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During last decade rapidly exploring random trees (RRT) became widely used
for solving a motion planning problem in various areas. Poor performance
of these algorithms has been noticed in environments with narrow passages.
Several variants of the RRT have been developed to address this issue.

This paper presents a new variation of the RRT designed for sampling
environments with narrow passages. Performance of the proposed method has
been experimentally verified and results are compared with the original RRT,
RRT-Bidirectional and RRT–Blossom algorithm.

1 Introduction

Motion planning is one of the most studied problems in robotics. Various
methods for solving this problem has been introduced in last two decades. Ap-
plications beyond robotics including 3D object manipulation, computational
biology, computational graphics or drug folding are presented [9].

During last decade the RRT algorithm [11] has became widely used for
solving motion planning problem. The algorithm is based on random sam-
pling of a configuration space. The sampled configurations are connected to
a tree structure in which the result path can be found. The algorithm can be
divided into three main parts: selection of a vertex for expansion, expansion
and terminating condition. The original RRT algorithm is outlined in Alg. 1.

The performance of the RRT algorithm can be poor in environments con-
taining narrow passages. The narrow passages stunt the tree growing process
which slows down searching of the result path. Example of environment with
narrow passages is depicted on Fig. 1.

In this paper the new way of growing the tree through an environment
is introduced. The proposed method called RRT–Path employs an auxiliary
path that guides the tree through the environment from a start configuration
to a goal configuration.
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The rest of the paper is organized as follows. In next section a brief sum-
mary of related works is given. The main part of the paper is dedicated to
description of the new extension called RRT–Path, which introduces new ap-
proach for selection of a vertex for the expansion. The proposed algorithm and
several methods for computing an auxiliary path are described in section 3.
Experimental results are presented in section 4.

Algorithm 1: Original RRT

T .add(qstart)1

while iteration < K do2

qrand = random configuration3

qnear = nearest neighbor in tree T to qrand4

qnew = extend qnear toward qrand5

if qnew can connect to qnear then6

T .addVertex(qnew);7

T .addEdge(qnear,qnew);8

end9

if %(qnew, qgoal) < distanceToGoalTh then10

break;11

end12

end13

2 Related works

Several methods have been proposed to improve performance of the RRT
algorithm. One of the first method to speed up process of tree growing toward
a goal configuration is based on replacement of qrand by the qgoal in certain
number of iterations [9]. This extension is known as the goal bias and it
is number of iterations between repeated replacement of the qrand by the
qgoal. In an environment with concave obstacles higher goal bias can however
worse efficiency of the algorithm. Another early extension is given by the
RRTConnect [8] where the expansion step is iterated until no new vertex can
be added.

To improve performance of the algorithm in environments with nar-
row passages, the bidirectional version of the RRT algorithm called RRT–
Bidirectional [10] can be used. The algorithm uses two trees. One is growing
from the start configuration and the other from the goal configuration. If the
trees meet close enough the result path can be found.

The Dynamic–Domain RRT [15] changes way how a vertex is selected for
the expansion. Each vertex has its action radius r and it is selected for the
expansion only if its radius is larger than the distance to qrand. If the expansion
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is successful, the radius of the expanded vertex is set to infinity otherwise the
radius is set to value of parameter R.

In [3] authors present modification of sampling schema in which configu-
rations closer to obstacles are sampled. An approach based on identification
of narrow passages has been introduced in [2]. Knowledge of location of nar-
row passages enables more density sampling around them which can help the
algorithm to find solution.

Extension proposed in [6] called RRT–Blossom adds constraint to a vertex
being added to the tree: vertex v is added to the tree only if the distance from
v to its parent vertex is not greater then distance from v to another vertex in
the tree. This constraint speeds up growing toward unexplored regions. The
proposed approach works well for simple kinematic systems, but it becomes
problematic for kinodynamic systems.

However several approaches to improve the RRT technique by a usage of
prior knowledge of the environment in more or less explicit form has been
published, the explicit combination of other techniques with the RRT has
not been found in literature. That is why this paper presents combination of
several simple path planning techniques with the RRT algorithm.

The real time performance of the RRT algorithm is also influenced by
particular implementation of its parts. The most time consuming parts of the
RRT schema are searching for the nearest neighbors in the tree and testing if
a new configuration being added to the tree is collision free. To support fast
searching the KD–tree structure can be used. Implementation of the KD–tree
data structure appropriate for the RRT is described in [16]. Several meth-
ods to test collision of the robot configuration with the environment can be
used. One of the fastest method called RAPID [5] has been used in presented
experimental results.

