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ABSTRACT
In this paper, we address the Close Enough Orienteering Problem

(CEOP) that is motivated to find the most rewarding route visiting

disk-shaped regions under the given travel budget. The CEOP differs

from the regular OP in the continuous optimization of finding the

most suitable waypoint locations to collect the reward associated

with each region of interest in addition to the selection of the subset

of the regions and sequence of their visits as in the OP. We propose

to employ the Greedy Randomized Adaptive Search Procedure

(GRASP) combinatorial metaheuristic to solve the addressed CEOP,

in particular, the GRASP with Segment Remove. The continuous

optimization is addressed by the newly introduced heuristic search

that is applied in the construction phase and also in the local search

phase of the GRASP. The proposed approach has been empirically

evaluated using existing benchmarks, and based on the reported

comparison with existing algorithms, the proposed GRASP-based

approach provides solutions with the competitive quality while its

computational requirements are low.
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1 INTRODUCTION
The Orienteering Problem (OP) belongs to the class of routing

problems with profits [10] where we are searching for the tour

from a given initial location to visit the most rewarding locations

and terminates at the given final location such that the total tour

length does not exceed the maximal travel budget [12]. In the OP,

each location has associated reward, and the problem stands to
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(a) Set 64 (b) Set 130

Figure 1: Examples of the found solutions of the CEOP in-
stances. The colored disks represent the disk-shaped neigh-
borhoods of the locations of interest, and the color denotes
the reward, where high rewards are in the red, and low re-
wards are in the blue.

determine the subset of the most rewarding locations that can be

visited within the travel budget. The OP can be thus considered as a

combination of the Knapsack Problem and the Traveling Salesman

Problem (TSP) in finding the sequence of visits to the selected

locations to ensure the tour length is shorter than the travel budget.

Routing problems with profits are motivated by problems where

the travel budget does not allow visitation of all possible locations

such as tourist trip design problem [24]. The herein addressed

generalization of the regular OP is motivated by data collection

task with remote sensing that has been introduced by the authors

of [1]. In data collection tasks, the travel cost can be saved by

avoiding precise visitation of the location by exploiting the fact

that the reward (data or range measurements) can be collected from

the specified distance ϱ from the particular location of interest, see

examples of the found solutions depicted in Fig. 1. Although it is

called the OP with Neighborhoods, in the presented approach, we

prefer to call the problem the Close Enough Orienteering Problem
(CEOP) to emphasize the neighborhood is of the disk shape because

the reward can be collected from any point that is up to ϱ distant

apart from the location.

Several heuristic algorithms have been proposed for the OP [13,

18, 22, 23] together with relatively well-established benchmark in-

stances proposed by Tsiligirides [20] and Chao et al. [3]; however,

there are only two approaches for the CEOP reported in the litera-

ture so far. The first approach is based on unsupervised learning [1],

firstly improved in [9] and later improved in [6] using the learning

of the Growing Self-Organizing Array (GSOA) [5]. The second ap-

proach has been proposed in [17], and it is based on the Variable

https://doi.org/10.1145/3341105.3374010
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Neighborhood Search (VNS) metaheuristic [14] initially deployed

in the regular OP in [19]. Even though [17] addresses the Dubins

OP where the curvature of the path is limited, the problem is for-

mally identical with the OP with Neighborhoods, just instead of the

waypoint location, the continuous optimization searches for the

optimal heading of the vehicle at the location. Besides, the same

VNS-based approach has been directly employed in solution of the

Close Enough Dubins Orienteering Problem [8] and OPN [16].

The GSOA is a growing array of nodes that iteratively adapts

the nodes towards the locations of interest [5] by the repeated

determination of the closest point of the path represented by the

array to the randomly selected location of interest. A new node is

added to the array at the location of the closest point, and it is then

adapted towards the location while its neighboring nodes in the

array are also adapted, but with the power that decreases with the

distance of the node to the newly added node. However, the main

idea of the GSOA-based method to the CEOP is that the continuous

optimization is directly addressed during the sequencing part [9],

while the VNS-based approach [17] is based on the sampling of the

continuous domain into a finite discrete set. Although both heuris-

tics (based on the GSOA and VNS) provide approximate solutions

of the CEOP, they both have particular drawbacks. The GSOA is

a fast constructive heuristic, where the solution does not improve

once the unsupervised learning converges to a stable state of the

array of nodes [6]. On the other hand, the VNS-based solution is

capable of finding better solutions than the GSOA. However, it is

significantly more computationally demanding, e.g., about more

than three orders of magnitude than the GSOA, as reported in [7].

