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Abstract

Traversing rough terrains is one of the domains where multi-legged walking robots benefit from their relatively more
complex kinematics in comparison to wheeled robots. The complexity of walking robots is usually related not only
to mechanical parts but also to servomotors and the necessary electronics to efficiently control such a robotic system.
Therefore, large, middle, but even small walking robots capable of traversing rough terrains can be very costly because
of all the required equipment. On the other hand, using intelligent servomotors with the position control and feedback,
affordable hexapod walking robots are becoming increasingly available. However, additional sensors may still be needed
to stabilize the robot motion on rough terrains, e.g., inclinometers or inertial measurement units, force or tactile sensors
to detect the ground contact point of the leg foot-tip. In this work, we present a minimalistic approach for adaptive
locomotion control using only the servomotors position feedback. Adaptive fine-tuning of the proposed controller is
supported by a dynamic model of the robot leg accompanied by the model of the internal servomotor controller. The
models enable timely detection of the leg contact point with the ground and reduce developed stress and torques applied
to the robot construction and servomotors without any additional sensor feedback. The presented results support that
the proposed approach reliably detects the ground contact point, and thus enable traversing rough terrains with small,
affordable hexapod walking robot.
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1. Introduction

Multi-legged robots have a great potential to traverse
rough terrains [1] at the cost of relatively more complex
robot design and locomotion control in comparison to
wheel robots. Although rough terrain traversability ca-
pabilities can be enhanced directly by mechanical design
of the robot [2], the most of the nowadays multi-legged
robots rely on perception or estimation of the contact of
the leg foot-tip with the ground, e.g., MAX [3], Weaver [4],
HyQ [5], LAURON V [6], AMOS [7], Messor-2 [8], DLR-
Crawler [9] to name a few. Individual robots are designed
with different intentions but they share many properties al-
lowing them to traverse rough terrains and the main com-
mon aspect is the necessary sensory equipment. An open-
loop control can be utilized for locomotion control of hexa-
pod walking robots on flat surfaces [10], but additional
sensors are required to control attitude over rough ter-
rains [11] (even for biomimetic designs [12]) to achieve self-
stabilization by adaptation of feed-forward controllers [13].

In this paper, we address locomotion control over rough
terrains using only the position feedback from the servo-
motors themselves, and thus we propose a minimalistic
approach suitable for affordable multi-legged robotic plat-
forms such as the one shown in Fig. 1. Early results on
the proposed locomotion control have been reported in [14]

and this paper presents an extension of this work with the
main contributions as follows.

In the former work, a fixed appropriately selected
threshold value for a locomotion control inspired by force
threshold-based position (FTP) controller is utilized, and
the value has to be experimentally found. The herein pro-
posed approach is based on analysis of the leg motion and
the identified dynamic model of the leg motion during the
swing-down phase. Accompanied by a model of the con-
troller of the joint servomotor itself, the threshold value is
automatically adjusted to be slightly above the expected
joint position error provided by the models. The pro-
posed adaptive threshold adjustment has three main ad-
vantages over the previous work. First, it is not necessary
to perform manual tuning of the threshold value. Second
and probably more importantly, there is noticeable static
friction and the related dead-zone when the servomotor
starts its motion, which causes a high position error at
the beginning of the leg swing-down motion. Therefore,
the threshold value has to be set sufficiently high to avoid
an early stop of the leg which subsequently causes high
torque values at the joint when the leg contact with the
ground happens (see Fig. 7 with the plot of the herein
proposed model-based method of adaptive threshold set-
ting). Moreover, high torque values cause not only harder
strikes but also have an impact on the attitude. Besides,
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high torque values also mean a high power dissipation and
the servomotors can overheat. All these adverse effects of
fixed threshold value are avoided by the proposed adaptive
model-based method.

In addition to the adaptive threshold settings, the pro-
posed model-based control also enables compensation of
limited communication capabilities that can be for exam-
ple experienced with an affordable robot built from the
Dynamixel AX-12A servomotors where all servomotors are
connected using daisy chain. Each reading from the ser-
vomotor suffers from a transport delay that is especially
noticeable when more than a single leg is in the swing-
down phase. Therefore, the proposed approach enables
to generalize the former method [14] initially developed
only for pentapod gait to different gaits, and thus speed
up the robot locomotion in rough terrains. The model
of the leg and its control by the servomotor controller in
the swing-down phase allow predicting the expected po-
sition error and thus adjust the threshold appropriately.
Also, we further improve the locomotion speed by hard-
ware accelerated readings as it is reported that the utilized
Dynamixel AX-12A servomotors suffer from 16 ms period
latency when they are used with the serial communication
under Windows and Linux-based operating systems [15].
Finally, we report on motion efficiency of the proposed so-
lution with different motion gaits in crawling terrains of
various types using the Cost of Transport (CoT) [4, 16] as
the performance indicator. Regarding the reported results,
the proposed method provides more reliable locomotion
with lower values of the CoT than the former approach
reported in [14].

The remainder of the paper is organized as follows. An
overview of the related work is in the following section.
The problem statement within the context of the hardware
used and existing groundwork is introduced in Section 3.
The kinematic model of the robot is presented in Section 4.
A summary of the employed body leveling used in [14] is
presented in Section 5 to make the paper self-contained.
The employed model for the proposed ground detection is
presented in Section 6 and its usage in the proposed adap-
tive locomotion control is proposed in Section 7. Results
on the experimental validation are reported in Section 8.
Concluding remarks are in Section 9.

2. Related Work

Two complementary types of sensors can be identified
for closing the control loop and navigate the robot in rough
terrains: the exteroceptive and proprioceptive sensors.
Exteroceptive sensors such as cameras or LiDARs [17] pro-
vide information for creating a map of the terrain in front
of the robot [18] that can be used to control the foot-tips
towards the expected foothold positions [11]. In such a
map, obstacles can be detected, and a path for the robot
can be planned [19] or expected stability of the foothold
locations could be estimated [20]. However, a map built
online usually represents only a rough approximation of

Figure 1: The utilized affordable hexapod walking robot capable of
traversing rough terrains by the proposed control method using only
the feedback from the servomotors. The robot itself consists only
from the trunk, legs formed by 18 Dynamixel AX-12A servomotors,
and simple control board of the “Arduino class”.

the terrain, and it is not sufficient for precise control of
the foot-tips [21], and tactile information may be needed
to improve the accuracy [22].