3 RRT–Path

To speed up configuration sampling near narrow passages the RRT–Path al-
gorithm employs an auxiliary path. The auxiliary path represents knowledge
of the environment, it is a rough estimation how to get to the goal position.
The RRT samples configurations along this path. The algorithm is outlined
in Alg. 2. The auxiliary path is assumed to be traversed by simple turn–move
movement and no differential constraints are considered during its construc-
tion hence the path can be generated only in 2D (x and y robot’s position).
Various methods can be used for computing the auxiliary path. In the follow-
ing section four methods to compute an auxiliary path are discussed. These
methods represent simple path planning techniques.

3.1 Generating auxiliary path

Visibility graph - The simplest approach to generate an auxiliary path is
based on computation of a visibility graph of the environment. The visibility
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Algorithm 2: RRT–Path

T .add(qstart)1

P [] = prepare auxiliary path from qstart to qgoal2

D[] = distances between points in P to the nearest point in tree T3

temporalGoal = first point in P [];4

while iteration < K do5

if temporal goal is reached then6

choose next temporalGoal in P [] not reached yet according to D[];7

end8

if iteration % tempGoalBias != 0 then9

qrand = temporalGoal10

else11

qrand = random config from whole configuration space12

end13

for every point i in path update its D[i]14

extends tree in same way as in basic RRT15

stopping configuration same as in basic RRT16

end17

graph of the polygonal representation of the environment can be obtained in
O(n2) [13]. However a path from the start position to the goal position can
be easily found by the Dijkstra’s algorithm, such path is not well suited to
support the RRT. Segments of the path can lie very close to obstacles or even
they can be part of an obstacle edge, hence sampling in the RRT algorithm will
likely to fail. To avoid such possible collisions, a visibility graph is computed
on grown polygonal representation. The Minkowski addition [12] of a polygon
with a disk can be used in case of a differential robot. Found auxiliary path
for the map jari-huge and offset parameter 20 is depicted in Fig. 1 (a).

The polygon growing approach has two drawbacks. If just a visibility graph
is used to find auxiliary path, it is not guaranteed such path exists in the
visibility graph, because after polygon growing, a free space can be divided
into several disconnected regions, see Fig. 1 (b) and (c). The second drawback
is required computation time, which depends on number of vertices of the
polygonal map. This number is increased after polygon growing.

Voronoi diagram - Instead of visibility graph the segment Voronoi di-
agram can be used. The auxiliary path is also found by the Dijkstra’s algo-
rithm in a graph with added edges. The edges represent segments from the
start (resp. goal) position to the closest vertex in the Voronoi diagram. As
segments of Voronoi diagram are ”in the middle” of the free space, polygon
growing is not necessary. An example of found path is shown in Fig. 1 (c).

Figures 2 (a) and (b) show almost no difference in auxiliary path for envi-
ronment BT1 and BT4. The BT4 environment has just narrower entrance to
the room than in the BT1. This approach does not require polygon growing,
but auxiliary path are typically longer.
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(a) (b) (c) (d)

Fig. 1. Growed polygon as a segment approximation of Minkowski addition: (a) off-
set 20, (b) offset 40 with part of disconnected visibility graphs; (c) Segment Voronoi
diagram of jari-huge environment with added edges and found auxiliary path; (d)
Detail how Visibility-Voronoi diagram connects visibility graphs - disconnected vis-
ibility graphs for environment jari-huge after polygon growing by 40 (upper) and
found auxiliary path in Visibility-Voronoi diagram (below)

(a) (b) (c) (d)

Fig. 2. Found auxiliary path on Segment Voronoi diagram, (a) BT1 environment,
(b) BT4 environment; Example of auxiliary path computed by PRM planner (c)
and its simplification (d) in BT1 environment

Visibility-Voronoi diagram - The Visibility-Voronoi diagram [14] com-
bines two previous algorithms. The main idea of the combination is a con-
nection of disconnected visibility graphs by edges from Segment Voronoi dia-
grams, see Fig. 1 (c). As this method combines both previous approaches it is
also more time consuming than previous. The Visibility-Voronoi is suitable in
cases where the path should not be in the middle of free space corridors and
pure visibility graph does not provide an auxiliary path.

PRM planner - An auxiliary path can be also constructed by simple
PRM planning method [7] that works in 2D. An environment is randomly
sampled by m points with uniform distribution. For each point it is determined
whether a robot in that position collides with any obstacle. To ensure turn–
move motion of the robot through the auxiliary path each point on the path
should be tested to be collision free for several orientation of the robot.

A graph is constructed from sampled collision free points. Vertices repre-
sent random collision free points and an edge (i, j) exists only if the point j
is one of k nearest neighbors to the point i and the robot can move without
collision on straight line from the point i to the point j. Start and goal states
are added to this auxiliary graph and connected in the same way with the
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rest of the graph. The path between the start position and the goal position
is found by the Dijkstra’s algorithm as in the previous methods.