In this paper, we propose to address the drawbacks of the previ-

ous methods to the CEOP by using the Greedy Randomized Adaptive
Search Procedure (GRASP) combinatorial metaheuristic [11] that is

enhanced by the heuristic search of the optimal waypoint location

utilized in the GSOA. In particular, we consider the GRASP with

Segment Remove (GRASP-SR) [15] variant of the GRASP, which is

reported to provide better results than other approaches for the OP.

The GRASP consists of two phases, the constructive phase, and

the local search phase. Thus, the waypoint location is determined

using the closest point of the corresponding disk of the newly in-

serted location to the route. The proposed approach is similar to

how a new winner node is determined in the GSOA for routing

problems with disk-shaped neighborhoods [5]. Besides, the idea is

employed in the local search phase to shorten the tour by adjust-

ing waypoint locations and thus enable the insertion of additional

locations while still keep the tour length within the travel budget.

The reported results indicate that the proposed GRASP-based

approach for the CEOP provides better results than the GSOA

in instances with a low travel budget, while the computational

requirements are lower than the GSOA and significantly lower than

the VNS-based approach. The main contributions of the presented

work are considered in the novel variant of the GRASP for the CEOP,

empirical evaluation using standard benchmarks, and comparison

with the state-of-the-art solutions based on the GSOA and VNS.

The rest of the paper is organized as follows. The problem is

formally defined in the following section. The proposed method is

introduced in Section 3 and the evaluation results are reported in

Section 4. The concluding remarks and future work are summarized

in Section 5.

2 PROBLEM STATEMENT
Let V = {v1, . . . ,vn } be a set of n locations, and

x ,y denotes

Euclidean distance between the two locations x ,y. Each location

vi has a reward ri > 0 except for the initial location v1 and final

location vn for which the reward is zero, i.e., r1 = rn = 0. The

Close Enough Orienteering Problem (CEOP) stands to find the most

rewarding tour from v1 to vn that collects rewards associated with

the locations V such that the total tour length does not exceed the

given travel budget Tmax. The reward of a location is collected from

a point with the distance to the location that is shorter or equal

than the given sensing range ϱ.
The CEOP stands to determine the subset of k locations from

V to be visited together with the sequence to their visits and the

particular waypoint locations at which the rewards are collected;

hence, the final tour can be defined as a permutation Σ of the loca-

tions’ indexes Σ =
〈
σ1, . . . ,σk

〉
, where 2 ≤ k ≤ n and σ1 = 1 and

σk = n because the initial and final locations are prescribed. Having

the sequence of visits Σ, the path visiting the selected locations is

defined by the waypoint locations P =
〈
p1, . . . ,pk

〉
such that the

corresponding waypoint location pi is within ϱ distance from vσi .
The final tour described by P (further called path) always includes

the initial locationp1 = v1 and final locationpk = vn , and its length
is denoted L (P , Σ) that can be expressed as

L (P , Σ) =
k∑
i=2

pi−1,pi  . (1)

The CEOP can be formulated as the optimization Problem 2.1 to

determine the number of locations k to be visited and the sequence

of their visits Σ together with the particular points of the visits P
such the total sum of the collected rewards R (Σ) is maximized and

the path length L (P , Σ) ≤ Tmax. Notice a feasible solution exists iff

∥v1,vn ∥ ≤ Tmax. The CEOP is at least NP-hard because the CEOP

becomes the ordinary OP for zero sensing range, that is known to

be NP-hard [23].