Tactile or force sensors provide proprioceptive signals
that can be utilized in reactive controllers [23, 24] or reflex
strategies [25, 26] that are sufficient to overcome small ob-
stacles and lightly unstructured terrains. These signals are
important for crawling rough terrains to ensure a smooth
contact of the foot-tip with the expected foothold, and it
is also suggested by the biological studies reporting that
force feedback is used for stepping by legged animals [27].

Foothold adaptation based on an online force estima-
tion using torque sensors attached to all robot joints [28]
noticeably increase the cost of the robot. A similar setup
has been recently proposed by [29] to use the strain gauge
type of force sensors for foot-tip force measurements. The
authors of [30] consider a 6-DOF force-torque sensor at-
tached to each foot as the tactile sensor. However, the
utilized ATI Mini45 F/T sensors significantly increase the
cost and complexity of the robot. Force sensitive resis-
tors are utilized by [31] to design a tactile sensing for the
Messor robot [32] and this type of sensors has been also
used for force-based stability margin [33]. In [34], the au-
thors use a simple pressure sensor connected to a rubber
ball that forms a leg foot tip; however, it requires a sepa-
rate connection per each leg in addition to control of the
utilized Dynamixel AX-18A servomotors.

The proprioceptive control of the hexapod Weaver
robot [4, 35] uses motor torques estimated from the linear
model of the servomotor current. Thus, instead of force-
torque sensors, the motor current provided by the utilized
Dynamixel MX-64 and Dynamixel MX-106 servomotors is
used in the impedance control to adjust the desired foot
trajectory; however, foot-strike events are not explicitly
detected. The robot motion is achieved by position con-
trol of individual joints computed from the foot trajectory
using inverse kinematics [4].

The impedance control of the foot trajectory adjust-
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ments combined with the position control of individual
joints requires a fast control loop with the timely deliv-
ered information about the force (torque) and position of
the individual joints. The servomotors Dynamixel MX-64
and MX-106 provide such information as they are capable
of fast communication; however, they are more expensive
than the Dynamixel AX-12 or AX-18 which do not directly
provide information about the motor current, and thus the
joint torque. In [36], the authors control snake and hexa-
pod walking robots using the measured actuator force that
are translated to the desired position command which is
then tracked by a low-level position-based controller under
the proposed kinematic coupling constraints.

A hexapod walking robot called HexaBull is designed
in [37] using a single Dynamixel RX-28 servomotor per
each leg that is accompanied by three Dynamixel AX-18A
servomotors. However, due to the communication limits of
Dynamixel AX-18A, the authors propose a force threshold-
based position (FTP) controller for crawling rough ter-
rains [38]. The HexaBull follows existing designs of hexa-
pod walking robots and uses three active servomotors
(joints) per each leg. Besides, a passive actuator is used
to measure the ground reaction force and substitute di-
rect force sensors. Thus, the HexaBull robot has 18 ac-
tive actuators, but 24 actuators in the total. The FTP
controller [38] operates independently on each leg without
interactions with other legs, and thus the achieved leg au-
tonomy is similar to the feed-forward position controller.
Although the HexaBull robot does not utilize any addi-
tional sensors, it is capable of crawling rough terrains using
only the local leg feedback from the additional compliant
actuator and without directly sensing the body state [38].
A similar idea of estimating the force at the foot-tip using
the torques at the joints is discussed by [39]. However, the
torque is estimated from the current of the servomotors
measured by an additional Hall effect based sensor.

In this paper, we follow the idea of the FTP con-
troller [37, 38], but we propose an even more minimalistic
configuration of the hexapod walking robot with only three
actuators per each leg using Dynamixel AX-12A servomo-
tors. Instead of additional compliant servomotor used in
the HexaBull robot, we exploit relation of the position er-
ror of the built-in position controller of the servomotors to
estimate the ground reaction force that can be utilized in
the proposed FTP-like controller which uses position in-
formation only.1 The developed solution enables crawling
rough terrains with a hexapod walking robot that con-
sists only of 18 servomotors and a simple control board.
The main difference of the proposed method to the previ-
ous approaches [38, 39] is that our method does not need
additional actuators or sensory equipment; hence, it does
not increase the cost of the robot nor the complexity of its

1Strictly speaking, the proposed approach is not an FTP con-
troller as it does not directly use a force threshold, but it uses a
similar principle to stop the leg motion once the position error is
above a particular threshold.

hardware parts. Besides, the used feedback from the ser-
vomotors can be utilized in terrain classification [40] and
with additional adjustments [41] for the developed adap-
tive locomotion control, it can provide fully autonomous
navigation of the robot in the road following scenario with-
out any additional sensors [42].

3. Problem Statement and Background

The problem addressed in this paper is to detect the
contact point of the leg with the ground, using only the
utilized servomotors without any additional sensory feed-
back. In particular, the used hexapod walking robot con-
sists of 18 Dynamixel AX-12A servomotors, see Fig. 1.
The robot does not utilize any additional sensors, and it
is constructed purely from the off-the-shelf components,
and thus it represents an affordable robotic platform. The
platform has six legs, each with three joints directly formed
from the Dynamixel actuators, and the particular parts of
the leg are depicted in Fig. 2a.
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Figure 2: Each leg consisting of three parts (links) denoted coxa,
femur, and tibia that are connected by three joints (θ1, θ2, and
θ3) indexed according to the next respective link. The joint θ1 is
fixed to the body with the vertical rotation axis, and the two other
joints are oriented with respect to the horizontal axis. During the
motion, the leg trajectories for a regular gait on a flat terrain form a
triangle according to the swing and stance phases, but for the utilized
adaptive motion gait with a ground detection, an additional phase
for body leveling is applied to adjust the robot posture.

The motion of the robot is realized using a motion
gait [43] that prescribes how the particular legs alter in
swing and support (stance) phases. Such gaits include pen-
tapod gait with only one leg swinging at a time, which is
the most stable but also slowest gait in rough terrains [44],
tetrapod (or amble) gait where four legs are in the support-
ing phase, and two legs move simultaneously, and the tri-
pod (with altering three legs in support and swing phases),
which is the fastest stable gait. For all these gaits, the leg
motion can be controlled by the position controller. The
leg foot-tip follows a prescribed trajectory using position
control, and on a flat surface, the trajectory might look
like in Fig. 2b.
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Figure 3: The relation of the torque τ and the position error e for
a steady state of the utilized Dynamixel AX-12A. The value of τ is
limited by a stall torque value τstall.

