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Abstract

In this paper, we study Emergency Landing Aware Surveillance Planning (ELASP) to determine a cost-efficient trajectory
to visit a given set of target locations such that a safe emergency landing is possible at any point of the multi-goal
trajectory. The problem is motivated to guarantee a safe mission plan in a case of loss of thrust for which it is desirable
to have a safe gliding trajectory to a nearby airport. The problem combines computational challenges of the combinatorial
multi-goal planning with demanding motion planning to determine safe landing trajectories for the curvature-constrained
aerial vehicle. The crucial property of safe landing is a minimum safe altitude of the vehicle that can be found by
trajectory planning to nearby airports using sampling-based motion planning such as RRT*. A trajectory is considered
safe if the vehicle is at least at the minimum safe altitude at any point of the trajectory. Thus, a huge number of samples
have to be evaluated to guarantee the safety of the trajectory, and an evaluation of all possible multi-goal trajectories
is quickly computationally intractable. Therefore, we propose to utilize a roadmap of safe altitudes combined with the
estimation of the trajectory lengths to evaluate only the most promising candidate trajectories. Based on the reported
results, the proposed approach significantly reduces the computational burden and enables a solution of ELASP instances
with tens of locations in units of minutes using standard single-core computational resources.
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1. Introduction

Aerial surveillance missions are deployments of aerial
vehicles to (repeatedly) visit a set of locations [1] and col-
lect information about the areas of interests, e.g., in traf-
fic [2] or environment monitoring [3]. The mission planning
problem can be formulated as a problem to determine a
cost-efficient multi-goal trajectory visiting the given set of
target locations such that the trajectory satisfies the mo-
tion constraints of the used vehicle. In the case of fixed-
wing aircraft, the problem can be formulated as the Du-
bins Traveling Salesman Problem (DTSP) [4] where the
curvature-constrained trajectory is determined for Dubins
vehicle [5]. Once a plan is determined, it can be expected
that the vehicle will follow the planned trajectory. How-
ever, the aircraft can experience Loss of Thrust (LoT) [6],
and it is then necessary to quickly determine a safe emer-
gency landing trajectory [7].

In this paper, we study generalized surveillance missions
where LoT is taken into account during multi-goal trajec-
tory planning to guarantee the aircraft can safely land if
LoT occurs during the mission. The proposed problem
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Figure 1: An example of safe trajectory (black line) for Cessna 172
airplane accompanied with possible emergency landing trajectories
(colored lines according the actual altitude) [8].

is called Emergency Landing Aware Surveillance Planning
(ELASP) that stands to determine a cost-efficient multi-
goal trajectory to visit a set of target locations such that
the trajectory is safe and motion constraints of the vehicle
are satisfied. The trajectory is considered to be safe; if the
existence of a safe emergency landing trajectory is guar-
anteed at any point of the trajectory, see an example in
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Fig. 1. Thus, for fixed-wing aircraft, the addressed prob-
lem combines combinatorial challenges of the curvature-
constrained multi-goal trajectory planning with planning
safe emergency landing trajectories.

Several approaches to the DTSP have been proposed [9]
that includes sampling-based methods [10], quick heuristic
algorithms [11], and decoupled approaches, where the se-
quencing part is determined as a solution of the Euclidean
TSP that is followed by determination of the curvature-
constrained multi-goal trajectory [12]. However, it is nec-
essary to consider 3D trajectories for an emergency land-
ing, and therefore, the approaches for the DTSP have to
be generalized to 3D trajectory parametrization, e.g., us-
ing Bézier curves [13] or the Dubins Airplane model [14, 15]
as in [16]. Regarding planning emergency landing tra-
jectories, the existing point-to-point trajectory genera-
tion approaches can be utilized, e.g., the Dubins Airplane
model, but the problem has also been explicitly addressed
in [17, 18].

Although surveillance planning and emergency landing
have been addressed in the literature separately, the com-
putationally challenging ELASP problem, to the best of
the authors’ knowledge, has not yet been adequately ad-
dressed. Therefore, we address the introduced ELASP
problem by the proposed ELASPBASE approach. This
baseline solution is further improved by reducing the com-
putational requirements by using an estimation of the tra-
jectory lengths and lazy evaluation technique to determine
only the most promising safe trajectories in the so-called
ELASPLAZY algorithm.

In the baseline ELASPBASE method, a pre-generated
roadmap of possible landing trajectories for the mis-
sion area is determined using the RRT*-based algorithm.
Then, each candidate multi-goal trajectory is examined for
the minimum safe altitude during the multi-goal trajectory
planning, which is computationally demanding. We pro-
pose to address the computational challenges arising from
the multi-goal planning by trajectory cost estimation to
evaluate only the most promising candidate trajectories in
ELASPLAZY, which is further speeded up by utilizing a
pre-computed roadmap of safe altitudes.

The employed cost estimation of ELASPLAZY follows
the idea of [19] to reduce the number of motion planning
queries by using Euclidean distances for welding robots
visiting a finite set of locations, where the multi-goal tra-
jectory consists of a sequence of point-to-point trajecto-
ries. However, in the addressed ELASP problem, we need
to generate safe trajectories with the emergency land-
ing guarantee. Furthermore, the fixed-wing vehicle is
curvature-constrained, and therefore, the vehicle heading
angle at each location is considered to guarantee the final
multi-goal trajectory is smooth and feasible. Therefore
Euclidean distance employed in [19] is not a proper esti-
mation for ELASP. Since each candidate trajectory has
to be examined for the minimum safe altitude, which is
computationally demanding, selecting the most promis-
ing candidate trajectories based on the easy to compute

tight lower bounds on the trajectory cost might have a
considerable impact on the overall performance. We pro-
pose to utilize the so-called terrain trajectory as such a
lower bound. Based on the herein reported results, it sig-
nificantly improves the performance, and together with a
pre-computed roadmap of safe altitudes, they enable a so-
lution of the ELASP problem using a single core of the
standard desktop computer, which is promising value for
future deployment on real aircraft.

The contributions of the presented work are considered
as follows.

• Introduction of the ELASP problem with a base-
line solution based on relatively straightforward
ELASPBASE, which is, however, impractically com-
putationally demanding.

• ELASPLAZY with significantly decreased compu-
tational requirements compared to the baseline
ELASPBASE, which requires tens of minutes instead
of hours for tens of target locations and the same
single-core computational environment.

• Necessary condition for a penalty function of the re-
laxed solution in the case the target locations to be
visited are at the altitude that does not allow safe
emergency landing to the nearby airports.

• Results on empirical evaluation of the ELASP algo-
rithms performance.

The rest of the paper is organized as follows.
An overview of the related work on planning multi-goal
and emergency landing trajectories is summarized in the
following section. The ELASP problem is formally intro-
duced in Section 3. The construction of the supporting
roadmap of emergency landing trajectories is described
in Section 4. The baseline ELASPBASE algorithm is de-
scribed in Section 5. The improved ELASPLAZY is pre-
sented in Section 6. The necessary condition on the
penalty function is detailed in Section 7. Results on the
empirical evaluation of ELASP solutions are reported in
Section 8. The final concluding remarks are in Section 9.

