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ABSTRACT
Trajectory generation for fixed-wing aircraft can be based on Du-

bins vehicle model that constrains the vehicle to move forward

with a limited turning radius and a constant speed. However, such

a vehicle model cannot benefit from the physical capabilities of

a real fixed-wing aircraft that can adjust its speed. Therefore, we

propose to address the limitation of Dubins vehicle model by a

generalized model that combines various turning radii, and thus al-

lows increasing the cruise speed whenever possible. The proposed

method provides faster trajectories in comparison to the trajec-

tory generated by Dubins vehicle with a single turning radius and a

constant cruise speed. The benefit of the proposedmethod is demon-

strated on point-to-point trajectories, for which the parameters are

inspired by Cessna 172 aircraft.
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1 INTRODUCTION
In this paper, we study the problem of trajectory planning for fixed-

wing aircraft, where the goal is to find time-efficient trajectories

while the motion constraints of the vehicle are fulfilled. Most of

the fixed-wing vehicles are limited by the minimum turning radius,

and therefore, a model called Dubins vehicle (or Dubins car) [5, 9]

is often used. The model represents a non-holonomic vehicle with

a constant forward speed and a fixed minimum turning radius. The

shortest path connecting two points with the prescribed leaving

and arrival angles of Dubins vehicle (two configurations) can be

computed efficiently by a closed-form expression [2].
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Figure 1: Example of generated Dubins trajectories for vari-
ous combinations of the initial and final turning radii (blue).
The fastest trajectory is in green, and the shortest one in red.

Various extensions of Dubins vehicle have been proposed in the

literature. Reeds and Shepp [14] considered a bi-directional vehicle.

Furthermore, the three-dimensional extension called the Dubins

Airplane model [4] can be utilized if altitude changes are required.

Time-optimal Dubins paths under steady wind field are studied

in [1, 10, 15] and for the unsteady field in [11], while unknown

wind disturbances are studied in [20].

We propose to extend Dubins vehicle model to utilize longer

turning radii than the minimum radius because it enables us to gen-

erate faster trajectories; see example in Fig. 1. The concept of mul-

tiple radii have been already utilized for finding time-optimal [19],

energy-optimal trajectories [16], and safe emergency landing tra-

jectories [17]. However, the herein proposed approach respects

the limited value of the forward acceleration, in contrast to the

time-optimal trajectories [19] that contain discontinuities in the

speed. The proposed heuristic approach utilizes Dubins path with

two turn segments and the central straight segment, for which both

turning radii are optimized to get the fastest trajectory possible.

The travel time of the trajectory is computed based on speed profile
that takes into account both speed and forward acceleration lim-

its. Although an alternative approach can be based on parametric

curves, such as Bézier curves [6], the presented approach exploits

computationally efficient closed-form solution of Dubins path [5],

which can be determined in microseconds [18].

The text is structured as follows. The time-optimal planning prob-

lem is introduced in the following section. The proposed method

using multiple radii is described in Section 3, and computational

results are presented in Section 4. The final remarks are in Section 5.

2 PROBLEM STATEMENT
The problem studied in this paper is to find the fastest (time-optimal)

trajectory for a fixed-wing aircraft between two configurations. The

aircraft is modeled as an extended version of Dubins vehicle [5] for

which the speed is not constant and may be changed to shorten

the travel time. The state of the vehicle q is represented by the

configuration (x ,y,θ ) ∈ SE (2), where both positions (x ,y) ∈ R2

and heading angle θ ∈ S1 are given. The dynamics of the vehicle
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depends on the forward speed v and curvature of the trajectory κ.

q̇ =



ẋ
ẏ
˙θ


= v



cos θ
sin θ
κ


. (1)

The curvature κ is a scalar value, and its sign determines the

left/right orientation of the turn in the plane.

κ =
x ′y′′ − y′x ′′(
x ′2 + y′2

) 3
2

. (2)

The magnitude of κ is constrained by the minimum turning

radius Rmin of the vehicle

|κ | ≤
1

Rmin

. (3)

The speed v and the magnitude of the forward acceleration a of

the vehicle are limited by the minimum and maximum values.

v ∈ [vmin,vmax], a ∈ [amin,amax]. (4)

Furthermore, the curvature restricts the maximum speed of the

vehicle such that

v ≤

√
д tanφmax

|κ |
, (5)

where φmax is the maximum bank angle of the vehicle and д is the

gravitational acceleration. The constraint (5) ensures that the bank

angle can compensate centrifugal force, and the vehicle can fly in a

steady configuration with zero sideslip.

The problem is to find the time-optimal trajectory between two

configurations q1,q2 ∈ SE (2) while all defined motion constraints

are met. The problem is formulated as the optimization Problem 2.1

to minimize the travel time T (Γ) necessary to execute the trajec-

tory Γ.