For rough terrains, the motion has to adapt to the ter-
rain, and the motion of the individual leg can be adapted
by the controller using the provided feedback from the
servomotors [14]. The locomotion control is split to move-
ment of individual legs followed by the body movement
(further denoted as body leveling). The separation of the
leg and body movements allows us to consider a simplified
model of the leg dynamics consisting of only two servomo-
tors because only two joints are active during the swing
down phase. The explicit forward motion is added to speed
up the robot forward velocity because the position error
based ground detection is performed in the swing-down
phase and it requires slower motion to avoid high torques.
Thus, the leg trajectories can look like in Fig. 2c.

The ground detection relies on measuring the ground re-
action force as a result of the leg contact with the ground.
The source of the force is the torque at the leg joints.
For the Dynamixel AX-12A, the torque is considered to
be proportional to the position error according to Fig. 3.
Even though the servomotor provides the joint angle and
the estimated torque values, the position values are more
reliable [14]. However, the relation in Fig. 3 holds only
for a steady state, and the position error value is not an
instant measurement of the ground reaction force/torque.
Therefore it is necessary to limit the expected position er-
ror during the leg swing-down motion to make the relation
between the position error and the torque usable. Other-
wise, the position error would be high at the beginning of
the swing-down phase while the leg can still be above the
ground. Therefore, the leg movement in the swing-down
phase is interpolated by small steps to achieve sufficiently
small differences between the desired and the current posi-
tion of the joint angle. The interpolation is also necessary
to detect the ground and stop the leg motion in an in-
stant the leg reaches the ground to avoid the increase of
the ground-reaction force. If the leg is not stopped, the
whole robot may elevate, and some other legs may lose
the ground support, which could further lead to slippage.
Moreover, the used Dynamixel AX-12A servomotors sup-
port a stable motion for the loads with 1/5 or less of the
stall torque and increased torque result in servomotor over-
heating or its damage [14].
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Swing-down phase

Swing phase
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(small step)

Ground

detected?
NO

Body leveling

Stable state

Stance phase
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transform from
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Figure 4: Schema of the locomotion control with the ground detec-
tion in the leg swing-down phase, where the trajectory is interpolated
for estimating the torque at the servomotor joint from its position
data. If more legs are active in the swing-down phase, e.g., for the
tripod gait, all legs are controlled simultaneously, and the body level-
ing is performed after all moving legs finished the swing-down phase.

The schema of the considered locomotion control is de-
picted in Fig. 4 and it has been firstly introduced in [14].
The gait cycle consists of the swing phase and stance phase
where the body leveling is performed. The swing phase
starts with the swing-up when the active legs leave their
footholds, then continues with the swing-forward. The leg
motion is terminated in the swing-down phase when the
legs start approaching the ground. Once the ground is de-
tected, the leg motion is stopped by setting the desired
position of the individual joints to maintain the appropri-
ate ground reaction force. The position and rotation of
the body are then adjusted to fit with new positions of the
legs and align the body with the terrain.

In addition, the real position error is not an instant
measurement, and the limited communication of the Dy-
namixel AX-12A makes the detection even more challeng-
ing. The servomotors communicate via a half-duplex serial
line connected to a serial bus. Moreover, the position data
can be read from a single servomotor only every 16 ms (in
a standard setup as reported in [15]), which is relatively
very high considering the robot has 18 actuators. Fortu-
nately, the joint θ2 (femur link) reflects the most of the
overall ground reaction force, albeit the momentum acts
on the θ2 and θ3 joints (see Fig. 2a) as well. Regarding the
preliminary results for a hand-tuned single fixed value of
the position error threshold ethld reported in [14], position
data solely from θ2 are considered sufficient.

Preliminary results on the locomotion control are re-
ported in our early work [14] but its main drawback is in
the hand-tuned ethld specifically found for the used robot
with only a single leg movement in the pentapod gait. An
appropriate value of ethld depends on the weight of the
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legs, the positions of the legs when reaching the ground,
and also on the velocity of the movement, which all affect
the acting momentum before the leg reaches the ground.
Besides, position readouts can be delayed, e.g., as for the
Dynamixel AX-12A servomotors, which makes setting ap-
propriate values of ethld difficult, e.g., for tripod gait.

Therefore, the herein addressed problem is to not rely
on the torque/error relation according to Fig. 3 but rather
estimate the position error that is computed by a dynamic
model of the leg motion during the swing-down phase com-
bined with the model of the servomotor internal position
controller. We aim to design an approach for adaptive set-
tings of the appropriate values of ethld during the robot
motion and thus avoid laborious hand-tuning and further
support generalization of the locomotion control for differ-
ent motion gaits and different robots.

4. Kinematic model of the robot

In the locomotion control based on motion gaits, repet-
itive trajectories for individual legs describe the desired
position of the leg foot-tip and the joint angles needed for
the actuators have to be computed from the trajectories
using the inverse kinematics. Besides, forward kinematics
is needed in the body leveling to adjust the robot posture.
Therefore both the forward and inverse kinematics are the
needed preliminaries.

4.1. Forward Kinematics

The kinematic model of the used 18-DOF robot can
be based on Denavit–Hartenberg (DH) convention. Five
Cartesian coordinate systems cover the path from the body
to the foot with four of them relative to the leg as it is de-
picted in Fig. 2a. The transformation matrix between two
adjacent leg coordinate systems can be expressed in the
DH convention as

Mi−1
i =


cψi −sψi cαi sψi sαi ai cψi

sψi cψi cαi −cψi sαi ai sψi

0 sαi
cαi

di
0 0 0 1

 , (1)

ψi = θi + θoffi ,

where cψi
and sψi

denote cos(ψi) and sin(ψi), respectively,
and α, a, θ, θoff , d are the DH parameters with the partic-
ular values listed in Table 1.