The PRM approach provides an auxiliary path which seems to be too
rugged, see Fig. 2 (c). One should ask whether the auxiliary path can be
simplified. As the path must preserve ability to track a robot with turn–move
behaviour, the algorithm inspired by [4] has been used to simplify the path.
The algorithm has been extended by additional condition that point i can be
connected to point j only if their distance is less than predefined parameter
s. An example of simplified path is shown in Fig. 2 (d).

This approach is suitable for planning during mobile robot mapping mis-
sion. On-line created maps usually consist of hundreds of vertices and robust
geometric operations does not have sufficient performance.

Parametrization of auxiliary path

The methods described above find an auxiliary path that is used in the RRT–
Path as a guide in which direction sampling of random configurations should
be performed. Properties of the found auxiliary path depend on parameters
of particular method. An auxiliary path found by Segment-Voronoi Diagram
approach is a property of the environment hence it is unique for the environ-
ment. A path found by algorithms based on visibility graph is parametrized
by the offset value used to grow polygon. The offset should be at least radius
of circle in which a robot is able to turn to any orientation. Higher values
lead to longer paths and possibly disjoint regions of free space. For a certain
point of view such path is more similar to path found in the Voronoi Diagram.
The main objective to select appropriate offset value is to provide enough free
space around an auxiliary path to let the RRT expand. The PRM approach
provides an auxiliary path which can be simplified by a value of parameter s.

Results of initial experiments with found auxiliary paths have shown neg-
ative influence of the simplification parameter to number of samples in the
RRT algorithm. If a path is simplified too much the algorithm looses its abil-
ity to sample configuration along the path, because vertices on the path are
too far. In perspective of this observation each found auxiliary path must be
sampled to have vertices sufficiently close. That is why the s parameter is used
for all auxiliary paths regardless by which method has been found. A number
of vertices of the auxiliary path is appropriately increased or decreased.

3.2 Sampling configurations along auxiliary path

The main contribution of the proposed RRT–Path algorithm is novel approach
of sampling configurations in the environment. The algorithm uses an auxiliary
path which attract the tree to grow along the path from the start configuration
to the goal configuration.

To ensure proper sampling near an auxiliary path, each point in the path
stores its distance to the nearest configuration in the tree. Proposed methods
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for computing auxiliary path work in 2D so the distance between point in
the auxiliary path and configuration in the tree is computed as 2D Euclidean
distance.

To grow the tree along an auxiliary path a temporal goal moving on the
auxiliary path is used. As the algorithm samples configurations along the path,
the temporal goal is dynamically changed and it moves toward the goal state
qgoal. If the tree approaches temporal goal close enough, the partial goal is
moved on the auxiliary path toward the goal state.

Expansion of the tree is done in the same way as in the original RRT
algorithm. To permit sampling configurations in the whole environment, the
goal bias is used. In every k-th iteration the random configuration qrand is
sampled from whole configuration space, otherwise qrand is sampled around
actual temporal goal. The parameter k is called the temporary goal bias in rest
of this paper. The algorithm terminates if the tree is close enough to the target
configuration qgoal or number of iterations exceeds predefined parameter K.

It is worth to mention that updating distance from a point of the auxiliary
path to its nearest neighbor in the tree can be done in logarithmic time with
the KD–tree supporting structure.

(a) (b) (c)

Fig. 3. Examples of generated tree in map jari–huge with final path: (a) original
RRT, (b) RRT–Blossom, (c) RRT–Path

4 Experiments

The proposed method has been experimentally verified in environments jari–
huge and BT1.These environments have been chosen for their narrow passages.
The original RRT algorithm, RRT-Bidirectional and RRT–Blossom have been
also implemented to compare performance of the proposed algorithm. The
KD-tree structure and the RAPID library for collision tests has been used in
all tested algorithms.