Problem 2.1 Close Enough Orienteering Problem (CEOP).

max

k,Σ,P
R (Σ) =

k∑
i=1

rσi

s. t. L (P , Σ) ≤ Tmax

2 ≤ k ≤ n

Σ =
〈
σ1, . . . ,σk

〉
, 1 ≤ σi ≤ n, σi , σj for i , j

σ1 = 1 , σk = n

P =
〈
p1, . . . ,pk

〉
, p1 = v1, pk = vn

pi ,vσi  ≤ ϱ for i = 2, . . . ,k − 1

In the rest of the paper, we consider the locations v ∈ V and

points p ∈ P are from a plane, i.e., v ∈ R2 and p ∈ R2. Notice
that during the solution of the CEOP by the proposed GRASP-

based method, the number of locations to be visited k is varying

depending on the current best solution found so far. Therefore, |P |
and |Σ| denotes the current number of the locations in the path P ,
i.e., k = |Σ| = |P |.
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3 PROPOSED GRASP-BASED SOLUTION TO
THE CEOP

The proposed heuristic approach is based on the existing GRASP

with Segment Remove (GRASP-SR) [15] for the regular OP that

has been extended to solve the herein addressed CEOP (Problem

2.1). The GRASP is a constructive heuristic with two main phases:

the Construction Phase (CP), and the Local Search Phase (LSP).

The GRASP-SR algorithm starts with the CP, where the initial

path consists of the initial location p1 = v1 and the final location

pk = vn that are both prescribed. Then, the locations from V are

iteratively tried to be inserted into the current path P by the proce-

dure addLocation until P remains unchanged. After that, a local

search procedure localSearch is applied to improve the initially

constructed path.

Algorithm 1: GRASP-SR for the CEOP

Input: V – n locations to be visited, each vi ∈ V with the

reward ri , where v1 and vn are the specified initial and

final locations, respectively.

Output: P , Σ – Final path from v1 to vn with the sequence of

visits Σ to the subset of V .

1 P ← ⟨v1,vn⟩ // Initial path

2 Σ← ⟨1,n⟩

3 repeat
4 P , Σ← addLocation(P , Σ) // Constr. phase

5 until P is unchanged

6 P , Σ← localSearch(P , Σ) // Local search phase

7 return P , Σ

An overview of the whole GRASP-SR is depicted in Algorithm 1

and it follows the original GRASP algorithm for the OP; however,

the main proposed enhancements are in the insertion procedure,

where the particular waypoint location pi is determined for each

location vσi ∈ V being inserted into the tour. In the rest of this

section, the GRASP-SR algorithm is described in detail, and the

proposed enhancements are presented in Section 3.1.

In the CP, a new location (and the corresponding waypoint

location) is iteratively tried to be inserted into the path by the

procedure addLocation that is depicted in Algorithm 2. A location

vi is tried to be inserted into the current path by the insertion
operator defined in Eq. (2).

Definition 3.1 insertion(P , Σ, i ).

P ′ =
〈
p1, . . . ,pj−1,vi ,pj , . . . ,p |P |

〉
,

Σ′ =
〈
σ1, . . . ,σj−1, i,σj , . . . ,σ |Σ |

〉
.

(2)

The insertion operator greedily includes vi into the current

path P and vi is added to the path at the position j, for which the

prolongation is minimal, see Eq. (3)

j =
|P |

argmin

j′=2
(L (P ′) − L (P )) . (3)

The new path is then examined to have its length within the budget

Tmax. If Tmax is not exceeded, the path (P ′, Σ′) is inserted into

Algorithm 2: addLocation(P , Σ,b = −1)
Input: P , Σ – the current path.

Input: b – blocked index; if not specified b = −1 is used.

Output: P , Σ – the updated path.

1 CL ← ∅ // A candidate list of solutions

2 for i ∈ {1, . . . , |V |} do
3 if (i < Σ) ∧ (i , b) then
4 P ′, Σ′ ← insertion(P , Σ, i ) // Using Eq. (2)

5 if L (P ′, Σ′) ≤ Tmax then
6 CL ← CL ∪ {(P ′, Σ′)}

7 else // Segment Remove phase

8 β ← 2

9 for α ∈ {2, . . . , |P ′ | − 1} do
10 if β < α then
11 β ← α

12 P ′′ ← P ′ \ {pα , . . . ,pβ }

13 Σ′′ ← Σ′ \ {σα , . . . ,σβ }

14 while (β + 1 < |P ′ |) ∧ (L (P ′′, Σ′′) > Tmax) do
15 β ← β + 1

16 P ′′ ← P ′ \ {pα , . . . ,pβ }

17 Σ′′ ← Σ′ \ {σα , . . . ,σβ }

18 if L (P ′′, Σ′′) ≤ Tmax then
19 if (R (Σ′′) > R (Σ)) ∨

∨(R (Σ′′) = R (Σ) ∧ L (P ′′, Σ′′) < L (P , Σ)) then
20 CL ← CL ∪ {(P ′′, Σ′′)}

21 if CL , ∅ then
22 CL′ ← restrict(CL)

23 P , Σ← random(CL′)

the set of potential paths for the next iteration that is called the
candidate list denoted CL. Otherwise, segments are removed from

the new path to satisfy Tmax.