Problem 2.1 Time-optimal Planning.
min

Γ
T (Γ)

s. t. Γ : [0, smax ]→ SE (2)

Γ(0) = q1, Γ(smax) = q2

Equations (1–5) are fulfilled

3 PROPOSED METHOD
The proposed approach to find time-optimal trajectories is based on

the extended Dubins vehicle model defined by (1–5). The radius of

Dubins path is adjusted for each of the turn segments such that the

overall travel time is minimized. The travel time is further denoted

as the Travel Time Estimation (TTE).

3.1 Multi-radius Dubins Paths
An independent turning radius is assigned to each turning segment

of the multi-radius Dubins path, which allows increased speed, and

thus reduced TTE. The multi-radius Dubins path is based on the

original Dubins path [5] with a fixed turning radius, and consists

of three segments. There are two possible segment types: a curve

segment C further specified as right or left denoted R/L; and straight

segment S. Thus, two classes of paths CSC (LSL, RSR, LSR, RSL) and

CCC (LRL, RLR) can be constructed, and gives six individual paths

in the total. However, only CSC maneuvers are considered for the

q1
q2

(a) RSR maneuver

q1

q2

(b) RSL maneuver

Figure 2: Examples of multi-radius CSC Dubins paths.

multi-radius extension because CCC maneuvers may occur only if

initial and final configurations are very close [8]. An example of

multi-radius CSC Dubins paths is shown in Fig. 2.

3.2 Computation of the Travel Time
Estimation (TTE)

Dubins path contains three segments with fixed curvatures, and

thus a maximum speed can be computed separately for each seg-

ment according to (5). For the central straight segment, the speed

is limited only by the maximum value for the specific aircraft vmax.

There are three possible cases that can occur based on the length

of the center straight segment. The first case occurs if the straight

segment is long enough to accelerate to the maximum speed. In the

second case, the maximum speed cannot be reached. In the last case,

the vehicle is only able to accelerate/decelerate from the initial to

the final speed. The cases are depicted in Fig. 3, where the segment

colors correspond to Fig. 2.
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Figure 3: Speed profiles based on segment lengths.

4 COMPUTATIONAL RESULTS
The proposed multi-radius Dubins path approach has been evalu-

ated in two scenarios for the vehicle model parameters according to

the Cessna 172 aircraft [3]. Theminimal speedvmin = 30.0m s
−1

has

been selected greater than the stall speed to guarantee safe flight,

and themaximum speedvmax = 67.0m s
−1

is taken directly from the

manual. The limits of turning radius are computed from vmin and

vmax using the maximal bank angle φmax = 60.0°; the minimal turn-

ing radius Rmin = 65.7m and the maximal radius Rmax = 264.2m.

In the first scenario, the influence of multiple turning radii to the

TTE is studied in a simple case shown in Fig. 4. The improvement

of the TTE is measured as the achieved speedup for the particular

trajectory in comparison to Dubins path for the minimal turning

radius. The achieved speedups are shown in Fig. 4a with an example

of the generated trajectories in Fig. 4b, where the fastest trajectory

is in the green, the shortest trajectory is in the red, and the particular

values of the radii are highlighted by a-diamond shape in Fig. 4a.

The discontinuities in Fig. 4a are caused by the maneuver type

change when the turning radii become too large to construct the

maneuver with the original type.

The achieved speedup of the TTE is further studied for a discrete

set of turning radii. The problem is also solved using L-BFGS [13]
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(a) Achieved speedup of the TTE of multi-radius Dubins trajectory in
comparison to the trajectory with the single minimal turning radius.

(b) Paths for turning radii as the white dots in the upper figure.

Figure 4: Influence of the initial and ending radii to the TTE
for the endpoints 5.5Rmin far, initial heading angle θ1 = 0°,
and arrival angle θ2 = 300°.

method from the optimization framework Optim [12]. For each set,

100 random instances have been generated and the TTE speedup

and computational times are reported in Fig. 5 as average values.

All the optimization methods have been implemented in Julia

v1.2 and run using the Intel CPU i7-8550U running at up to 4.0GHz.

The average computational time of multi-radius Dubins path with

the corresponding TTE takes 7.76ms for a discrete set of radii, but

using numeric optimization of the Optim framework takes about

888.00ms due to large number (≈1000) of candidate trajectories.

5 CONCLUSION
The proposed multi-radius Dubins path provides a way how to ex-

ploit the variable speed of the vehicle and finds a heuristic solution

of the time-optimal trajectory. The found trajectories are about 10

to 30 % faster for most of the evaluated instances in comparison

to Dubins path with the minimum turning radius. In future work,

we aim to utilize the proposed heuristic in combinatorial planning

problems [7], such as the Dubins Traveling Salesman Problem.
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