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ABSTRACT
The Dubins Touring Problem (DTP) stands to find the shortest

curvature-constrained multi-goal path connecting a prescribed se-

quence of locations. The problem is to determine the optimal vehicle

heading angle at each location and thus find the shortest sequence

of Dubins paths. The heading angles can be determined by iterative

refinement of possible heading intervals for which finer resolution

yields a shorter path at the cost of increased computational require-

ments. In this paper, we introduce a novel method to bound the

optimal heading angles by eliminating unpromising intervals that

cannot contribute to the optimal solution. The method is employed

in the branch-and-bound solution of the DTP, where it significantly

reduces the search space in finding the optimal solution.
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1 INTRODUCTION
The studied Dubins Touring Problem (DTP) [5] is a multi-goal gen-

eralization of the curvature-constrained path planning for a vehicle

with a limited turning radius. The shortest curvature-constrained

path between two points with the prescribed heading angles of the

vehicle was addressed by Dubins in 1975 [4]. Such a point-to-point

optimal (Dubins) path can be found by a closed-form expression,

and it consists of three arc types: right (R) and left (L) parts of the

circle and a straight line segment (S). However, we need to deter-

mine the heading angle at each location for a multi-goal path with

a given sequence of locations to be visited. Once the heading angles

are determined, the final path is found by computing optimal (point-

to-point) Dubins paths between the consecutive locations in the

sequence. Hence, the DTP can be seen as a continuous optimization
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Figure 1: An instance of the DTP with bounds on the optimal
headings computed by the BnB algorithm. The red disks
represent the given locations. The heading intervals, shown
in yellow, has a particular angular resolution 𝜔max and some
of them are bounded. A solution for𝜔max = 8 is shown on the
left. For 𝜔max = 32, a solution visualized on the right has the
relative optimality gap between the feasible path (in blue)
and the lower bound path (in red) is 1.43 %.

problem to find the most suitable heading angle at each location to

minimize the length of the final multi-goal Dubins path.

The DTP is inherently included in the combinatorial optimization

of the Dubins Traveling Salesman Problem (DTSP) [12] for which

several heuristic approaches can be found in the literature. The first

approach is the Alternating Algorithm (AA) [12] that determines the

heading angles by alternating straight segments with Dubins paths.

The AA have been improved using a greedy randomized adaptive

search metaheuristic [10] and orientation assignment heuristic [9].

A look-ahead alternative based on three consecutive locations has

been proposed in [8]. Probably the first optimal solution to the DTP

is based on the reduction to 2
2𝑛−2

convex optimization problems

for a sequence of 𝑛 locations satisfying the so-called D4 assump-

tion, where two consecutive locations are at least four times the

minimum turning radius apart [6]. The D4 assumption has been

exploited in [13] to address the generalized DTSP with convex goal

regions. Besides, the homotopy concept has been utilized in [1, 15].

Besides the approaches above, the most relevant work to the

studied DTP is the Dubins Interval Problem (DIP) that stands to find

the shortest Dubins path between two locations with prescribed

heading angle intervals [11]. The DIP enables computation of a

tight lower bound on the optimal cost of the DTP using sampled

heading intervals. Tight lower bounds need a fine angular reso-

lution that is demanding for uniform sampling [11] that can be

addressed by iterative refinement of the intervals [5]. However, the

intervals are only incrementally divided in both methods without

any mechanism to prune non-perspective intervals.

In the present work, we propose a novel method to eliminate

unpromising heading intervals and thus bound the optimal heading

angles in the Branch-and-Bound (BnB) solution of the DTP. The

bounding is based on the newly introduced maximization variant of

the DIP (Max-DIP) to determine the longest Dubins path connecting

two locations with the defined intervals of the heading angles.

https://doi.org/10.1145/3477314.3507350
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2 THE DUBINS TOURING PROBLEM
The studied DTP stands to find the shortest path for the Dubins

vehicle going through a sequence of 𝑛 locations P = (𝑝1, . . . , 𝑝𝑛),
𝑝𝑖 ∈ R2. The Dubins vehicle is assumed to go forward at the con-

stant speed 𝑣 , and its movement is constrained by its minimum

turning radius 𝜌 . The vehicle state 𝑞 = (𝑥,𝑦, \ ), 𝑞 ∈ 𝑆𝐸 (2) consists
of its position (𝑥,𝑦) ∈ R2 and heading angle \ ∈ S1. The heading
is controlled by the input 𝑢 and the state can be expressed as

¤𝑥
¤𝑦
¤\

 = 𝑣


cos \

sin \
𝑢
𝜌

 , |𝑢 | ≤ 1. (1)

The DTP can be formulated as a continuous optimization Prob-

lem 2.1 to determine the configurations 𝑄 = {𝑞1, . . . , 𝑞𝑛} such that

the total length of the path is minimized, with L(𝑞𝑖 , 𝑞 𝑗 ) as the
length of the optimal Dubins path from 𝑞𝑖 to 𝑞 𝑗 satisfying (1).