Figure 2: An example of the insertion of the location that
prolongs the path above the travel budget Tmax. Therefore,
the two black locations are removed to satisfy the budget.
The original path before the insertion and removal is visu-
alized as a sequence of dotted segments.

In the case of segments remove, the method sequentially goes

through the new path (P ′, Σ′), it removes locations from index α
to β , and thus creates a new path (P ′′, Σ′′). The path P ′′ is then
examined to be within the travel budget Tmax, and once P ′′ meets

Tmax, the path is added to CL; and the algorithm continues to

remove other segments from P ′. In this way, the algorithm attempts

to remove all potential segments in linear time complexity that can
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be bounded by O ( |Σ′ |). An example of the insertion and removal

of two locations is depicted in Fig. 2 and an example of iterations

of the Segment Remove is shown in Fig. 3.

L (P ′′, Σ′′) > Tmax

α, β

L (P ′′, Σ′′) > Tmaxα β

L (P ′′, Σ′′) ≤ Tmaxα β

L (P ′′, Σ′′) > Tmaxα β

L (P ′′, Σ′′) ≤ Tmaxα β

Figure 3: The phase Segment Remove when the path length
exceeds the travel budget Tmax after insertion of the new lo-
cation.When the travel budget is notmet, the position index
β shifts to the next location in the path, and the path length
is examined again. Once Tmax is satisfied, the position index
α shifts to the next location.

After the examination of all locations fromV in theaddLocation

procedure, the final candidate list CL′ is created by the restrict
operator defined in Eq. (4) for the particular iteration of the CP.

CL′ then contains paths with associated reward greater or equal to

c
best

of the reward R
best

of the best-known solution found so far.

Following [2] and further based on the empirical evaluations, the

value of c
best

is set to 20 %.

Definition 3.2 restrict(CL).
R
best
= max {R (Σ) | (P , Σ) ∈ CL} ,

CL′ =
{
(P , Σ) | (P , Σ) ∈ CL,R (Σ) ≥ c

best
R
best

}
.

(4)

After an insertion of pi for the new location vσi , the path (P , Σ)
is chosen randomly from the restricted candidate list CL′. The
construction phase terminates when CL is empty, which means

that no better solution has been found.

Finally, after the initial construction of the solution (P , Σ), the
solution is improved in the localSearch procedure. The operator

remove, defined in Eq. (5), is utilized to iteratively remove the lo-

cation vσj at the position j ∈ {2, . . . , |P | − 1}. For each path with

the removed location, the GRASP-SR uses the 2-Opt optimization

heuristic [4] to eliminate possible crossing segments by a local

exchange of the particular sequence part.

Definition 3.3 remove(P , Σ, j ).

P ′ =
〈
p1, . . . ,pj−1,pj+1, . . . ,p |P |−1

〉
,

Σ′ =
〈
σ1, . . . ,σj−1,σj+1, . . . ,σ |Σ |−1

〉
.

(5)

Once a location is removed from the path, a new attempt to

insert not yet visited location is performed by addLocation pro-

cedure. If such an attempt on the path P ′ improves the collected

rewards or it has the same rewards but L (P ′, Σ′) < L (P , Σ), the

path (P ′, Σ′) replaces (P , Σ). The local search phase is summarized

in Algorithm 3.

Algorithm 3: localSearch(P , Σ)
Input: P , Σ – the current path.

Output: P , Σ – the updated path.