Table 1: Values of the Denavit–Hartenberg Parameters

Link i
αi ai di θoffi θi

[rad] [mm] [mm] [rad] [rad]

Coxa 1 π/2 52 0 0 θl1
Femur 2 0 66 0 -0.22 θl2
Tibia 3 0 138 0 -0.81 θl3

Let 0p be the foot-tip position of the leg in the coor-
dinate system relative to the body and 4p be the foot-tip
position in the foot-tip coordinate system. Then the map-
ping between the body coordinate system and the foot-tip
coordinate system is given by the following kinematic chain[

0p
1

]
= TlM0

1 M
1
2 M

2
3

[
4p
1

]
, (2)

where Tl is the transformation matrix between the body
coordinate frame and the coxa coordinate frame of the l-th
leg given as rigid body transformation

Tl =


cosβl − sinβl 0 plx
sinβl cosβl 0 ply

0 0 1 0
0 0 0 1

 , (3)

where βl, plx, and ply are the body parameters of the l-th
link listed in Table 2.

Table 2: Body parameters

l 1 2 3 4 5 6

βl π/4 7π/4 3π/4 5π/4 π/2 3π/2

plx 120.6 120.6 -120.6 -120.6 0 0

ply 60.5 -60.5 60.5 -60.5 100.5 100.5

The values of βl are in rad, the values of plx and ply are in mm.

4.2. Inverse Kinematics

The selected configuration of joints greatly simplifies the
inverse kinematics task. Given the foot-tip coordinates
0p = [0p1,

0p2,
0p3] in the global coordinates, we can obtain

the coxa joint angle θl1 of the l-th leg as

θl1 = arctan

(
0p1 − plx
0p2 − ply

)
− βk. (4)

The coordinates 0p = (p1, p2, p3) expressed relatively to
the femur coordinate frame yield the following equation

2p =

[√
0p21 + 0p22 − a1, 0p3, 0

]T
. (5)

The respective femur θl2 and tibia θl3 angles are then given
according to the cosine law and the angle above the horizon

θl2 = arccos

(
a22 − a23 +

∥∥2p∥∥2
2a2 ‖2p‖

)
− arctan

(
2p2
2p1

)
− θOff2 ,

(6)

θl3 = π − arccos

(
a22 + a23 −

∥∥2p∥∥2
2a2a3

)
− θOff3 . (7)
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5. Body Leveling and Robot Movement

In the adaptive motion gait, see Fig. 4, the body mo-
tion is separated from the leg motion, and the body has to
counteract changed legs footholds by shifting and rotating
into a more suitable posture. The robot may walk over
rough terrains, and it is completely without any percep-
tion about the terrain ahead, and thus there is no option
to choose any preferable body posture to prepare for the
forthcoming terrain. Therefore, the proposed body level-
ing is a movement into an equilibrium body position that
offers balanced possibilities of the movement in all direc-
tions. The idea of the body leveling is visualized in Fig. 5.
Various approaches can be utilized to compute the desired
joint angles, e.g., using Singular Value Decomposition [45],
but also by a straightforward computation based on a for-
ward movement of the body used in this work, which can
be performed in the following steps.

OB x

z

O′
B x′

z′

h

h

tz

tx

d

d

ϕ
(tanϕ = a)

Figure 5: An overview of the body leveling strategy to align the robot
body with the terrain. Once the active leg (in gray) reaches a new
foothold position (in orange), the posture of the body is adjusted
by a new configuration of the legs (in black) to maintain the same
distances of h and d.

First, the plane ρ minimizing the squared distance to the
leg foot-tip positions is determined as z = aρx+ bρy + cρ.
Then, the body posture transformation between the orig-
inal body coordinate frame 0pB and the new coordinate
frame 0p′B is found to improve stability and leg working
space margins [

0p′B
1

]
=

[
R Rt
0 1

] [
0pB

1

]
, (8)

where R and t are the body rotation matrix and transla-
tion vector, respectively. The matrix R can be expressed
as

R =

bx by bz

‖bx‖ 0 0
0 ‖by‖ 0
0 0 ‖bz‖

−1 (9)

which is formed from the basis vectors of the orthonor-
mal coordinate frame bounded with the regression plane ρ
such that bx = (1, 0, aρ)

T is the vector preserving the for-
ward walking direction, bz = (−aρ,−bρ, 1)T is orthogonal
to the ρ plane, and by = (−aρbρ, a2ρ + 1, bρ)

T is selected

to form orthogonal basis together with bx and bz. The
translational vector t is given as

t =



∑6
l=1 xl + aρ

∑6
l=1 zl

6 ‖bx‖
−aρbρ

∑6
l=1 xl + (a2ρ + 1)

∑6
l=1 yl + bρ

∑6
l=1 zl

6 ‖by‖
cρ
‖bz‖


,

(10)
where (xl, yl, zl) are the l-th leg foot-tip coordinates in the
global reference frame.

Finally, the body movement is achieved by applying the
forward transformation of (8) to all the leg coordinates
and motion execution to get the legs to their new posi-
tions. Since the legs are always moving forward—through
the distance between the new and old foot positions is
variable—and the body position is computed as an aver-
age of the new foot positions, the body is therefore always
following the legs which make the whole robot move in the
desired direction.

6. Model of the Leg Swing-Down Phase

The proposed adaptive locomotion control is based on
the evaluation of the joint position error of the servomotor
during the leg swing-down phase, when only two joints are
active. The fundamental idea is to stop the leg motion
when the position error is high, which is assumed to be
caused by the ground reaction force that does not allow
the leg to continue its motion, and thus the joint position
error is increasing. Contrary to the previous approach [14]
that uses a fixed threshold value of the position error, we
propose an adaptive mechanism to automatically adjust
the appropriate threshold value based on the model of the
leg motion.

In particular, the dynamics of the leg is modeled to-
gether with the simulation of the internal servomotor con-
troller to provide a prediction of the expected position er-
ror. The model assumes free leg motion in the swing-down
phase without the contact of the leg with the ground, and
therefore, the ground reaction force applied to the leg,
when it touches the ground, increases the position error
that is then utilized to detect the ground contact. Thus,
the value of the position error above the particular thresh-
old can trigger the locomotion controller to stop the leg
motion. Then, once all legs in the swing-down phase are
stopped, the body leveling can be applied to reach the sta-
ble state, and the locomotion control may continue with
the swing phase for the alternating legs as shown in Fig. 4.