2. Related work

The introduced ELASP is a generalization of surveil-
lance planning to visit a set of given target locations [11,
13, 20], where it is explicitly requested to guarantee the
existence of safe emergency landing for any point of the
surveillance multi-goal trajectory for the fixed-wing air-
craft. Thus, ELASP is related not only to combinato-
rial multi-goal planning with curvature-constrained vehi-
cles but also emergency landing to plan safe gliding trajec-
tory to a nearby airport. Therefore, existing approaches
of these related fields are briefly summarized in the rest of
this section to justify the novelty of ELASP and proposed
solutions.
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The Dubins vehicle model [5] can be utilized for trajec-
tory planning for fixed-wing aerial vehicles with curvature-
constrained trajectories. Dubins vehicle is advantageous
because of a closed-form solution for the point-to-point
trajectory of the 2D plane with the minimum turning ra-
dius and defined vehicle heading at the initial and termi-
nal locations. Nevertheless, the vehicle changes its alti-
tude during the emergency landing, and therefore, a 3D
curvature-constrained trajectory is needed. The 3D ex-
tension of the formerly 2D Markov-Dubins problem [5] is
studied in [21], where the authors proved the necessary
conditions for the optimal path. However, a closed-form
solution is not available so far.

The authors of [22] proposed a heuristic method for
the 3D trajectory generation that can connect arbi-
trary configurations of the vehicle, considering the con-
strained pitch angle. In [14], such a model of the 3D
curvature-constrained trajectory is called the Dubins Air-
plane model. Necessary implementation details of the tra-
jectory generation method are addressed in [15] consid-
ering the kinematics of a real fixed-wing vehicle, which
makes the method computationally usable in multi-goal
trajectory planning [16, 23]. Furthermore, the computa-
tion of trajectories for the Dubins Airplane model has been
recently improved in [24], where the authors also present
quickly to compute tight lower bound estimates. Although
Dubins Airplane model simplifies a real aircraft dynamics,
it is a sufficient model for path planning purposes [15, 25].
Moreover, a trajectory consisting of several Dubins maneu-
vers may introduce discontinuity in pitch angle between
consecutive maneuvers as the pitch angle could be changed
very quickly [15]. As an alternative to these constructive
methods, seventh order Bézier curves are utilized in [26]
that enable to change the speed of the vehicle, but is com-
putationally demanding, which is also the case of low order
Bézier curves utilized in [13].

Having a method to determine a feasible (and eventually
optimal) point-to-point trajectory connecting two configu-
rations of the vehicle corresponding to the target locations
in 3D, the multi-goal trajectory planning can be addressed
as a problem to determine the optimal sequence of visits to
the given set of target locations. The introduced ELASP
is a variant of the surveillance planning [11] that stands
to determine the sequence of visits together with the most
suitable configurations at which the given target locations
(or areas) are visited such that the overall cost of the final
trajectory is minimized. Regarding the existing compu-
tationally efficient point-to-point trajectory planning, the
ELASP problem can be seen as the 3D variant of the Du-
bins Traveling Salesman Problem (DTSP) [4] where the
2D Dubins vehicle model is substituted by the Dubins Air-
plane model [16].

The existing DTSP approaches can be roughly divided
into decoupled and sampling-based methods [9]. The de-
coupled methods separate the combinatorial part (to de-
termine the optimal sequence) from the continuous opti-
mization of the optimal configurations to visit the loca-

tions, e.g., by a solution of the Euclidean TSP followed by
determination of the heading angles at the locations. For
example, the headings can be found by a simple heuristic
such as Alternating Algorithm [4] or by continuous opti-
mization using tight lower bound estimation of the Dubins
multi-goal trajectory [12].

In sampling-based methods, possible heading angles at
each target location are sampled into a finite set of configu-
rations [27], and the problem is formulated as an instance
of the Generalized Asymmetric TSP. Then, the instance
can be transformed by the Noon-Bean transformation [28]
to an instance of the regular TSP that can be solved using
existing solvers, e.g., optimally by Concorde [29] or heuris-
tically using LKH [30]. Alternatively, soft-computing tech-
niques based on genetic [31], memetic [32], or unsuper-
vised learning [33] algorithms can be utilized to address
both combinatorial and continuous optimization parts of
the DTSP at the same time.

The main difference of the ELASP problem to the DTSP
is in the requirements on the emergency landing trajec-
tory for any point of the planned surveillance trajectory
to guarantee safe landing in the case of LoT. For an air-
craft modeled as Dubins vehicle, planning the emergency
landing trajectory can be based on the determination of
the overall altitude loss of the shortest Dubins maneu-
ver [5] from a particular location of the vehicle to the
closest landing site. Such a concept utilizing the Dubins
Airplane model is used in [17] to compute gliding trajec-
tories for the accident on the Hudson river [7]. However,
neither obstacles nor altitude of the terrain in the vicin-
ity of the landing site is considered in [17]. This issue
has been addressed by A*-based algorithm [34], evolution-
ary approach [35], but also using asymptotically optimal
RRT* algorithm in [36]. Besides, the emergency landing
trajectory can be further generalized by considering the
influence of the wind [18, 37], which, however, does not
address multi-goal planning and nearby terrain.

3. Problem Statement

The studied Emergency Landing Aware Surveillance
Planning (ELASP) problem stands to find a cost-efficient
safe closed-loop trajectory R for a fixed-wing vehicle to
visit n given target locations S = {s1, s2, . . . , sn}, si ∈ R3,
while motion constrains of the fixed-wing aircraft are sat-
isfied. A trajectory is considered to be safe, if the vehicle
can land safely to a nearby airport in a case of the to-
tal Loss of Thrust (LoT); thus, there exists a safe gliding
trajectory to the airport for any point of R. The ELASP
combines the three following challenges that should all be
addressed simultaneously as they are mutually dependent.

The first challenge is to determine a sequence of vis-
its Σ = {σ1, . . . , σn}, σi ∈ {1, . . . , n} to the given locations
S such that the total travel cost of R is minimized. Find-
ing Σ is a sequencing part of ELASP that can be seen as
a variant of the TSP where the travel costs are given by
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the travel cost of individual safe trajectories connecting
the locations S.

The second challenge is to satisfy motion constraints
of the fixed-wing vehicle that is modeled as the Dubins
Airplane model [14]. The state q of the vehicle combines
3D position (x, y, z) ∈ R3, heading angle θ ∈ S, and pitch
angle ψ ∈ S, i.e., q = (x, y, z, θ, ψ). The vehicle dynamics
can be expressed as

ẋ
ẏ
ż

θ̇

 = v


cos θ cosψ
sin θ cosψ

sin ψ
uθ ρ

−1

 , (1)

where ρ stands to the minimum turning radius, and the
heading angle θ is controlled by uθ ∈ [−1, 1]. Follow-
ing [14], it is assumed that the time constant of changing
the pitch angle ψ is significantly lower than for the heading
angle, and thus ψ is considered as the control input and
abrupt changes of ψ are allowed within the given interval

ψ ∈ [ψmin, ψmax]. (2)

A natural condition for the aircraft is to fly above the
terrain (or obstacles). Based on the vehicle state (1), the
configuration space is considered as C = R3 × S2 and the
free part of C is defined as

Cfree = {q = (x, y, z, θ, ψ) | q ∈ C, z > Talt(x, y)} , (3)

where Talt : R2 → R is a function of the terrain altitude
(or obstacles) at the given position (x, y). Since it can
be assumed the aircraft always operates above the terrain
and it is not allowed to fly under obstacles, e.g., under
a bridge, w.l.o.g., we can model the world as a terrain
elevation map.