1 Maps are available from http://imr.felk.cvut.cz/planning/maps.xml.
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Map Method
Preparation Tree Nbr. Time Path

time [ms] size iter. [ms] length

BT1 Voronoi 20 220 385 600 73

BT4 Voronoi 20 250 781 720 78

BT1 PRM 1,590 189 274 1,580 74

BT4 PRM 1,630 297 568 1,860 68

jari–huge Visibility off. 20 1,700 753 7,539 3,090 109

jari–huge Voronoi 2,600 760 153 300 96

jari–huge Vis–Voronoi off. 20 3,420 595 7,525 3,700 111

jari–huge Vis–Voronoi off. 30 3,380 592 4,632 4,400 110

jari–huge Vis–Voronoi off. 60 2,900 96 171 200 83

jari–huge PRM 6,000 591 5,625 3,040 100

Table 1. Performance of the RRT–Path for several auxiliary paths, Preparation
time is creation of the auxiliary path, the tree construction phase is characterize by
number of iterations and Time, Path length represents quality of founded path

Maximum number of iterations of all algorithms has been set to 5, 000 for
the BT map and 15, 000 for the jari–huge map. All algorithms terminate if they
had reached goal state to distance less then 30 cm. Planned trajectories have
been found for a differential robot with dimensions 20x20 cm. The Euclidean
distance has been used as metric for distance between configurations. All
experiments have been performed on the Core 2 Duo 2.8 GHz computer with
4 GB of RAM, all algorithms have been implemented in C++.

Comparison of presented methods to generate an auxiliary path has been
studied for following environments and methods with particular parameters.
The Voronoi Diagram and the PRM planner methods have been tested in
all environments: jari-huge, BT1, BT2, BT3, BT4. Visibility based methods
have been applied only for the jari-huge environment with following particular
parameter values: the Visibility Graph with the polygon offset 20 cm and the
Visibility-Voronoi Diagram with offsets 20 and 30 cm. The auxiliary path
simplification parameter (resp. sampling parameter) has been chosen to be
twice longer than size of the robot, so the consecutive vertices on the path are
closer than 40 cm. A value of the temporary goal bias parameter k has been
experimentally identified and k = 15 has been used during experiments. The
Visibility Graph and the Voronoi Diagram algorithms have been implemented
in CGAL [1] with the exact kernel to ensure robust geometrical computation.

Performance characteristics of the RRT–Path algorithm with different aux-
iliary path are shown in Table 1. Presented values are averages from 400 runs.

The comparison between the original RRT, RRT-Bidirect, RRT–Blossom
and RRT–Path has been tested in both environments. For each environment
and algorithm 5, 000 runs have been performed and average values are shown
in Table 2. The size of the tree is lowest for the proposed RRT–Path algorithm,
as this number is related to number of needed collision tests, the RRT-Path
is also the fastest algorithm.
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Map BT1 BT2 BT3 BT4 jari–huge

passage width 100 75 50 30 100

Original RRT

time 250 260 270 350 1,790

treeSize 1,215 1,251 1,470 1,792 8,138

nbr. iter. 1,587 1,671 2,812 2,284 10,518

pathLength 82 83 80 87 149

RRT–Bidirect

time 3,710 3,270 3,570 4,320 7,510

treeSize 2,200 2,260 2,308 2,536 3,410

nbr. iter. 2,624 2,685 2,776 3,283 5,626

pathLength 87 88 88 89 140

RRT–Blossom

time 570 970 1,000 1,050 640

treeSize 5,475 6,213 6,841 6,982 8,183

nbr. iter. 1,991 2,049 2,119 2,149 2,400

pathLength 67 67 68 68 73

RRT–Path

time 40 40 120 120 210

treeSize 58 56 84 82 95

nbr. iter. 93 61 307 255 170

pathLength 53 53 57 59 97

Table 2. Final comparison between algorithms on various maps

5 Conclusion

New variation of the RRT algorithm has been introduced. The proposed al-
gorithm is called RRT–Path and has been designed to solve motion planning
problem in the environments with narrow passages. Prior to building the RRT
tree, an auxiliary path from the start to the goal position is constructed and
then it is used as a guide to support sampling of the environment in the RRT
algorithm. Several methods for auxiliary path construction has been discussed
and tested. From these preliminary results the auxiliary path found by the
Visibility-Voronoi outperforms other approaches for the final path length and
real time performance of the RRT algorithm aspects.

The fundamental question about proposed algorithm with guided sam-
pling is whether it is not in contrary with primary principle of randomized
sampling. The auxiliary path brings information about the environment which
should be gained by randomized sampling. Despite of this question the results
indicate significant reduction of tree size without affect to final path length
and total computation time. At least each vertex in the tree must be tested
to be collision free. Less number of required collision tests allows to use more
complicated detection of collisions.

The next step to verify proposed approach is experimental verification
in problems which require consideration additional DOFs in case of more
complex robot.
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15. Anna Yershova and Léonard Jaillet. Dynamic-domain RRTs: Efficient explo-
ration by controlling the sampling domain. In in Proceedings IEEE International
Conference on Robotics and Automation, pages 3867–3872, 2005.

16. Anna Yershova and Steven M. LaValle. Improving motion-planning algo-
rithms by efficient nearest-neighbor searching. IEEE Transactions on Robotics,
23(1):151–157, 2007.