The required model consists of the dynamic model that
can be derived using the Euler-Lagrange method [46]
where only two joint angles corresponding to actuators at-
tached to the femur and tibia are employed, which are the
only active servomotors in the leg swing-down phase. Be-
sides, we need to consider the actuator dynamics to model
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frictions and the initial dead zone of the servomotor when
the servomotor moves from the steady state. Finally, we
also need to identify and model the internal P-type con-
troller of the servomotor to predict the expected position
error for the case of zero ground reaction force.

The model of the leg motion is based on the model of
the chain of rigid bodies for a two-link system moving in
a plane because only the femur and tibia links are moving
in the swing-down phase. The model can be derived using
Euler-Lagrange method, e.g., see Section 7.3.2 of [46], and
for the vector q = (θ2, θ3) of the generalized coordinates,
the model can be expressed as by the equation

D(q)q̈ +C(q, q̇)q̇ +G(q) = τ , (11)

whereD(q) is 2×2 symmetric, positive definite inertia ma-
trix of the two joints, C(q, q̇) is a tensor that represents
the centrifugal and Coriolis effects induced on the joints,
G(q) is the vector of moments generated at the joints by
the gravitational acceleration, and τ is the vector of actu-
ation torques at the respective joints.

The model described by (11) is sufficient for control-
ling robotic platforms that provide the torque readings.
However, the utilized Dynamixel AX-12A actuators do not
provide the torque readings, and therefore, it is needed to
model the servomotor with its controller to determine the
expected position of the joint actuators influenced by the
leg dynamics.

In the studied case, the real actuator is composed of
the motor and reduction gear which dynamics can be ex-
pressed as

Jq̈M +Bq̇M + F (q̇M ) +Rτ = K V, (12)

where qM is the rotor position angle before reduction, J
is the rotor inertia, B is the rotor damping, F is a sum of
static, dynamic, and viscous friction that depends on the
current rotor speed, R is the gearbox ratio, τ is the servo-
motor torque, K is the back electromotive force, and V is
the motor voltage. The appropriate value of the parame-
ters J,B, F,R, and K have to be experimentally identified
using the real servomotor or the values specified in the
manufacturer data sheet can be utilized. The particular
values of the parameters are listed in Table 3, where τ c

is the Coulomb friction coefficient that is the only friction
considered.

Table 3: Model Parameters of Dynamixel AX-12A

Parameter Value Unit

J 1.03 · 10−7 kg·m2

B 3.12 · 10−6 N·m·s
R 254 : 1 -

K 3.91 · 10−3 N·m·A−1
τ c 2.37 · 10−4 N·m

The P-type position controller influences the voltage V
that can be modeled as

V = kP · err, (13)

where kP is the controller gain, and err is the difference
between the set and current position, which is internally
updated in the servomotor with 1 kHz frequency. There-
fore, the same frequency is utilized for the simulation of
the servomotor control.

The desired complete dynamics of the leg in the joint
variables can be derived by substituting (12) into (11) as

(J +R2D(q))q̈ + (B +R2C(q, q̇))q̇ +RF (q̇)+

R2G(q) = RKV ,
(14)

where the scalars of (12) become vectors and correspond-
ing matrices because of two joint variables θ2 and θ3 con-
sidered as the generalized coordinates q. Note, the model
is valid only for the leg swing down phase with movement
of the femur and tibia joints, which in fact is enabled by
the separated leg movement and body leveling.

In the proposed control schema, the dynamic model is
employed in determining the estimated value of the cur-
rent femur joint position θest by simulating the leg motion
according to the requested positions of the moving joints.
Besides, the servomotor positions are computed with the
1 ms granularity, i.e., the model can be queried for the po-
sition error at any given instant which allows overcoming
possibly delayed readouts.

7. Adaptive Locomotion Control

The proposed adaptive locomotion control is based on
the ground detection method that solely utilizes the posi-
tion controller that stops the motion when the joint posi-
tion error is above the error threshold ethld. The proposed
controller fits the overall locomotion control schema de-
picted in Fig. 4 and it also uses interpolation of the joint
trajectory during the leg swing-down phase. However, we
employ a model of the leg dynamics during the swing-down
phase including the model of the internal servomotor con-
troller to predict the expected position error. Hence the
threshold value ethld is updated at the every k-th step of
the control loop that works with the period tcon, and thus
the threshold is considered as ethld(k).

The ground detection is schematically depicted in Fig. 6,
which is for simplicity visualized only for a single servomo-
tor, i.e., a position control of the femur actuator, of a single
leg. The trajectory interpolation is used similarly to [14]
because the position error is not an instant measurement
and it is desired to avoid high torques. The control cycle is
performed with the period tcon and it starts with the initial
joint position θinit to reach the desired position θdes in the
requested period tdes. All these values come from the par-
ticular motion gait, and they define the expected behavior
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Figure 6: The control cycle of the proposed position threshold based
controller with trajectory interpolation during the leg swing-down
phase. For every step k of the control cycle, the desired joint position
θdes(k) is updated by a small distance ∆θ to be traveled in the
period tcon. θdes(k) is then sent to the P-type controller of the
servomotor that produces the corresponding value of the Pulse Width
Modulation (PWM) to control the motor. The read position of the
joint θreal(k) is used to compute the error err(k). The particular
threshold value ethld(k) is computed from the estimated position
eest(k) using the developed dynamic model. If err(k) is above ethld,
the ground has been reached; otherwise, the procedure is repeated
until the ground is detected or the final position θfin is reached.

in the leg swing-down phase. The increment of the joint
position as the interpolation step ∆θ can be computed as

∆θ =
θfin − θinit
tdes/tcon

. (15)

Then, the desired joint position θdes(k) for the k-th con-
trol step is updated and send to the servomotor as a new
setpoint. The real measured joint position θreal(k) and
θdes(k) are used to compute the position error. However,
the measured position value does not necessarily be the
current real joint position because of the communication
delay. Thus, we employ the model of the leg swing-down
phase to estimate the joint position as θest(k) that is com-
pared with the measured position error. Since the compar-
ison depends on the direction of the motion and orientation
of the servomotor, i.e., how it is attached to the leg link,
the position errors are considered for the comparison and
thresholding

err(k) = θdes(k)− θreal(k), (16)

ethld(k) = θdes(k)− θest(k) + ε, (17)

where the value of ε is experimentally found adjustment
parameter to compensate the joint angle value discretiza-
tion and mechanical inaccuracies of the particular leg. The
used value is ε = 3 ticks, which is less than 1◦. Finally,
the leg control is stopped when the ground is detected, or
the joint reaches the requested position θfin.