The closed-loop trajectory R is formed by the trajec-
tories R = {R1, . . . ,Rn} that are connected at visiting
the configurations Q = {qσ1

, qσ2
. . . , qσn

}, corresponding
for (x, y) with the locations S, in the order defined by the
sequence Σ. Thus, the i-th trajectory starts at the visiting
configuration qσi

located at sσi
or directly above it in the

case of an insufficient altitude for a safe emergency landing
(detailed in the following text). The safe trajectory has to
guarantee the vehicle is always moving above the terrain.
Therefore, each trajectory of R has to be in Cfree. All the
trajectories are normalized such that Ri(0) be the initial
and Ri(1) be the final configuration of the i-th trajectory
segment, and thus Ri : [0, 1]→ Cfree.

The third challenge is to guarantee safety of the found
trajectory R. Let assume there are m given landing sites
with touchdown configurations Ξ = {ξ1, . . . , ξm}. Then,
an emergency landing trajectory Γ : [0, 1] → Cfree must
exits from any point τ of each trajectory Ri ∈ R; thus,
there must be Γ such that Γτ (0) = Ri(τ) for all τ ∈ [0, 1].
Furthermore, the emergency landing trajectory Γ ends at
a particular landing site j or directly above it, and Γ(1)
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Figure 2: An example of ELASP trajectory (black line) that visits
target locations (blue dots). The planned trajectory contains deci-
sion points (red dots) from which the pilot can decide to execute
the emergency landing (red dotted line) to an airport. To guarantee
a safe landing is possible from any point along the planned trajec-
tory, it is necessary to guarantee maintaining high enough altitude to
reach the next decision point safely, i.e., reaching the decision point
or perform an emergency landing even in the case of LoT.

is therefore from the set ξ̂j of the configurations above
the landing site ξj . The landing trajectory is allowed to
end above the selected landing configuration because it
is assumed the vehicle can decrease its altitude relatively
quickly by a specific maneuver type, even in the case of
LoT [36]. Therefore, Γ(1) above the landing site maxi-
mizes safety as it keeps the vehicle at the highest altitude
possible. Besides, each landing trajectory is strictly above
the terrain, and it includes possible altitude loss for the
case of LoT.

In the problem formulation, it is also desirable to ad-
dress the situation when the safety requirement on the
trajectory may not allow the vehicle to precisely visit the
locations S at the defined altitude because no feasible so-
lution exists if the locations are too low to guarantee safe
emergency landing. For this reason, it is suitable to relax
the precise visitation of the location si ∈ S at the specified
altitude, and si is considered to be visited if the visiting
configuration is directly above the target location. For
such a relaxed visitation, the safe trajectory can be deter-
mined for a sufficiently high altitude. Since we primarily
aim to find the trajectories visiting the defined locations
S, an additional penalty P : R → R is introduced to the
objective function to minimize altitude difference ∆ be-
tween the visiting configuration qi and the corresponding
target location si. The penalty function is selected to be
proportional to ∆ with the penalty multiplier β with the
positive penalty for non-negative ∆ (the case the visiting
configuration is above the target location) and an infinite
penalty for negative ∆

P(∆) =

{
β∆ if ∆ ≥ 0,

∞ if ∆ < 0.
. (4)

All three challenges are integrated into the Emer-
gency Landing Aware Surveillance Planning (ELASP)
that makes the problem very challenging. An example
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ELASP trajectory visiting the given location is depicted in
Fig. 2 together with possible emergency landing trajecto-
ries from the so-called decision points that are determined
by the employed sampling-based trajectory planning of the
proposed solution. The ELASP problem is formulated as
the optimization Problem 3.1.

Problem 3.1 Emergency Landing Aware Surveillance
Planning (ELASP) problem.

min
R,Σ,Q

n∑
i=1

(L(Ri) + P ([qσi
]z − [si]

z)) (5)

s.t. Ri+1(0) = Ri(1), ∀i ∈ {1, 2, . . . , n}, (6)

Ri(0) = qσi
, ∀i ∈ {1, 2, . . . , n}, (7)

[si]
xy = [qi]

xy, ∀i ∈ {1, 2, . . . , n}, (8)

∀d ∈ [0, 1], ∃Γ, j : Γ(0) = Ri(d) ∧ Γ(1) ∈ ξ̂j , (9)

Ri meets (1) and (2), ∀i ∈ {1, 2, . . . , n}, (10)

∀q̌ ∈ Ri : q̌ ∈ Cfree ∀i ∈ {1, 2, . . . , n}, (11)

where L(Ri) denotes the length of the i-th trajectory, [·]xy
denotes a projection of the configuration to 2D position in
xy plane, and [·]z the projection in z-axis. Notice σn+1 ,
σ1, and Rn+1 , R1, respectively, to simplify the notation
for the closed-loop trajectory.

The final trajectory R is closed-loop and continuous,
which is ensured by (6). The existence of the safe emer-
gency landing trajectory at any point of the final trajectory
R is assured by (9).

4. Roadmap of Possible Emergency Landing Tra-
jectories and Determination of Safe Altitude

One of the computational challenges in the studied
ELASP is to determine the safe altitude for a specific con-
figuration of the vehicle because it is needed in the deter-
mination of a single safe trajectory. Moreover, a vast num-
ber of safe trajectories need to be determined in multi-goal
planning. The challenge is addressed by a pre-compute
roadmap of possible landing trajectories. The roadmap is
utilized to retrieve a safe altitude for a particular point of
the examined trajectory that is used to update the altitude
profile of the trajectory to guarantee it is safe. A dense
roadmap of possible landing trajectories is constructed by
the RRT*-based algorithm adopted from [36] that is sum-
marized in Algorithm 1.

The construction is based on growing a tree for each
landing site, but all the trees are connected into a sin-
gle graph to compute the complete roadmap efficiently.
Contrary to [36], where informed randomized sampling is
utilized to provide safe emergency landing trajectory from
the current position of the vehicle, uniform sampling is
used for ELASP, because the vehicle position is unknown.

