  statistically better than the another one, i.e., using the
are presented in Table 2. Regarding the presented PDM  average required computational time 7, and the average
values, it is clear that a more sophisticated adaptation length of the path found L. The adaptation rules proposed
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Table 2: Results of the proposed SOM adaptation rules

Lycy goal interior attraction alternate goal
Problem n

[m)] PDM PDB T, [ms] PDM PDB T, [ms] PDM PDB T, [ms]
denses-A 9 579 17.30 10.87 12 711 3.62 16 1.81 0.24 23
dense-small 35 103.5 14.69  7.99 171 10.54  3.90 205 8.58  -0.13 274
h25-A 26 395.0 6.89 3.95 130 2.98 1.06 160 1.89 0.22 210
jhyg-coverage 106 108.9 22.91 15.40 872 -2.63 -7.62 1040 -13.75 -14.53 1578
jhyp-doors 21 621 14.86  8.51 35 8.79  5.53 38 0.38  -0.04 63
jhy-A 16 56.6 16.95 11.34 24 7.43  3.18 28 0.69 0.18 45
jhs-corridors 11 59.5 17.06 12.02 13 10.38  7.01 16 0.84 0.12 21
jh-rooms 21 876 17.75  13.82 53 0.78  0.18 68 0.61 0.21 73
pbs-A 7 263.7 4.18 1.23 5 2.87  0.17 7 3.42 0.07 11
potholess-A 13 684 7.58  4.57 18 3.12 091 23 3.01 0.53 29

are incremental, and therefore, the attraction variant is
compared against the goal interior variant, and similarly
alternate goal is compared against attraction. Because all
the p-values are very small, characters -’, '+’, and '=’
are used to denote that an algorithm is slower, a solution
is better, or the performance indicators are statistically
identical.

Table 3: Comparison of SOM based algorithms

ap: attraction alternate goal

Problem as: goal interior attraction

length time length time

denses-A
dense-small
h2s5-A
jhyg-coverage
jhig-doors
jha-A

jhs-corridors

4+t

jh-rooms
pb5—A
potholess-A

A+ttt

—+ - the algorithm a; provides better paths than as.

The results show that the reference algorithm provides
better solutions (except for the problem jhig-coverage).
Table 4 presents a deeper insight to the performance char-
acteristics of the reference and SOM based algorithms.
First, an estimation of the approximate factor of the SOM
based algorithm is shown in the column pp%, viz Sec-
tion 3.2. For the alternate goal algorithm, this factor is
mostly less than one percent; however, the required com-
putational time is significantly smaller (more than three
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orders of magnitude) than for the reference algorithm. No-
tice the time T of the reference algorithm does not include
the time needed to find the optimal solution of the TSP.
The computational burden of the reference algorithm is
caused by the computation of the visibility graph and all
shortest paths between points of two consecutive goals.
The number of the used points is denoted by n,, in the ta-
ble, and it is significantly higher than the number of goals
due to sampling of the goals’ borders. The refinement it-
self is very fast as all required distances are pre-computed,
therefore only the total time to solve the TPP is presented
in the column 7. On the other hand, the required com-
putational time T of the SOM based algorithms consists
of the time to initialize the supporting structures (for the
approximate shortest path) 75,,;, which is shown as a num-
ber of percentage points of T in the column T;,;;%, and
the adaptation time T,. The initialization itself consists
of construction of the convex partitioning and visibility
graphs, and computation of all shortest paths between the
map vertices (and centroids of the convex goals)?. The
required computational times of the constructions are pre-
sented in Table 5 and are negligible regarding the time
to compute the shortest path, which is indicated by Tj,¢-
The partition is found by Seidel’s algorithm [43] and the
number of convex polygons utilized in the approximation
of the shortest path is presented in the second column.
The visibility graph is found using [40].