The values of θfin are set such that, the leg foot-tip is re-
quested to go under the ground in crawling on flat terrain
to develop the ground-reaction force, and thus detect the

ground and stop the leg motion. Notice the leg motion can
be effectively stopped by setting ∆θ = 0 for all the leg ser-
vomotors. The fundamental idea of the proposed ground
detection is that the model of the leg swing-down phase
does not include the ground reaction force, and therefore,
θreal should be close to θest during the leg motion unless
the servomotor is influenced by the ground reaction force,
and thus the leg touches the ground.
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Figure 7: Measured and estimated position errors of the femur actu-
ator. The threshold value ethld is derived from the estimated error
increased about three ticks ε = 3 to consider imperfections in the
model identifications. The measured positions θreal are read out at
every control cycle which works with the period tcon = 3 ms because
of communication limits.

The model is crucial to automatically set an appropriate
threshold value based on the whole kinematic chain of the
leg, which is not captured by the steady state relation of
the position error and the motor torque shown in Fig. 3.
Therefore we propose to detect the ground, not by the di-
rect usage of the relation shown in Fig. 3, but rather by
monitoring the measured real position of the joint θreal and
its comparison with the estimated joint position θest pro-
vided by the model. An example of the estimated position
error errest and the real measured error err is depicted in
Fig. 7. The peak around 0.05 s is because the leg motion is
initiated from a steady state and the leg motion develops
a joint torque that is caused by the initiated motion of the
whole kinematic chain of the leg, which is the most critical
part for the employed model.

For the fixed threshold value, it is necessary to select
the threshold high enough to avoid a premature stop of
the motion as we did in [14]. However, a higher thresh-
old value increases the error and thus the joint torques.
Therefore unnecessarily high threshold values cause high
torques when the leg touches the ground, and the servo-
motors may consequently overheat, which can be observed
for the previous approach [14] deployed in a long mission.
Note the joint positions and position errors are reported
in ticks to express the utilized values precisely.

Besides the prediction of the peak in the position error
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Figure 8: Example of the measured and estimated errors during si-
multaneous motion of three legs in the tripod gait. The control cycle
period tcon is tcon = 3Tcom. Because of Tcom = 1 ms, the readout
of the real measured position error is delayed for the third leg, and
the joint position already travels towards the new setpoint, and thus
the position error is lower than for the first readout joint position.
The servomotors of all active legs are commanded simultaneously,
and therefore, the evolution of the estimated error corresponds to all
of them. The values of θest are computed using the model of the
leg motion in the swing-down phase that also includes the model of
the servomotor internal P-type position controller running with the
control period 1 ms.

at the beginning of the leg swing-down phase, the model is
also useful in compensating the delay in reading the cur-
rent joint position which is not available instantly. In par-
ticular, there can be a communication delay Tcom = 16 ms
for a single read operation for the utilized Dynamixel AX-
12A servomotors with the standard readings over the serial
communication interface under Windows or Linux operat-
ing systems that is reported in [15]. Even though the delay
can be reduced by hardware accelerated communication to
1 ms for a single read operation, the delay may still affect
the position error, especially when multiple legs are simul-
taneously in the swing-down phase, e.g., in the tripod gait.
It is because the positions are read out sequentially since
all servomotors are connected to the same communication
bus with a half-duplex serial protocol, and all the servo-
motors are commanded simultaneously to keep the motion
synchronized. Thus, it may happen that for the last read
position, the particular joint already traveled a significant
portion of the desired trajectory, and the position error
is lower than for the readout position error for the first
servomotor. An example of the particular position errors
during the swing-down phase of the tripod gait with three
simultaneously controlled legs is depicted in Fig. 8. It
can be noticed in the figure, that the errors differ depend-
ing on the time when the position is read out from the
particular servo. In this case, the control cycle period is
tcon = 3Tcom because it is delayed by three readouts from
the servomotors, i.e., each readout takes Tcom = 1 ms, and
therefore, the readout of the real measured position error

for the third servo is noticeably delayed and the servo al-
ready travels towards its θdes, and thus its error is lower,
which also holds for the estimated error.

Algorithm 1: Ground detection using position feed-
back

Input: θinit = {θ1init, . . . ,θLinit} – the initial joint
angles of femur and tibia servomotors θlinit of
all active legs, θlinit = {θl2,init, θl3,init} for
1 ≤ l ≤ L, where L is the number of active
legs

Input: θfin = {θ1fin, . . . ,θLfin} – the requested final
joint angles of the employed servomotors,
θlfin = {θl2,fin, θl3,fin} for 1 ≤ l ≤ L

Input: tdes – the desired time of the swing-down
motion

Input: Tcom – the communication delay Tcom = 1 ms

tcon ← L · Tcom // set the control period1

for servo i ∈ {2, 3} of each active leg l ∈ {1, . . . , L} do2

∆θli ← CalcStep(θli,init, θ
l
i,des, tdes, tcon) // (15)3

t← 0 // reset swing-down phase control time4

while not all legs stopped do
for each i ∈ {2, 3} and l ∈ {1, . . . , L} do5

θli,des ← θli,des + ∆θli // interpolation step6

SetAllServoPositions(θ1des, . . . ,θ
L
des)7

for each active leg l ∈ {1, . . . , L} do8

θreal ← ReadServoPosition(l, 2) // femur9

θest ← CalcModel(l, θl2,des, θ
l
3,des, t)10

err ← θl2,des − θreal // femur i = 211

ethld ← θl2,des − θest + ε // femur i = 212

if err > ethld or θl2,des ≈ θl2,fin then13

∆θl2 = ∆θl3 = 0 // stop the l-th leg14

t← t+ Tcom // increase t because of the15

communication delay

Only the femur and tibia actuators are controlled, the position
of the coxa actuator is fixed to its last position from the swing-
forward phase.