Algorithm 1: RRT*-based construction of possible
emergency landing trajectories (adopted from [36])

Input: Ξ = {ξ1, . . . , ξm} – Set of the landing sites
Input: Talt – Altitude of the terrain (or obstacles)
Input: tplan – Maximum time to create the roadmap
Output: G – Roadmap of landing trajectories
Output: A – Minimum safe altitudes for G

1 Function SafeLandingMap():
2 G← {V ← Ξ,E ← ∅}
3 A(ξi)← Talt(ξi), ∀ξi ∈ Ξ
4 while t < tplan do
5 q̃rand ← SampleUniform()
6 q̃nearest ← Nearest(q̃rand, G)
7 q̃new ← Steer(q̃nearest, q̃rand)
8 Qn ← Near(q̃new, G)
9 q̃∗ ← argminq̃n∈Qn

[A(q̃n) +H(q̃new, q̃n)]

10 A(q̃new)←
11 max [Talt(q̃∗, q̃new),A(q̃∗) +H(q̃new, q̃∗)]
12 V ← V ∪ {q̃new}; E ← E ∪ {(q̃∗, q̃new)}
13 G← Rewire(Qn, G)

14 return G,A

Figure 3: An example of the 2D projection of the roadmap gen-
erated by Algorithm 1 for two unidirectional landing sites at dif-
ferent altitudes without obstacles. Each sample of the roadmap is
represented as small cross (left) with the color determining the cor-
responding airport for safe emergency landing. The minimum safe
altitude (right) includes both altitude loss of the landing trajectory
and altitude of the selected airport. The first airport is located at the
coordinates (0, 0, 0) km heading east (90◦) and the second is located
at (−2.5, 1.5, 0.1) km heading north-west (315◦).

The RRT* is employed to determine the minimum al-
titude loss for possible landing trajectories. Based on the
model of the gliding trajectory proposed in [36], the config-
uration space of the vehicle is simplified to the 2D position
(x, y) and the corresponding heading angle θ. Thus, the
simplified configuration is q̃ = (x, y, θ) ∈ SE(2), i.e., the
simplified configuration space is C̃ = SE(2), which signif-
icantly reduces the computational burden. The altitude
of q̃ is then considered as the minimum altitude for the
safe emergency landing that is denoted as the function
A : C̃ → R. The particular minimum altitude A is influ-
enced by the altitude of the selected landing site, altitude
loss H : Γ→ R of the corresponding landing trajectory Γ,
and the altitude of the terrain. An example of the gener-
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ated roadmap for two landing sites is visualized in Fig. 3
and the evolution of the roadmap is depicted in Fig. 4.

The roadmap G is iteratively constructed for a given
computational time tplan, where at each iteration, a ran-
dom configuration is uniformly sampled over the whole
planning area (Line 5, Algorithm 1). Then, the near-
est configuration in the current roadmap G is found by
Nearest(), and a connection to the randomly selected
node is determined by 2D Dubins maneuver in the Steer()
procedure. Further, a part of the trajectory longer than
the steer constant is cut off, and a new configuration at the
maneuver’s end is returned (Line 7, Algorithm 1). Possible
parent nodes for the new configuration q̃new are determined
by Near(). The best parent node is selected according to
the overall altitude loss to the landing site. Finally, an
attempt to optimize the graph G is performed in Rewire()
by re-connecting existing edges to lower the minimum safe
altitude.

Having the roadmapG, a minimum safe altitude at some
configuration q̃act can be retrieved by trying to connect q̃act

to the closest configurations Qnear with the corresponding
landing trajectory that starts at q̃i ∈ Qnear. The trajec-
tory with the minimum required altitude is then returned.
The query on the minimum safe altitude is summarized in
Algorithm 2.

Algorithm 2: Retrieve the minimum safe altitude

Input: G – Roadmap of landing trajectories
Input: A – Minimum safe altitudes for graph nodes
Input: q̃act – Simplified configuration to query
Output: A(q̃act) – Minimum safe altitude for q̃act

1 Qnear ← Near(q̃act, G)
2 q̃* ← argminq̃i∈Qnear

[A(q̃i) +H(q̃act, q̃i)]

3 A(q̃act)← max [Talt(q̃*, q̃act),A(q̃*) +H(q̃act, q̃*)]

The pre-computed roadmap G helps to reduce the com-
putational burden, but the examined trajectory has to be
densely sampled to guarantee it is safe. Hence, the num-
ber of examined trajectories significantly affects the com-
putational requirements, and thus the maximal size of the
ELASP instance can be solved in a reasonable computa-
tional time. Therefore, reducing the number of examined
trajectories can significantly improve the scalability of the
ELASP solution.

5. Baseline ELASPBASE Solver for Emergency
Landing Aware Surveillance Planning (ELASP)

The proposed baseline solution of ELASP employs the
pre-computed roadmap G to examine a trajectory is safe
by querying the minimum safe altitude for particular sam-
ples of the examined trajectory. The challenging ELASP
is decomposed into five subproblems that are solved sepa-
rately to make the problem computationally feasible. The

baseline ELASPBASE is summarized in Algorithm 3 and
the subproblems are as follows.

1. A dense roadmap G of possible landing trajectories
with the associated minimal altitudes A to each node
of G is generated by Algorithm 1 to enable the mini-
mum safe altitude queries for any location of the ve-
hicle in the planning area (Algorithm 3, Line 1).

2. Possible vehicle heading angles at each target location
are uniformly sampled, and a vector of all configura-
tions W is created (Algorithm 3, Line 2).

3. Safe trajectories Rall are computed between all sam-
pled configurations W using the pre-computed G and
A (Algorithm 3, Lines 3–8).

4. Trajectories Rall are used to create an instance of the
GATSP to determine the sequence of visits using an
existing TSP-like solver (Algorithm 3, Lines 9), e.g.,
Concorde [29] or LKH [38] by the transformation to
the TSP using Noon-Bean transformation [28].

5. For the determined sequence of visits, the correspond-
ing trajectories are connected into the final trajectory,
and any altitude discontinuities are removed if occur
(Algorithm 3, Lines 10).

The individual steps are further detailed in the rest of this
section to provide a complete description of the algorithm
supporting its reimplementation.

Algorithm 3: ELASPBASE – Baseline solver of
ELAPS problem

Input: Ξ = {ξ1, . . . , ξm} – Set of the landing sites
Input: Talt – Altitude of the terrain (or obstacles)
Input: S = {s1, s2, . . . , sn} – Set of target locations
Input: k – Number of heading samples
Output: Σ = {σ1, σ2, . . . , σn} – Sequence of visits
Output: R = {R1,R2, . . . ,Rn} – Final trajectory

1 G,A ← SafeLandingMap(Ξ, Talt) // call Alg. 1

2 W ← SampleHeading(S, k)
3 Rall ← ∅
4 foreach qai ∈W do
5 foreach qbj ∈W do
6 if i = j then
7 continue

8 Rall ← Rall ∪ SafeT
(
qai , q

b
j , G,A

)
9 Σ,Σ′,R′ ← SolveGATSP(Rall)

10 R ← AssurePitchLimits (R′)

In the first step, a dense roadmap of possible emergency
landing trajectories is determined by Algorithm 1 to en-
able queries on the minimum safe altitude for the specific
configuration of the vehicle. Thus, only a single roadmap
G is created for all queries to reduce the computational
burden since otherwise, it would not be computationally
tractable to compute a landing trajectory for each config-
uration separately by the RRT*algorithm.
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Figure 4: An evolution of the roadmap generated by Algorithm 1 over time t with a single unidirectional runway surrounded by a flat
terrain. Two scenarios are compared: without any obstacle (top), and with three 450 m high rectangular obstacles. The color of the landing
trajectories represents the minimum altitude for a safe emergency landing.

q11 → q12

q11 → q22

q11 → q32

q
1
1
→ q

4
2

q11

q21q31

q41

q12

q22q32

q42

Figure 5: Example of the sampled heading angles for k = 4 and
two target locations s1 and s2 with all connections from created
configuration q11 of s1 to all configurations of s2 (q12 , . . . , q

4
2).