The computational requirements of the reference al-
gorithm using the pre-computed shortest paths are very
high. This is especially significant for the problem jho-
coverage. Beside the required computational time, the re-
quired memory footprint to store the pre-computed paths
and distances is about 6.5 GB? for p = 0.05 and it rapidly
increases for a lower p, which makes this approach un-

2Note these shortest paths are also required for the optimal solu-
tion of the TSP.
3Using a regular implementation of the distance matrix.



Table 4: Comparison of the reference algorithms with the SOM based algorithms

Problem reference (TPP part) goal interior attraction alternate goal
Ny L [m] T [s] pr% T [s] Tinit% pr% T [s] Timu% pr% T [s| Tinit%
denses-A 2 470 57.9 4.2 16.5 0.06 80 6.1 0.06 74 0.7 0.06 63
dense-small 7857 103.5 91.7 13.9 0.22 22 9.3 0.25 19 8.0 0.33 17
h25-A 10 873  395.0 216.7 6.2 0.89 85 2.9 0.93 83 0.9 0.92 77
jhyig-coverage 23 720 108.9 3 033.4 22.1  0.90 3 -2.0 1.06 2 -13.8  1.60 1
jhyp-doors 12 733 62.1 552.0 13.5  0.06 39 7.9 0.06 38 0.3 0.08 19
jhg-A 6773 56.6 97.9 15.8  0.03 25 6.8 0.04 33 0.6 0.06 24
jhs-corridors 4 757 59.5 424 16.3  0.03 54 9.5 0.04 59 0.7 0.04 51
jh-rooms 989 87.6 0.7 17.0 0.07 22 0.5 0.08 18 0.5 0.10 23
pbs-A 3664 263.7 11.1 2.3 0.01 46 0.8 0.01 37 0.5 0.01 27
potholesa-A 3 050 68.4 16.3 6.5 0.03 43 2.0 0.04 38 1.9 0.04 33
Table 6: Comparison of the reference algorithms for the TPP
visibility graph approx. shortest path
Problem n Np
Lm] T[] Tiwnu% L [m] T s Tinic%
denses-A 9 546 57.9 0.35 100 57.9  0.08 76
dense-small 35 1733 103.5 2.71 100 103.5  0.07 54
h25-A 26 2285 395.0 7.34 100 395.0 0.86 92
jhip-coverage 106 12 274 110.0  499.93 100 113.5  0.54 4
jhio-doors 21 2 684 62.1 8.60 100 62.1 0.10 21
jhy-A 16 1458 56.6 2.14 100 56.6  0.05 45
jhs-corridors 11 1015 59.5 1.05 100 59.5  0.02 37
jh-rooms 21 227 87.7 0.08 99 87.7 0.03 84
pbs-A 7 784 263.7 0.32 100 263.7 0.01 29
potholess-A 13 644 68.4 0.51 100 68.4 0.02 63

Table 5: Required computational times for preparing sup-
porting structures

Map No. convex Tpartition Tvisibility
polygons [ms] [ms]

jh 77 12 4.0

pb 41 10 0.7

h2 476 65 24.0

dense 150 12 1.8

potholes 75 8 0.7

suitable for a high number of representative points. On
the other hand, the approximation of the shortest paths
used in the SOM based algorithms can also be used for
the approximate TPP algorithm. In Table 6, basic per-
formance indicators are presented for variants based on
the exact shortest paths using the visibility graph and ap-
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proximate shortest paths. In both variants, the sampling
distance p is set to 0.1 m. Note the refinement itself is
very fast, and it is done in a fraction of the initializa-
tion time, e.g., in units of microseconds. Although the
approximation reduces the initialization time (indicated
in the column T;,;;%), the initialization is still a signifi-
cant part of the total required computational time as the
initialization is a pre-computation of all shortest paths be-
tween map vertices and only several refinement steps are
needed to find a final solution. The approximation pro-
vides same results as the exact shortest path except the
problem jhio-coverage, where the final path found is about
three percentage points worse due to limited precision of
the approximation. However, the total required compu-
tational time and also required memory are significantly
smaller. Thus, the approximation seems be sufficient for
these problems.