The proposed ground detection in the swing-down phase
using the position feedback with simultaneous motion of
multiple legs is summarized in Algorithm 1 and imple-
mentation of the proposed adaptive locomotion control is
available in [47]. Since the femur and tibia servomotors
of the active legs in the swing-down phase are controlled,
the particular leg is identified by the superscript and the
individual servos per each leg are identified by the sub-
script i according to Table 1. All the computations and
procedures are considered to be instant except calling the
ReadServoPosition() procedure that takes a significant
time Tcom that has to be taken into account during the
model calculation in the procedure CalcModel(). The ini-
tial and desired position together with the time tdes are
set according to the motion gait when switching from the
stance phase to the swing phase. Results on the real per-
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formance of the proposed ground detection method are
reported in the following section.

8. Experimental Results

The developed adaptive locomotion control with the
proposed model-based ground detection has been exper-
imentally verified in practical deployments. Its perfor-
mance is compared with the former approach [14] despite
several other approaches have been proposed in the liter-
ature. It is mainly because the proposed approach solely
uses the position feedback while other approaches have
been proposed for different robots and rely on specific ad-
ditional sensors. Thus, the main intention of the reported
results is to demonstrate the feasibility of the proposed
minimalistic solution in traversing rough terrains. Besides,
a deployment of other approaches requires force or torque
measurements that are not available for the utilized af-
fordable hexapod walking robot without any additional
sensors. Therefore, we designed four experimental scenar-
ios to show the main properties of the proposed adaptive
locomotion control. In the first scenario, we experimen-
tally verify the behavior of the developed dynamic model
employed in the estimation of the position error for in-
creasing the speed of the leg motion. The second scenario
is focused on analyzing the locomotion stability for three
motion gaits employed in traversing rough terrains. In the
third scenario, we consider the Cost of Transport (CoT)
measure [48, 4] to evaluate the performance of the pro-
posed locomotion control in comparison with the former
approach [14] for different leg motion speeds and three mo-
tion gaits in traversing different terrains. Finally, we eval-
uate the impact of the adaptive thresholding to the relia-
bility of the locomotion, and we verify lower torque values
in comparison to the former approach [14] by measuring
temperature evolution while traversing rough terrain.

8.1. Position Error Estimation using the Dynamic Model

The leg movement during the swing-down phase involves
motion of the femur and tibia servomotors which moves ac-
cording to the proposed control scheme described in Sec-
tion 7. The motion of each servomotor is subject to (15)
which can be influenced by the values of tcon and tdes. The
value of the period tcon is limited by the communication
constraints and by the number of simultaneously operat-
ing servomotors, and thus its minimal value is defined by
the hardware used. On the other hand, the period tdes
is a user-defined value, and it influences the speed of the
servomotor which has a direct impact to the developed
joint torque at the moment of the leg contact with the
ground. Besides, it also influences the robot movement,
and shorter values mean faster leg motion and thus faster
robot movement.

The performance of the model has been studied in an
experimental setup with different leg motion speeds given
by tdes. In particular, the influence of tdes has been exper-
imentally studied for tdes ∈ {0.5, 1.0, 2.0} seconds for the
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Figure 9: Estimated and real position errors for the leg motion speed
defined as tdes ∈ {0.5, 1.0, 2.0} in seconds and tcon = 3 ms.

fastest control period tcon = 3 ms (tripod) achieved by
the hardware accelerated communication. The reported
results are obtained directly using the adaptive locomo-
tion control deployed on the robot that is requested to
perform free swinging of the legs without any obstacles
nor ground. The estimated and real errors are shown in
Fig. 9.

It can be seen from the results that the estimated error
value matches the real error value, which supports a high-
fidelity of the developed dynamic model to adjust the value
of the threshold ethld for the proposed position controller.
Furthermore, the error plots in Fig. 9 explain the problem
with the former adaptive locomotion [14] approach that
uses a fixed threshold value. The rapid increase in the er-
ror at the beginning of the swing-down phase would require
a very high value of the single fixed threshold. The reli-
able locomotion for the former approach [14] is observed
for tdes ≤ 1 s, albeit shorter periods are also possible at
the cost of the servomotors overheating, and thus suitable
only for short deployments. Hence, the proposed approach
supports scalability to both different gaits and different
speeds of the motion.

8.2. Locomotion Stability using Different Motion Gaits

The reliability of the ground detection and precision
of the error estimation greatly influences the stability of
the robot during the locomotion. Therefore, we have ex-
perimentally verified the proposed controller in traversing
rough terrains.2 The reliability of the ground detection is
measured by observing the body motion during the swing-
down phase of the leg.

The locomotion stability has been evaluated using the
terrain mockup shown in Fig. 10, and we quantify the body
motion using readings from XSens MTi-30 AHRS attached

2The robot traversing the terrains is shown in the accompanying
video from the real deployment at https://youtu.be/Tdzt4yDQWI0.
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Figure 10: Used terrain mockup with three terrain types: blocks,
stairs, and flat.

to the hexapod body. The used terrain mockup consists
of three different terrains: wooden blocks with dimensions
10 × 10 cm and variable height and slope, wooden stairs
with the step height of 4 cm, and flat ground.

We have measured the body orientation (pitch and roll
angles) and the linear acceleration in the vertical direction
(Accz) during the leg swing-down phase for three motion
gaits for the former method [14] with the fixed threshold
value and for the adaptive model-based adjustment of the
threshold value in the proposed adaptive locomotion con-
trol.

The pitch, roll, and acceleration variables are measured
with 400 Hz during the leg swing-down phase until all
the active legs reach the ground. Then, variances of the
variables are computed from the collected data per each
leg as the performance indicators, and the five-number
summary for all the indicators is visualized in Fig. 11a–
Fig. 11c for the pitch, roll, and Accz, respectively. The
value of tdes = 1 s is selected for both approaches be-
cause the used terrain mockup is relatively short and the
former approach [14] exhibited sufficient robustness in the
experimental verification for such a short deployment. The
reported results confirm the motion stability is increased
in comparison to the groundwork [14].