Once the roadmap G is constructed, safe trajectories
between the target locations S are computed. Since the
fixed-wing vehicle is curvature-constrained, particular tra-
jectories between the configurations depend on the vehicle
heading angle at the locations. Therefore, possible head-
ing angles are uniformly sampled for each location and
the procedure SampleHeading() creates k configurations
for each of n target locations that are all stored in a single
vector of configurations

W =

n⋃
i=1

{q1
i , . . . , q

k
i }. (12)

The number of heading samples k influences the size of
the GATSP instances; however, similarly to instances of
the DTSP, too high number does not necessarily improve
solution quality [11], the influence of k to the algorithm
performance is reported in Section 8. Notice that safe

trajectories are computed between the configurations W ,
except those corresponding to the same target locations,
similar to the sampling-based solution of the DTSP [27],
see Fig. 5.

Determination of all safe trajectories Rall is very de-
manding because a single safe trajectory needs to be sam-
pled, and the safe altitude has to be determined by Algo-
rithm 2 for each such a sample in the procedure SafeT().
Furthermore, the number of safe trajectories quickly grows
with the number of locations n and also with the number
of headings k. In the ELASPBASE algorithm, k2(n2 − n)
safe trajectories are determined in the total, and the com-
putation thus becomes quickly intractable.

The procedure SafeT() first connects two selected con-
figurations using the Dubins Airplane model [14] to meet
the minimum turning radius constraint. However, such
a trajectory might not be safe, because in the case the
vehicle is at too low altitude, it is not guaranteed there
is a safe emergency landing trajectory for any point of
the trajectory. Therefore, the trajectory generated by the
Dubins Airplane model is discretized into simplified con-
figurations Q̃ = {q̃1, q̃2, . . . , q̃ end} uniformly with the step
dstep. The sampled configurations of the trajectory are
further referred to as the decision points. Then, the min-
imum safe altitude is determined for each decision point
independently using Algorithm 2.

The existence of a safe landing trajectory has to be guar-
anteed for any point of the trajectory and not only for
the decision points. Hence, the safe altitude Asafe is de-
termined, such that the altitude loss H of the trajectory
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between two decision points is added to the minimum al-
titude of the previous decision point. Further, the mini-
mum/maximum pitch angle ψmin/max is utilized to limit
the slope of the trajectory. The determination of the safe
altitude Asafe can be expressed as

Asafe (q̃j) = max

 A (q̃j+1) +H (q̃j , q̃j+1)
Asafe (q̃j−1) + tan(ψmin) dj−1,j

Asafe (q̃j+1)− tan(ψmax) dj,j+1

 , (13)

where dj,j+1 is the Euclidean distance in the 2D projection
between the decision points q̃j and q̃j+1.

One may notice that (13) is recursive. Thus, the altitude
is increased in two passes through all samples: (i) in a
forward way, for limiting the maximum descent by the
minimum allowed pitch angle; and (ii) in a backward way,
for limiting the ascend by the maximum pitch angle.

qi qj

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Figure 6: An example of constructing safe trajectory between qi
and qj with the decision points at the distances d1, . . . , d10. The
safe altitude is shown in the red and all decision points of the trajec-
tory has to be at higher altitude. Moreover, gliding to the (at least)
next decision point must be guaranteed to guarantee a safe landing
between the samples. Such a gliding trajectory is visualized as the
grey dashed line, which is shown between the decision points at d5
and d6. Besides, the pitch limit constrains must be assured. That
is why the decision point at d4 is even higher than needed for the
safe flight between d4 and d5. Similarly, the decision point at d8 is
higher to assure the pitch limits during the descent. A safe trajec-
tory between qi and qj is shown as the black dashed line; however,
such a trajectory is longer than needed, and it can be shortened by
assuming only its concave envelope, as it is shown by the solid black
line representing the final safe trajectory between qi and qj .

The determined safe altitude Asafe guarantees safe land-
ing, but the total trajectory cost is minimized in the
ELASP formulation (5). Therefore, it is required the safe
trajectory has the final altitude profile AF with the con-
cave property that holds for any sample of the trajectory
except the trajectory endpoints that correspond to the
given target locations. The property holds because oth-
erwise, unnecessary altitude changes prolong the trajec-
tory, see Fig. 6. The concavity constraint can be expressed
based on the lengths of two consecutive trajectories with
distances dj−1,j and dj,j+1 as

AF (q̃j) ≥
dj,j+1 Asafe (q̃j−1) + dj−1,j Asafe (q̃j+1)

dj−1,j + dj,j+1
. (14)

Similarly to Asafe, the final altitude profile is consecutively
determined by a two-pass algorithm that checks the con-
cavity forward and backward. The decoupled approach is
proposed in which the vertical profile of the final sequence

is post-processed to remove any vertical discontinuities at
target locations if it occurred.

Here, it is worthy to remind that some locations si ∈ S
may not be reachable by a safe trajectory. For that reason,
the formulation of Problem 3.1 allows the visiting config-
uration qi can be above si that is penalized. However, in
a practical implementation, the penalty function P needs
to be chosen appropriately, which is further discussed in
Section 7.

The fourth step of the proposed ELASP algorithm is
to compute the best sequence to visiting the target lo-
cations using the determined safe trajectories Rall. The
sequencing part of ELASP is addressed as the Generalized
Asymmetric TSP (GATSP) to visit a set of sets that are
defined by the k sampled configurations {q1

i , q
2
i , . . . , q

k
i } for

each target location si, and the travel costs correspond to
the costs of the corresponding trajectories from Rall. The
solution is the shortest closed-loop trajectory connecting
exactly one sampled configuration from each set, and thus
each target location is visited. The created instance of
the GATSP is transformed to the Asymmetric TSP using
Noon-Bean transformation [28], and the final sequence of
visits can be determined optimally using Concorde [29].
However, a faster heuristic solution [30] is employed for
the herein reported results, and the available LKH [38] is
utilized to decrease the computational burden.

Notice that the procedure solveGATSP() returns not
only the sequence of visits Σ to the target locations S,
but also the particular selected sampled configurations
Σ′ = {σ′1, σ′2, . . . , σ′n}. Thus, the i-th trajectory Ri starts

at q
σ′
i
σi and terminates q

σ′
i+1
σi+1 .