Problem 2.1 (Dubins Touring Problem (DTP)).

minimize𝑄
𝑛−1∑︁
𝑖=1

L(𝑞𝑖 , 𝑞𝑖+1) + L(𝑞𝑛, 𝑞1)

subject to 𝑞𝑖 = (𝑝𝑖 , \𝑖 ), 𝑝𝑖 ∈ P, 𝑖 = 1, . . . , 𝑛.

In this paper, we focus on the optimal solution of the DTP using

the BnB. Although the BnB solution to the DTP can be straight-

forward to formulate, a practical solution needs to address compu-

tational requirements; otherwise, the solution would be computa-

tionally intractable even for relatively small instances. Therefore,

it is necessary to have a mechanism to bound intervals of heading

angles by determining what intervals would surely not contribute

to the optimal solution of the DTP.

3 BOUNDING OPTIMAL HEADING ANGLES
The proposed BnB solution to the DTP builds upon ideas of [5],

where possible heading angles are divided into angular intervals

to compute a tight lower bound using the DIP [11]. Further, the

intervals are gradually refined in [5] to tighten the bound, where the

number of intervals iteratively grows. Therefore, we propose a new

upper bound scheme to bound the optimal headings and remove

intervals that cannot further contribute to the optimal solution. The

new upper bound is based on the so-called Maximization Dubins
Interval Problem (Max-DIP) that is detailed in this section.

The used BnB for the DTP starts with the angular resolution

𝜔init = 4 for creating initial heading intervalsH that are initially

divided uniformly. The resolution is then iteratively increased (as

in [5]), which represents the branching of possible intervals using

lower bounds on the optimal solution based on the DIP. On the

other hand, unpromising intervals are removed using the proposed

bounding based on upper bound values of the optimal solution

computed from the Max-DIP. The iterative BnB-based solution is

summarized in Algorithm 1, and an example of the solution with

removed heading intervals is visualized in Fig. 1.

3.1 Lower Bound – DIP
The DIP [11] can be used to determine the lower bound value of the

optimal solution for a given sub-sequence with prescribed intervals

of the heading angles. Formally, the DIP, further denoted as lower

Algorithm1:BnB-based Solution to the DTP(P, 𝜔max)
1 𝜔 ← 𝜔init // Initial angular resolution

2 H ← SampleIntervals(P) // Initial intervals

3 while 𝜔 ≤ 𝜔max do
4 H ← BoundIntervals(H);

5 𝜔 ← 2𝜔 // Increase of the angular resolution;

6 H ← RefineIntervals(H)

7 𝑄 ← RetrieveFeasibleSolution(H)

bound L𝐿 , is a continuous optimization to find the shortest Dubins

path between two locations 𝑝𝑖 and 𝑝 𝑗 while the heading angles are

from the given heading intervals \𝑖 ∈ Θ𝑖 and \ 𝑗 ∈ Θ𝑗 .

Problem 3.1 (Dubins Interval Problem (DIP) – L𝐿).

L𝐿 (Θ𝑖 ,Θ𝑗 ) = min

\𝑖 ∈Θ𝑖 , \ 𝑗 ∈Θ𝑗

L((𝑝𝑖 , \𝑖 ), (𝑝 𝑗 , \ 𝑗 )), (2)

where L(𝑞𝑖 , 𝑞 𝑗 ) is the length of the Dubins path from 𝑞𝑖 to 𝑞 𝑗 .

3.2 Maximization Variant of the DIP – Max-DIP
The Max-DIP is a variant of the DIP, where the minimization of the

cost function given by the length of the Dubins path is replaced by

the maximization. Thus, the Max-DIP is to find the optimal Dubins

path from one configuration to another, both with the prescribed

heading intervals, such that it is of the maximal length. In general,

the length of the Dubins path L is a piecewise-continuous function.

Therefore, in this paper, we limit theMax-DIP for the D4 assumption

for which L becomes a periodic continuous function with a single

local maximum.

Assumption 3.1 (D4 condition on mutual distances.). Two
consecutive locations 𝑝𝑖 and 𝑝 𝑗 are at least 4 𝜌 apart.

𝑑 =
∥𝑝 𝑗 − 𝑝𝑖 ∥

𝜌
, 𝑑 ≤ 4, (3)

where ∥ · ∥ stands for the Euclidean distance.

Furthermore, for using the upper bound in the BnB, we define

two variants of the Max-DIP, each with a fixed one of the heading

angles. The variant with the fixed initial heading angles is denoted

L+
𝑈
, and the variant with the fixed final angle is denoted L−

𝑈
. The

variants are defined as Problem 3.2 and Problem 3.3 that are visual-

ized in Fig. 2.

Problem 3.2 (Max-DIP with fixed initial angle (L+
𝑈
)).