Based on the results, the best solutions found for each
problems and over all approaches have been selected for



Table 7: Best solutions found

Problem n Lpest [m]
denses-A 9 57.9
dense-small 35 *103.4
h25-A 26 395.0
jhig-coverage 106 *93.1
jhip-doors 21 *62.0
jhy-A 16 56.6
jhs-corridors 11 59.5
jh-rooms 21 87.6
pbs-A 7 263.7
potholesa-A 13 68.4

*The solution is found by the alternate goal algorithm.

a further comparison. The length of the best paths are
depicted in Table 7.

6.3. Discussion

The presented results provide a performance overview
of the proposed adaptation rules. The principle of the
attraction and alternate goal algorithm variants are very
similar; however, the alternate goal variant provides better
results. The advantage of alternate goal is sampling of the
goals’ borders. Even though a simple approximation of
the shortest path between a node (point) and the goal’s
segment is used, a precision of the approximation increases
with the node movements toward the goal, and therefore,
a better point of the goal is sampled. This is an import
benefit of the SOM adaptation, which allows usage of a
relatively rough approximation of the shortest path.

On the other hand, the attraction algorithm variant is
a more straightforward, as the path to the centroid is uti-
lized as a path to the fixed point goal. The fixed point
goals allow to use pre-computed all shortest paths from
map vertices to the goals, which improves precision of the
approximate node—goal path. In addition, such approx-
imation is less computationally intensive in the cost of
higher memory requirements. However, this benefit is not
evident from the results, because the alternate goal variant
provides a faster convergence of the network.

The statistical comparison of the SOM-based algorithms
provides a strong statistical evidence (as the p-values ob-
tained by the Wilcoxon test are almost always less than
0.001) that the variants proposed are different. In partic-
ular, a more sophisticated rule provides better solutions.
Even though the required computational times also in-
crease, the differences between the attraction and alter-
nate goal variants are small and in few cases statistically
identical.

The reference algorithm provides better results than av-
erage solutions of the SOM based algorithms, except the
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(a) the reference algorithm,
L=108.9 m

(b) the alternate goal algo-
rithm, Lpes:=93.1 m

Figure 8: The best solutions of jhig-coverage found by
the reference and alternate goal algorithms, the optimal
solution of the related TSP is in red.

(a) the reference algorithm,
Lyes=103.5 m

(b) the alternate goal algo-
rithm, Lpes:=103.4 m

Figure 9: The best solutions found for the problem dense-
small by the reference and alternate goal algorithms.

problem jhig-coverage, which is an instance of the WRP
with a restricted visibility range. In this particular prob-
lem, the path based on the optimal solution of the related
TSP does not provide competitive solution to the paths
found by the SOM approach (regarding the PDM as well
as pr%), see Fig. 8. This indicates unsuitability of the
pure combinatorial approaches for the WRP.

On the other hand, a worse average performance of the
alternate goal algorithm is in the dense-small problem. In
this problem, the SOM based solver stuck at a local optima
due to many obstacles; however, the best solution found
over 100 trials is better than the reference solution. The
best solutions are pretty much similar as can be seen in
Fig. 9. In other problems, the differences in the final path
length are very small and they are caused by sampling of
the convex goals’ boundary, i.e., a small change of the final
visiting point can decrease the path a bit. Besides, the
final path of SOM based solutions are determined using
the approximate shortest path; thus, the approximation
can also affect the solution quality.

The above two examples of solutions demonstrate that
better solutions are obtained for a different sequence of



goals’ visits than the sequence prescribed by the optimal
solution of the TSP for the centroids. In the jhig-coverage
problem, many goals overlap each other, and therefore,
centroids are not suitable representation; thus, it is not
surprising the solution based on the TSP is worse. How-
ever, the dense-small problem also indicates that a bit
better solution can be achieved for a different sequence.
Notice, the solutions in Fig. 9 are almost identical, except
the part approximately in the middle of the map. These
examples demonstrate an advantage of the SOM based ap-
proach that includes the solution of the TSP and selection
of the appropriate points of visits in a single unified way.