The final trajectory is created by concatenating the in-
dividual trajectories according to the sequence determined
as the GATSP solution. However, a straightforward con-
catenation may contain discontinuities because of altitude
profiles modified to meet the pitch angle constraints or
the minimum safe altitude. Hence, the trajectory ends
may have a higher altitude than the target locations S,
and thus the same procedure for increasing the altitude of
the samples, as during the safe trajectory generation, is
utilized to get the final feasible trajectory. As a result, the
proposed algorithm guarantees that the final trajectory R
is closed-loop visits all the given target locations, meet the
pitch angle and concavity constraints, and it is possible to
land safely from any point along R.

6. Improved ELASPLAZY Solver with Lazy Evalu-
ation of Safe Trajectories

The ELASP can be solved by the proposed baseline
ELASPBASE, which, however, shows to be computation-
ally feasible only for small instances. Therefore, we pro-
pose to follow the idea of using lower bound estimates on
trajectory costs in the sequencing part of the planning that
has been originally proposed for welding robots in [19].
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The sequencing part is initially solved with the approxi-
mate trajectory costs, that are easy to compute. Then,
the solution is refined to guarantee the trajectories are
safe, and a new sequence is determined with the updated
costs until all the trajectories in the solution are safe.

The improved algorithm is called ELASPLAZY because
of the employed lazy evaluation of the safe trajectories that
significantly improve computational performance. It fol-
lows the baseline algorithm with a pre-generation of emer-
gency landing trajectories and sampling possible heading
angles to form a set of configurations W . First, the tra-
jectories between the configurations W are approximated
by the so-called terrain trajectories that are determined
by the TerrainT() procedure. The main simplification in
the terrain trajectory determination is from using the al-
titude profile of the terrain below the trajectory that is
updated to meet the maximum pitch angle condition(13)
and the concavity constraint (14). The terrain trajectory
is collision-free and fulfills all motion constraints of the air-
craft, but the safe emergency landing is not guaranteed.
However, its determination is significantly faster because
no queries on the minimum safe altitude are needed.

The sequencing part is solved as the GATSP using trans-
formation to the Asymmetric TSP that is solved by fast
heuristic LKH [38]. Initially, the found sequence described
by Σ,Σ′ contains only estimations on the safe trajectories
computed by TerrainT() procedure. Thus, the estimates
are replaced by the safe trajectories determined by the
SafeT() procedure. The solution of the sequencing part is
repeated until the found sequence contains only the safe
trajectories. Then, identically as in ELASPBASE, the fi-
nal found sequence is processed, and its vertical profile
is updated to remove any vertical discontinuities by the
AssurePitchLimits() function.

The proposed ELASPLAZY is summarized in Algo-
rithm 4 and its real benefits in improving the computa-
tional performance, and thus improved scalability in com-
parison to the baseline ELASPBASE, are reported in Sec-
tion 8. Prior to that, the design of the appropriate penalty
function for the relaxed ELASP problem is discussed in the
following section.

7. Penalty function

In the studied ELASP problem, it is requested to visit
the given set of target locations such that it is guaran-
teed there is always an emergency landing trajectory for
any point of the surveillance trajectory. However, the pre-
scribed altitude of a target location might not allow a safe
emergency landing. Therefore, visiting the location can
be risky, and we can imagine a situation that a pilot takes
the risk and descends to the prescribed altitude. Alterna-
tively, the precise visitation of the target location can be
relaxed, and the pilot keeps the vehicle at the minimum
safe altitude.

For the former case, the risk can be minimized by min-
imizing the time spent at an unsafe altitude that can be

Algorithm 4: ELASPLAZY – Proposed solver with
Lazy Evaluation of Safe Trajectories

Input: Ξ = {ξ1, . . . , ξm} – Set of the landing sites
Input: Talt – Altitude of the terrain (or obstacles)
Input: S = {s1, s2, . . . , sn} – Set of target locations
Input: k – Number of heading samples
Output: Σ = {σ1, σ2, . . . , σn} – Sequence of visits
Output: R = {R1,R2, . . . ,Rn} – Final trajectory

1 G,A ← SafeLandingMap(Ξ, Talt) // Algorithm 1

2 W ← SampleHeading(S, k)
3 Rall ← ∅
4 forall the qai ∈W do
5 forall the qbj ∈W do
6 if i = j then
7 continue

8 Rall ← Rall ∪ TerrainT
(
qai , q

b
j , G,A

)
9 do

10 Σ,Σ′,R′ ← SolveGATSP(Rall)
11 forall the Ri ∈ R′ do
12 if IsTerrain(Ri) then
13 Rall ← Rall \ Ri
14 Rall ← Rall ∪ SafeT

(
q
σ′
i
σi , q

σ′
i+1,
σi+1 , G,A

)
15 while Rall updated
16 R ← AssurePitchLimits(R′)

qi

si

safe
altit

ude

safe traject
ory

Figure 7: Possible maneuver to visit the target location si at the
not safe altitude that minimizes the vehicle time at unsafe altitudes.
First, the vehicle reaches the visiting configuration qi at the safe
altitude. Then, it descends using the spiral maneuver to reach si
and continues with the climbing spiral to reach the safe altitude at
qi. For a relaxed visitation of si, the vehicle just pass the visiting
configuration qi at the safe altitude.

minimized by the spiral type maneuver visualized in Fig. 7.
For the latter case, the precise visitation of the target loca-
tions is relaxed, and a location is considered visited if the
vehicle passes the configuration at the safe altitude above
the target location.

A penalty function is introduced in Problem 3.1 to allow
a trade-off between the distance of the relaxed trajectory
from the target locations and its length. A particular value
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of the penalty depends on the distance of the target loca-
tion and its corresponding visiting configuration, which is
always at a safe altitude. However, such a value cannot
be directly added into the distance matrix utilized in the
solution of GATSP instances because the altitude of two
connected trajectories may differ, and a final altitude ad-
justment is applied. Therefore, half of the penalty value is
considered for each endpoint of the trajectory, and it can
be utilized in the ELASP algorithm as follows.

Let considers a safe trajectory from the configuration
qi to qj that is generated by the SafeT() procedure. The
safe trajectory starts at qS

i which may be above qi, and
thus [qS

i ]xy = [si]
xy and [qS

i ]z ≥ [si]
z. The terminal end-

point of the safe trajectory is qS
j with the analogous prop-

erties. Then, the distances utilized in the GATSP instance
is computed as a half of the corresponding penalty value
P applied at both endpoints

LS(qi, qj) = L(SafeT(qi, qj)) +
P(∆S

i )

2
+
P(∆S

j )

2
, (15)

where the altitude differences are defined separately for
both configurations

∆S
i = [qS

i ]z − [si]
z, ∆S

j = [qS
j ]z − [sj ]

z. (16)

Terrain trajectory is introduced in ELASPLAZY that
might not be safe, but all motion constraints of the ve-
hicle are met. The terrain trajectory is computed by
TerrainT() procedure and can be considered as a lower
bound estimation of the safe trajectory. Hence, it might
also be augmented by the penalty.