1 (P , Σ) ← (P , Σ)

2 repeat
3 for i ∈ {2, |P | − 1} do
4 P ′, Σ′ ← remove(P , Σ, i ) // Using Eq. (5)

5 P ′, Σ′ ← 2-opt(P ′, Σ′) // See [4]

6 P ′ ← optimization(P ′) // Using Eq. (6)

7 b ← σ i // Index of blocked location from Σ

8 repeat
9 P ′, Σ′ ← addLocation(P ′, Σ′,b)

10 until P ′ is unchanged
11 if (R (Σ′) > R (Σ)) ∨

∨ (R (Σ′) = R (Σ) ∧ L (P ′, Σ′) < L (P , Σ)) then
12 P ← P ′

13 Σ← Σ′

14 until P is unchanged

3.1 Finding Optimal Position of Location Visit
There are two places in the original GRASP-SR algorithm where

the particular waypoint location pi can be determined, i.e., pi is the
location from which the reward of vσi ∈ V can be collected. The

first is in the insertion of the location by the addLocation proce-

dure (Algorithm 2). The second place is the optimization of the way-

point locations P of the whole determined path in the localSearch

procedure (Algorithm 3). In both cases, we consider a relatively

straightforward heuristic (originally utilized in the GSOA [5]) that

works as follows.

(a) (b)

Figure 4: An example of waypoint location determination
during the insertion of the location that corresponds to the
dark gray disk.

For an insertion of the locationvσi into an existing path between
two waypoint locations pj−1 and pj , the corresponding waypoint
locations pi ofvσi is determined as the closest point to the segment

(pj−1,pj ) that is inside the disk with the radius ρ centered at vσi .
An example of the determined locations is shown in Fig. 4.

The heuristic determination of the position pi for the insertion of
vσi is considered in the procedure addLocation in the insertion
operator (Eq. (2)) to keep the prolongation as of Eq. (3) minimal.
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In addition, the identical heuristic is utilized to shorten the length

of the path L (P , Σ) in the local search phase by the optimization
function (Line 6, Algorithm 3) that iterates several times over the

path P ′ and tries to adjust the position of each location in the path.

Based on empirical results, three iterations are observed to be a

suitable trade-off between the solution quality and computational

requirements because the optimization converges very fast. Three

iterations are also used for the results. Thus, each visited pj for
j ∈ {2, . . . , |P ′ | − 1} is updated to p′j using the heuristic for the

segment defined by the neighboring waypoint locations pj−1 and
pj+1 (see Fig. 4) if Eq. (6) holds.

pj−1,pj
 +

pj ,pj+1
 >

pj−1,p
′
j
 +

p
′
j ,pj+1

 (6)

Although the proposed enhancement of the GRASP-SR to ad-

dress the CEOP is relatively straightforward, the results indicate it

provides competitive solutions to other existing methods for the

CEOP. The empirical results are reported in the following section.

4 RESULTS
The proposed GRASP-based approach to the CEOP has been empir-

ically evaluated using existing benchmark instances. In particular,

the instances called Set 1, Set 2, and Set 3, proposed by Tsiligiri-

des [21], two large sets Set 64 and Set 66 [3] with the 64 and 66

locations, respectively. Finally, we also include Set 130 [6], which

further increases the number of locations to 130. For each particular

set, the instance of the CEOP is defined by the travel budget Tmax

selected from a particular set of values and sensing range ϱ that is

selected from the set ϱ ∈ {0.0, 0.5, 1.0, 1.5, 2.0}, where for ϱ = 0.0,

the instance corresponds to a regular OP.

Two existing approaches to the CEOP are considered in the

herein reported evaluation results. The first approach GSOA [6]

uses unsupervised learning, and the second approach is a combina-

torial heuristic based on the VNS [17] that is considered with eight

samples per each disk neighborhood and with the termination con-

dition of the 1000 iterations or 200 iterations without improvement.

The modified GRASP-SR to the CEOP (see Section 3) is consid-

ered in two variants. The first variant is denoted GRASP with the

optimization of the waypoint location in the construction phase

implemented in the addLocation procedure in the insertion op-

erator Eq. (2). The second variant further includes the optimization

of the found path in the local search procedure, according to Eq. (6),

and it is denoted GRASPopt.
All the evaluated algorithms have been implemented in C++ [25]

1
,

and the reported results have been obtained within the same com-

putational environment with the Intel Core i5-4460 CPU running

at up to 3.2GHz, but a single core of the processor has been uti-

lized. The average real computational times tcpu are reported in

milliseconds and can be directly compared. Since all the algorithms

are randomized, each particular instance is solved 20 times, and

the solution quality is reported as the maximal sum of the collected

rewards R among the performed trials.