8.3. Cost of Transport and Locomotion Speed

Next, we consider the Cost of Transport (CoT) as
the locomotion performance indicator together with the
achieved speed of the locomotion in different terrains us-
ing the experimental mockup. We follow the CoT defined
by [4] as

CoT = P/(mgv), (18)

where P is the instantaneous power consumption,
m = 2.3 kg is the mass of the robot, g = 9.81 ms−2 is the
gravitational constant, and v is the speed of the robot com-
puted as the traveled distance of the robot per one second.
The power consumption has been obtained from the mea-
sured voltage and current drawn directly from the battery
that is measured with the sampling frequency 1 kHz. The
speed has been estimated using an external visual localiza-
tion system based on [49] running at 25 Hz as v = ds/dt,
where ds is the measured robot displacement within the
period dt = 10 s. Hence, the more frequent power data
are averaged over the moving window of 10 s.

Table 4: Achieved values of the cost of transport and locomotion
speed using different gaits and fixed and proposed threshold settings
for the position-based ground detection

Gait tdes [s]
Ground CoT Speed

Detection [–] [m.s−1]

Tripod

0.5
Fixed [14] 25.9 0.044

Proposed 22.0 0.046

1
Fixed [14] 35.4 0.041

Proposed 16.1 0.035

Tetrapod

0.5
Fixed [14] 29.4 0.034

Proposed 32.4 0.035

1
Fixed [14] 19.6 0.029

Proposed 19.3 0.030

Pentapod

0.5
Fixed [14] 28.5 0.021

Proposed 27.4 0.028

1
Fixed [14] 28.5 0.019

Proposed 28.4 0.017

We consider all three motion gaits with the fixed value
threshold-based approach [14] and the proposed model-
based approach in this experimental evaluation. Two val-
ues of tdes ∈ {0.5, 1.0} in seconds are considered to high-
light the reduced power consumption in fast locomotion by
the improved ground detection. For each parametrization,
three trials have been performed, and the averaged values
of the indicators are summarized in Table 4.

The results show that the proposed approach achieves
lower values of the CoT in comparison to the ground-
work [14] in all scenarios except the tetrapod gait and
tdes = 0.5 s. As the CoT metric depends on the current
readings that are proportional to the torques acting on the
robot joints, we conclude that the proposed approach with
dynamic thresholding achieves better performance in the
ground detection, which leads to the lower stress put on
the robot construction; hence, lower torques. Note, the
locomotion speed is due to the same parametrization of
the gaits almost similar, with the fastest being the tripod
gait and the slowest the pentapod gait.

8.4. Locomotion Reliability

The proposed model-based thresholding should posi-
tively influence the stress put on the robot construc-
tion in comparison to the fixed value threshold-based ap-
proach [14]. The adaptive thresholding avoids high torque
values at the foot-strike detection as can be seen in Fig. 7.
Since the real torque values are not available for the uti-
lized Dynamixel AX-12A servomotor, the real expected
benefit of lower torques can be measured by a tempera-
ture that can be read out from the servomotors. There-
fore, we performed an additional experiment with record-
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Figure 11: Stability of the locomotion for different gaits and ground detection methods. The gait names at the x-axis values encode the
motion gait and the used algorithm, e.g., the gait name 3 fixed correspond to the tripod gait and groundwork method [14] with the fixed
valued of the threshold. The proposed ground detection with the model-based adaptive adjustment of the threshold is denoted 3 adapt. The
results for the tetrapod and pentapod gait start with 4 and 5, respectively.

ing the temperature of the femur and tibia servomotors
while traversing the experimental mockup. The tempera-
ture is read out after each gait cycle of the tripod gait with
tdes = 1 s. The fix value of the threshold ethld = 21 has
been utilized as the former approach [14]. Three experi-
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Figure 12: Evolution of the mean temperature of the femur and tibia
servomotors during the robot locomotion on the experimental terrain
mockup for the fixed threshold approach [14] with ethld = 21 and
the proposed adaptive model-based thresholding with ε = 3.

mental trials have been performed for the fixed ethld and
the proposed adaptive thresholding. There was a pause
after each trial with the robot only standing in the default
position on the flat ground to let the servomotors cool
down to approximately 37◦C, which is an average temper-
ature of the servomotors when the robot is not moving.

The evolution of the temperature during approximately
ten minutes long traversing is visualized in Fig. 12.

The temperature evolution demonstrates a positive im-
pact of the proposed adaptive model-based thresholding
on the torque values as the temperature is significantly
lower than for the fixed threshold value. The room tem-
perature was about 22◦C during the experiment, and thus
the servomotor limit 70◦C, for which the servomotor au-
tomatically shutdowns, has not been reached. However,
such a behavior has been observed for the fixed thresh-
old and an intensive operation during summer without
air conditioning in the room. The reported results sup-
port the proposed adaptive thresholding lowers the overall
stress put on the robot construction and prevents the ser-
vomotor from overheating. It can also be observed that
the tibia servomotor heats less than the femur servomotor
which generally suggests lower torques in the femur joints.
This further advocates choice of using only the femur ser-
vomotor for the ground contact detection.

9. Conclusion

In this paper, we present a minimalistic adaptive loco-
motion control approach for affordable hexapod walking
robots that utilizes only the position feedback from the
servomotors to provide a tactile sensing capability, and
thus enables traversing rough terrains. The proposed lo-
comotion consists of the two parts: the ground sensing
and body leveling, which adjust the position of the robot
trunk to maintain a stable position of the robot and moves
it forward. The proposed ground detection is based on
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monitoring of the joint position error, where the appropri-
ate threshold value is estimated by the developed dynamic
model of the leg that is accompanied by a model of the in-
ternal controller of the used servomotors.

The proposed approach has been experimentally verified
using a real hexapod walking robot in traversing experi-
mental mockup with three terrain types. The proposed
locomotion control successfully traversed the terrains with
three motion gaits using only the position feedback from
the servomotors and provides more reliable and stable lo-
comotion with lower power consumption than the previous
approach based on a single fixed value of the position error
threshold used for the ground detection and triggering the
leg motion control.

The developed dynamic model can be generalized to dif-
ferent kinematic chains, and thus the proposed locomotion
control can be applied to different multi-legged robots.
The herein presented solution employs only two joints that
are active during the swing-down phase that shows to be
sufficient for crawling rough terrains. However, the model
can be straightforwardly extended to consider more joints,
and thus realize any-angle tactile sensing. Both of these
generalizations are subjects of our future work.
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