It should also be noted that an optimal solution of
the TSP can be computationally demanding due to NP-
hardness of the TSP. Therefore, regarding the results, the
overall comparison of the solution quality, and the required
computational time the alternate goal approach provides
an acceptable trade-off between these two performance in-
dicators. In addition, it also provides a greater flexibility
than the reference algorithm based on a solution of the
TPP, as it scales better for a more complex problems with
many goals, and it also includes an approximate solution
of the TSP.

6.3.1. Non-convex goals

Although convex goals are assumed in the problem for-
mulation, the presented adaptation rules do not depend on
the goal convexity. The convex goals are advantageous in
visual inspection tasks (covering tasks), because the whole
goal region is inspected by visiting the goal at any point
of the goal. Also a point representative of the convex goal
can be simply computed as the centroid. If a goal is not
convex a point that is inside the goal has to be determined
for the goal interior and attraction algorithms. Basically
any point inside the goal can be used, but a bias toward
the point can be expected. The alternate goal algorithm
variant uses a set of segments representing the goal, and
therefore, this algorithm can be directly used for problems
with non-convex goals (see Fig. 10), which is an additional
advantage of the SOM based approach for the MTP.

‘\\3\“ 1
|
\

(a) the jh environment (b) the potholes environment

Figure 10: Solutions found by the alternate goal algorithm
for problems with non-convex goals.
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7. Conclusion

A self-organizing map based algorithm for the multi-
goal path planning problem in the polygonal domain has
been presented. Three variants of the algorithm addressing
polygonal goals have been proposed and experimentally
evaluated for a set of problems including an instance of
the WRP with a restricted visibility range (jhio-coverage).
Even though the solution quality is not guaranteed because
of SOM, regarding the experimental results the algorithms
provide high quality solutions. The advantage of the pro-
posed alternate goal algorithm is that it provides a flexible
approach to solve various routing problems including the
TSP, WRP, safari route problems, and their variants in the
polygonal domain, and eventually with non-convex goals.

From a practical point of view, the SOM algorithms
proposed are based on relatively simple algorithms and
supporting structures, which is an additional benefit. The
SOM adaptation schema is not a typical technique used for
routing problems motivated by robotics applications. The
presented results demonstrate flexibility of SOM based al-
gorithm; thus, they may encourage roboticists to consider
SOM as a suitable planning technique for other multi-goal
path planning problems.

Beside the SOM approaches, a simple and straightfor-
ward reference algorithm has been presented. It provides
an easily reproducible reference solutions of the exam-
ined problems with polygonal goals. Therefore additional
problems can be proposed to create a set of problems
for benchmarking further multi-goal path planning algo-
rithms. An initial set of such problems are provided [44]
together with the reference solutions found by the pro-
posed approaches.

Although the proposed algorithms are able to deal with
non-convex goals, the adaptation rules need a further de-
velopment and an additional evaluation in such problems,
which is a subject of our future work.
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Appendix

A. Nomenclature

w a polygonal map representing the robot
workspace, W C R?

G a set of (polygonal) goals to be visited

g agoal, g C W

n a number of goals, n = |G|

Sy segments forming the goal g

Ny a number of points representing all goals (for

the reference algorithm)

a centroid of the goal g

an approximate path from p to g

a length of the approximate path S(p, g)
a length of the path found

a length of the reference path

a length of the best path found

a set of nodes
a node (neuron weights), v € W, v € N/

a neighbouring function
a gain decreasing rate
a learning rate

PDM
length of the mean solution value
PDB
best solution value
pr%
based solutions to the reference solution
T
value in the case of SOM algorithms)
T,
phase
Tinit %o
ization
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