Due to a relatively high number of instances (regarding Tmax

and ϱ), we report on aggregated results computed as the average

value of the relative gap of the sum of the collected rewards R to

1
Source codes of the proposed GRASP algorithm are publicly available at

https://github.com/comrob/ceop-grasp.

the best-found solution R∗ of the particular instance G = R − R∗,

that is denoted G in Table 1. Depending on the sensing range ϱ,
a particular value of Tmax allows visitation of all the locations.

Thus the reward would be the maximal reward possible that can

bias the average value of the gap. Therefore, such instances for

which at least two solution methods provide paths collecting all

the rewards are not included in the reported aggregated results.

Particular detailed results for the Set 64, Set 66, and Set 130 with the

selected travel budgets Tmax and sensing ranges ϱ are reported in

Table 2 and Table 3, where the best-found solutions are highlighted

in bold. An overview of the solution quality and computational

requirements for the instances from Set 64 are visualized in Fig. 5.

Table 1: Aggregated results for CEOP Benchmark Instances

Instances ϱ
GSOA VNS GRASP GRASPopt

G [%] G [%] G [%] G [%]

Sets 64, 66 [3] 0.5 5.55 1.87 1.83 0.04
1.0 8.84 1.93 2.41 0.08
1.5 11.88 4.33 2.80 0.07
2.0 14.39 2.77 2.97 0.50

Sets 1, 2, 3 [21] 0.5 1.03 0.19 1.21 0.30

1.0 0.33 0.00 0.72 0.66

1.5 1.09 1.52 1.63 0.84
2.0 0.75 1.46 0.67 0.16

Set 130 [6] 0.0 6.74 0.77 1.80 1.79

1.0 8.29 0.28 5.42 2.04

2.0 5.36 0.01 4.17 1.05

Based on the reported results, the proposedGRASP-basedmethod

for the CEOP provides solutions with the competitive solution qual-

ity to the solutions provided by both evaluated existing methods,

the GSOA and VNS. In several cases, especially for relatively large

instances Set 64 and Set 66, the proposed GRASP-based method

provides the best results among the evaluated trials. The optimiza-

tion in the local search phase significantly improves the solution

quality at the cost of a bit increased computational requirements.

However, the GRASP seems to be less or similarly demanding as

the GSOA, while the solutions are better or the same. In few cases,

VNS provides better results than the GRASP at the cost of signifi-

cantly higher computational requirements because of the explicit

discretization of the disk-shaped neighborhood, which is avoided by

the heuristic determination of the waypoint location in the GRASP

and GSOA.

Although the proposed method is based on the relatively simple

and straightforward heuristic for continuous optimization of the

addressed CEOP, the reported results support the proposed GRASP-

based method is a suitable method with competitive computational

requirements to the unsupervised learning of the GSOA. The qual-

ity of the found solutions is competitive to the computationally

demanding VNS but noticeably better than the GSOA, specifically

for the instances with relatively small travel budget Tmax, where

it is essential how the subset of locations is selected together with

the high-quality solution of the sequencing part, where the GRASP

outperforms the unsupervised learning.

https://github.com/comrob/ceop-grasp
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Table 2: Results for the CEOP instances of Set 64 and Set 66

CEOP Instances Tmax

GSOA VNS GRASP GRASPopt

R tcpu [ms] R tcpu [ms] R tcpu [ms] R tcpu [ms]