The terrain trajectory starts at the configuration qT
i and

it ends at qT
j . The distance utilized in the GATSP solution

is given by

LT(qi, qj) = L(TerrainT(qi, qj))+
P(∆T

i )

2
+
P(∆T

j )

2
, (17)

where the altitude differences are defined analogously as
for the safe trajectory

∆T
i = [qT

i ]z − [si]
z, ∆T

j = [qT
j ]z − [sj ]

z. (18)

Terrain trajectories are utilized as the lower bound es-
timation of the safe trajectories that are easier to com-
pute, and thus reduce the overall computational burden
of ELASPLAZY. The necessary condition for LT to be a
lower bound of LS is

LT(qi, qj) ≤ LS(qi, qj), (19)

that must hold between any two configurations qi and qj .
The particular value of the penalty multiplier β intro-

duced in (4) has to ensure LT(qi, qj) is still a lower bound
of LS(qi, qj). The lower bound property (19) can be ex-
panded using (15) and (17). Then, the penalty function (4)
can be applied to get

L(TerrainT(qi, qj)) ≤

≤ L(SafeT(qi, qj)) +
β

2

(
∆S
i −∆T

i + ∆S
j −∆T

j

)
.

(20)

Hence, the minimum value of the multiplier β can be de-
termined to ensure the lower bound constraint.

si

∆T
i

qTi

∆S
i

qSi

Figure 8: Penalty for safe and terrain trajectories. The terrain tra-
jectory (gray line) may be restricted by pitch constraints of the air-
craft, which results in the visiting configuration qTi above the target

location si, and thus being penalized by P
(
∆T

i

)
. The safe trajec-

tory (black line) may be restricted furthermore by the safe altitude
leading to the visiting configuration qSi being higher than qTi , and

penalized by P
(
∆S

i

)
.

Let the final configurations of the terrain and safe tra-
jectories be at different altitudes, as depicted in Fig. 8.
The lower bound condition (19) is met for the multiplier
β ≥ 2 because of the triangular inequality. The value of
β influences the performance of ELASPLAZY because, for
higher values, the algorithm needs to test more sequences
until it converges to a solution without contained lower
bound estimations. That is why β = 2 is utilized for all
the results reported in this paper.

8. Results

The proposed solution to the introduced ELASP is em-
pirically evaluated in several scenarios to demonstrate the
feasibility of the proposed ELASPBASE approach and com-
putational benefits of the improved ELASPLAZY algorithm
in solving large problem instances. The evaluation surveil-
lance scenarios are motivated by search-and-rescue mis-
sions or border patrol deployments in difficult terrains such
as mountains. Therefore, a simulated real-life scenario
with a mountain terrain is created for the evaluation, and
an example of the terrain is visualized in Fig. 9b. The
mission area is 5 km× 5 km large, and the terrain altitude
ranges from [0, 1500] meters above the sea level. Two bidi-
rectional and one unidirectional landing sites are placed at
the lower part of the terrain. Thus, emergency landing tra-
jectories are selected from five possible landing sites, and
thus m = 5. In all evaluation results, the computational
time to create the roadmap G by Algorithm 2 is set to
thirty seconds, tplan = 30 s.

Multiple instances of the mountain scenario are as-
sumed that consists of n randomly placed target loca-
tions n ∈ {5, 10, 20, . . . , 100} that are at 100 m above the
terrain. The number of heading angles k per each lo-
cation is selected from the set k ∈ {4, 8, 16}. The tra-
jectory safety is examined for uniformly sampled deci-
sion points with the step size dstep selected from the set
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(a) Pre-generated graph of possible landing trajectories

s1

s2

s3

s4

s5

ξ1

ξ2 ξ3
ξ4
ξ5

(b) Emergency landing trajectories for the final trajectory

Figure 9: (left) Visualization of the roadmap of possible emergency landing trajectories that are colored based on the altitude. (right) The
final trajectory generated by the developed ELASPLAZY algorithm (in the black) connects the locations si ∈ S with the selected landing
trajectories to the landing sites ξj . The results were obtained for the setup with k = 4, dstep = 100 m, and tplan = 30 s.
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Figure 10: Altitude profiles generated by theELASPLAZY algorithm, where the Unsafe trajectory considers only the pitch angle limits and
the concavity constraint. The highlighted points correspond to the locations si ∈ S, and the minimum altitude for safety landing is shown in
the red. The results were obtained from the same run as in Fig. 9.

dstep ∈ {10, 30, 50, 70, 90, 100} m. The emergency landing
trajectory is found at each decision point, and the trajec-
tory influences the altitude of the final trajectory. Further,
the necessary altitude for a safe landing is increased by
100 m as the selected safety distance above the terrain.

The particular aircraft model is based on Cessna 172
adopted from [36], including its complex model of the al-
titude loss. The utilized aircraft model parameters are
depicted in Table 1. The maximum allowed bank angle of
the aircraft is 60◦ leading to the minimum turning radius
of ρ = 65.7 m for the assumed constant forward velocity
v = 33.4 m s−1. The assumed pitch angle limitations are
ψmax = 30◦ and ψmin = −20◦. The altitude loss model
uses the optimal glide speed v, and the altitude loss de-
pends on the utilized turning radius. The minimum angle
of emergency descent is 4.9◦, which is achieved during a

Table 1: Used technical parameters of Cessna 172 aircraft.

Parameter Symbol Value

Vehicle mass m 1000 kg
Wing area S 16.2 m2

Wing span b 11 m
Span efficiency factor ε 0.8
Coefficient of geometric drag CD0 0.0341
Optimal glide airspeed v 33.4 m s−1

Lift-induced drag coef. L 0.053
Maximum roll angle |ϕmax| 60◦

Minimum turning radius ρ 65.7 m

straightforward glide.

The proposed ELASP algorithms have been imple-
mented in C++ and executed on a single core of the Intel
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Xeon Scalable Gold 6146 running at 3.2 GHz. Therefore,
the computational performance of both ELASPBASE and
ELASPLAZY can be directly compared. Each problem in-
stance has been solved ten times, and the reported values
are medians accompanied by the 60 % non-parametric con-
fidence intervals visualized as an area around the average
values in the presented plots. The studied computational
performance is overviewed in Figs. 11 to 14 and detailed
computational performance is listed in Tables 2 and 3.

An example of the landing trajectories is shown in
Fig. 9a, and the final planned trajectory with its safe emer-
gency landing trajectories are shown in Fig. 9b. The alti-
tudes for the final found trajectory are further visualized
in Fig. 10 to demonstrate the behavior of the improved
ELASPLAZY algorithm. The highest points of the terrain
significantly influence an altitude of the final trajectory.
The constraints on the pitch angle are applied, and the
maximum slope around the highest points is limited. It
causes that the locations s2 cannot be visited in the re-
quested altitude, and the altitude of the final trajectory is
increased. The requirement for the safe landing further in-
creases the altitude at s2 because the highest point of the
terrain needs to be reached from an even higher altitude
to provide the option to over-fly the mountain safely if
there is not enough space to turn back. The final altitude
adjustment by the emergency landing planning is mostly
influenced at the location s5 (bottom right in Fig. 9b).
Here, the altitude is not affected by the pitch angle con-
straints nor the terrain, but mostly by the distance to the
closest landing site. A similar case can be seen even for
the location s3 with a much lower altitude increase.
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Figure 11: Influence of the number of heading samples k to the
required computational times needed to solve ELASP instance with
n = 10 target locations.