Set 64 (ϱ = 0.5) 15 186 22.2 198 2 848.3 198 4.2 204 8.5

25 504 59.0 558 15 952.5 552 16.4 558 38.0

35 822 84.1 858 30 078.5 846 39.2 882 72.0

Set 64 (ϱ = 1.0) 15 288 28.9 300 6 352.3 300 5.3 300 8.6

25 672 69.2 732 24 500.6 720 13.8 726 38.2

35 1116 108.5 1152 41 783.4 1122 20.1 1140 54.0

Set 64 (ϱ = 1.5) 15 372 36.6 324 7 446.4 402 6.1 414 10.1

25 876 95.2 834 31 128.5 906 12.7 912 65.0

35 1344 136.8 1284 47 363.6 1302 11.7 1308 57.0

Set 64 (ϱ = 2.0) 15 480 47.9 486 9 705.6 534 6.7 522 10.0

25 1056 115.0 1032 38 251.8 1056 10.6 1068 36.9

35 1344 134.3 1344 35 763.7 1344 9.1 1344 12.4

Set 66 (ϱ = 0.5) 20 260 36.5 265 8 933.1 260 4.5 265 6.7

40 610 61.8 730 17 879.8 715 28.6 730 51.8

80 1515 131.8 1525 64 843.9 1510 39.7 1535 69.5

Set 66 (ϱ = 1.0) 20 335 41.5 365 10 453.6 350 8.0 380 13.1

40 875 70.2 980 26 533.5 965 30.1 985 60.4

80 1680 124.0 1680 42 932.1 1680 9.8 1680 14.6

Set 66 (ϱ = 1.5) 20 415 49.1 435 12 270.6 455 8.7 465 45.6

40 950 80.8 1055 31 819.7 1065 24.9 1090 111.3

80 1680 126.8 1680 46 820.7 1680 4.7 1680 6.5

Set 66 (ϱ = 2.0) 20 520 54.1 570 17 281.0 555 10.6 570 77.5

40 1195 97.6 1315 38 772.8 1255 17.8 1275 110.0

80 1680 129.7 1680 49 093.5 1680 5.2 1680 6.8

Table 3: Results for the CEOP instances of Set 130

CEOP Instances Tmax
GSOA VNS GRASP GRASPopt

R tcpu [ms] R tcpu [ms] R tcpu [ms] R tcpu [ms]

Set 130 (ϱ = 0) 50 375 30.4 375 753.4 375 11.7 375 11.4

150 1210 145.3 1369 15 355.7 1296 270.9 1297 265.9

250 2075 263.9 2218 24 273.8 2250 1 097.1 2264 1 073.2

Set 130 (ϱ = 1) 50 462 37.0 462 11 067.4 460 12.1 462 23.6

150 1534 195.0 1846 175 414.1 1632 286.7 1777 473.8

250 2802 367.4 2967 326 766.0 2876 470.1 3003 852.4

Set 130 (ϱ = 2) 50 543 41.5 548 10 500.0 521 15.3 545 29.5

150 1774 217.8 2115 207 108.8 1875 203.9 2087 475.9

250 3258 437.6 3296 398421.6 3233 274.1 3297 433.4

5 CONCLUSION
A novel Greedy Randomized Adaptive Search Procedure (GRASP)

based approach to the Close Enough Orienteering Problem (CEOP)

has been proposed and empirically evaluated using existing bench-

mark instances. The proposed GRASP method is based on the en-

hancements of the existing GRASP with Segment Remove (GRASP-

SR) using a relatively simple and straightforward heuristic to de-

termine the optimal position of the waypoint locations to collect

reward within a non-zero sensing range, initially utilized in unsu-

pervised learning of the GSOA. Although the proposed enhance-

ments are straightforward and easy to implement, the developed

GRASP-based algorithm for the CEOP outperforms the existing

approaches to the CEOP in terms of the solution quality (in compar-

ison to the GSOA) and computational requirements (in comparison

to the VNS). Thus, the proposed approach is a vital method to ad-

dress combinatorial routing problems that also include continuous

optimization. In the addressed CEOP, the continuous optimization

is based on exploiting the non-zero sensing range and determina-

tion of the suitable waypoint locations from which the rewards are

collected. Thus more rewards can be collected because of the saved

travel cost.
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Figure 5: Sum of the collected rewards R and the required
computational time tcpu of the evaluated algorithms in the
instance of Set 64 with the sensing range ϱ = 0.5. The sum
of the collected rewards is normalized to the highest value
of the collected reward Rmax for each particular instance
of the CEOP found among all the evaluated methods. The
solid curve in the plot represents the median, and the semi-
transparent area represents 80% non-parametric confidence
interval of the computed data.

The reported results support further research on employment

of the GRASP in similar problems such as the Close Enough Trav-

eling Salesman Problem (CETSP) but also other routing problems

such as the curvature-constrained Dubins TSP and OP, where both

existing approaches to the CEOP (the GSOA and VNS) have been

already deployed. However, we also plan to exploit low computa-

tional requirements of the developed GRASPmethod to improve the

heuristic determination of the waypoint locations by a more sophis-

ticated local optimization to improve the quality of the determined

solutions further.
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