The computational benefits of ELASPLAZY are ev-
ident from the overview in Fig. 11 where the influ-
ence of the number of heading samples can be studied.
More samples increase the computational burden, but
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Figure 12: Influence of the increasing number of the target loca-
tions n to the scalability of the ELASP algorithms. The shown re-
sults are for k = 8 heading samples and dstep = 50 m.

ELASPLAZY is still about one order of magnitude faster
than ELASPBASE. The scalability of the algorithm for
an increasing number of target locations n is further vi-
sualized in Fig. 12. It is evident from the results that
ELASPBASE does not scale with n, and a solution for in-
stances with more than 20 target locations are found in 24
hours, which is considered impractically high.
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Figure 13: Computational performance of the particular steps of
the ELASPLAZY algorithm for increasing the number of target lo-
cations n. The results are obtained for five random instances, each
solved ten times, and k = 8, and dstep = 30 m.

The computational performance of particular steps of
ELASPLAZY is shown in Fig. 13 indicating that the
most computationally demanding part is a solution of the
GATSP, and generation of safe trajectories is the most
demanding part only for small instances. The benefit of
lazy evaluation of safe trajectories in ELASPLAZY is vi-
sualized in Fig. 14 for the reduced number of examined
configuration for safe emergency landing. The number of
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Table 2: Average computational times of ELASP algorithms’ steps for instances with the sampling step dstep = 50 m.

ELASP Step

n = 5, k = 4 n = 5, k = 8 n = 20, k = 8

ELASPBASE ELASPLAZY ELASPBASE ELASPLAZY ELASPBASE ELASPLAZY

Roadmap generation 30 s 30 s 30 s 30 s 30 s 30 s

Safe trajectories 279 s 111 s 1477 s 497 s 15013 s 268 s

Solving the GATSP 12 ms 514 ms <1 s 6 s <1 s 87 s

Limits the pitch angle <1 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Total 309 s 142 s 1507 s 533 s 15044 s 385 s

Table 3: Average numbers of calls (executions) of ELASP algorithms’ steps for instances with sampling step dstep = 50 m.

ELASP Step
n = 5, k = 4 n = 5, k = 8 n = 20, k = 8

ELASPBASE ELASPLAZY ELASPBASE ELASPLAZY ELASPBASE ELASPLAZY

Roadmap expansions 7458 7420 5566 7286 7591 7541

Safe trajectories queries 20.8k 8.1k 83.3k 34.9k 1.2M 21.1k

Number of GATSP solutions 1 33 1 134 1 145

Calls of pitch angle limit 1 1 1 1 1 1
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Figure 14: Percentage of the relative number of samples evaluated
for safe landing by ELASPLAZY to the number of all evaluations of
ELASPBASE.

examinations increases with the number of heading sam-
ples k because more updates on the trajectory estimates
are needed to exploit more options on how to connect two
target locations using different heading angles. However,
only a fraction of queries on safe trajectories is needed in
comparison with the former ELASPBASE.

Detail computational times in Table 2 further support
that the lazy evaluation vastly reduces the number of
queried samples. On the other hand, there are multiple
calls of the LKH solver to solve the GATSP with the up-
dated trajectory costs repeatedly, see Table 3. Overall,
it is less demanding to heuristically solve the GATSP in-
stances multiple times than determine all safe trajectories

connecting all pairs of target locations while getting the
same quality of solutions.

The influence of the sampling step dstep, and the number
of heading samples k to the solution quality is depicted
in Fig. 15. Both parameters have a negligible impact on
the final trajectory length as the median differs only in
tens of meters for tens of kilometers long trajectory, which
is less than 0.2 %. Also, both algorithm variants provide
similar results, albeit there is a difference in the stability of
the solutions that is supposed to be related to the utilized
heuristic LKH [38]. Although the differences are tiny, there
is a noticeable trend of a slightly better solution for longer
dstep, which might be bit surprising. This phenomenon is
discussed in the following section.

8.1. Discussion

The ELASPLAZY algorithm provides a significant speed-
up over ELASPBASE in the studied scenarios, while so-
lutions of the same quality are found. The speed-up is
achieved by the reduction of computationally demand-
ing determination of safe trajectories despite the fact that
more calls of the GATSP solver are required. The utilized
heuristic solver LKH [38] has reported empirically mea-
sured asymptotic complexity about O((nk)2.2) [30]. On
the other hand, the asymptotic complexity of safe trajec-
tory generation can be bounded by O(n2k2). Nevertheless,
the practical results indicate that it is much faster to call
LKH multiple times than to compute safe trajectories be-
tween all target locations, as in ELASPBASE.

The computational performance of ELASPLAZY de-
pends on the number of heading angles k, where for a
high number of k, samples are too close, and thus more
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Figure 15: Influence of the sampling step dstep and the number of
heading samples k to the length of the final trajectory. The depicted
results for the both algorithms ELASPLAZY and ELASPBASE have
been computed on the same instance with n = 10 target locations.

solutions of the GATSP are necessary to refine all estima-
tions of the possible trajectories. Regarding the solution
quality, it seems that even low values of k are sufficient.
Therefore, a suitable number of heading samples seems to
be eight as for a higher number, the number of evaluated
trajectories starts to grow, see Figs. 11 and 14.

The solution of the ELASP problem seems to be insen-
sitive to the selection of the sampling step dstep, which
is mostly because of small altitude loss between two de-
cision points for the considered range of dstep ∈ [30, 90]
in Fig. 15. However, the sampling step is utilized for the
detection of the terrain altitude and queries on the safe
altitude that is probably the reason why the total length
slightly decreases for longer sampling steps in Fig. 15 as
a result of exploiting the safe distance above the terrain.
Thus, the trend will unlikely continue for very long sam-
pling steps, because in such a case, it would be necessary
to introduce an individual sampling for collisions with the
terrain to guarantee the trajectories are collision-free and
sufficiently above the terrain.

9. Conclusion

In this paper, we propose a solution of the Emergency
Landing Aware Surveillance Planning (ELASP) problem
that combines finding a feasible multi-goal trajectory to
visit a set of target locations with the guarantee of safe
emergency landing from any point of the trajectory in a
case of the loss of thrust. The proposed solution lever-
ages on the pre-computed roadmap of possible landing
trajectories within the surveillance mission area that is
utilized during the multi-goal planning together with the
lazy determination of safe trajectories to reduce the com-
putational burden. The proposed algorithmic solution has
been empirically evaluated in the mountain scenario to
demonstrate the difficulty of ELASP, the effect of the pre-

computed landing trajectories, and the importance of us-
ing the lazy evaluation technique to improve the scalability
of the solution. Possible future research directions are in
the improvement and generalization of the vehicle model
to consider more complex trajectories, and thus support
further optimization of the found trajectories.
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