L+𝑈 (\𝑖 ,Θ𝑗 ) = max

\ 𝑗 ∈Θ𝑗

L((𝑝𝑖 , \𝑖 ), (𝑝 𝑗 , \ 𝑗 )) . (4)

Problem 3.3 (Max-DIP with fixed final angle (L−
𝑈
)).

L−𝑈 (Θ𝑖 , \ 𝑗 ) = max

\𝑖 ∈Θ𝑖

L((𝑝𝑖 , \𝑖 ), (𝑝 𝑗 , \ 𝑗 )) . (5)

There exists at most one unbounded local maximum for L+
𝑈

or L−
𝑈
, and thus the global maximum can be found using local

optimization. The only exception is the transition between the

Dubins paths of the LSR and RSL type, containing straight (S), left

(L), and right (R) segments. However, such a case can be detected,

and an appropriate solution can be selected.
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(a) L+
𝑈

(b) L−
𝑈

Figure 2: Example solutions of the proposed Max-DIP with
fixed initial (left) and final (right) heading angle.

Note that the correctness of the BnB-based solution to the DTP

can be guaranteed using the universal upper bound (6) of [3] for a

case the D4 assumption is violated.

LD4+

𝑈 = 2𝜋 + ∥𝑝2 − 𝑝1∥ . (6)

3.3 Bounding Heading Intervals
Determination of the unpromising bound intervals that cannot

contribute to the optimal solution is based on the lower bound L𝐿
and upper bounds L+

𝑈
, L−

𝑈
that can be computed for any pair of

heading intervals. The proposedmethodworks with a sub-sequence

of the locations in the given sequence as follows.

First, let assume there is a window of𝑤 connections both before

and after the location for which we examine a particular heading

interval. Hence, the sub-sequence contains 2𝑤 connections connect-

ing 2𝑤 + 1 locations, and the examined heading interval is always

for the location in the middle. An example of the search structure

for detecting heading intervals to be removed is depicted in Fig. 3.
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Figure 3: Search structures for finding bounds of the path
visiting the locations {𝑝𝑖−𝑤 , . . . , 𝑝𝑖 , . . . , 𝑝𝑖+𝑤} for the window
size𝑤 ,𝑤 = 1 here. The heading intervalΘ1

𝑖
is examined based

on the initial interval Θ2

𝑖−𝑤 and the final interval Θ4

𝑖+𝑤 . The
lower bound solution goes through the examined interval
Θ1

𝑖
, but the upper bound is computed independently on Θ1

𝑖
.

Now, let 𝑝𝑖 be the location for examining the heading intervals.

The lower and upper bounds are computed based on the sub-path

from 𝑝𝑖−𝑤 to 𝑝𝑖+𝑤 using all the intermediate locations. The lower

bound L𝐿 between two consecutive configurations with particu-

lar heading intervals is computed using the DIP. Then, the lower

bound for a path going through the intermediate locations with the

heading intervals 𝐻𝑥
is computed using dynamic programming

L𝐿 (Θ𝑎,Θ𝑏 ) = min

Θ𝑥 ∈𝐻𝑥

(
L𝐿 (Θ𝑎,Θ𝑥 ) + L𝐿 (Θ𝑥 ,Θ𝑏 )

)
. (7)

For the upper bound, we need to evaluate two variants of the

Max-DIP. The upper bound between two configurations is com-

puted such that the costs of the first connection layer for 𝑝𝑖−𝑤 are

computed based on L+
𝑈
, see Fig. 3. The final heading angles are

fixed and selected as the minimum heading angle from the terminal

heading interval. The intermediate connection layers are computed

based on the length of the Dubins path using the exact discretiza-

tion. Using the discrete set of heading angles enables us to find tight

upper bounds while maintaining their feasibility. The last layer for

𝑝𝑖+𝑤 utilizes the L−
𝑈

variant of the Max-DIP. The upper bound L𝑈
is then computed as the shortest path given the search graph

L𝑈 (Θ𝑎
𝑖−𝑤 ,Θ

𝑏
𝑖+𝑤) = min

Θ𝑖−𝑤+1,...,Θ𝑖+𝑤−1

[
L+𝑈 (Θ

𝑎
𝑖−𝑤 ,Θ𝑖−𝑤+1)+

+
𝑖+𝑤−2∑︁
𝑗=𝑖−𝑤+1

(
L(Θ𝑗 ,Θ𝑗+1)

)
+ L−𝑈 (Θ𝑖+𝑤−1,Θ𝑏

𝑖+𝑤)
]
, (8)

where the heading intervals Θ𝑖−𝑤+1, . . . ,Θ𝑖+𝑤−1 are selected from

the corresponding sets of heading intervals 𝐻𝑖−𝑤+1, . . . , 𝐻𝑖+𝑤−1.
Having lower L𝐿 and upper L𝑈 bounds for an arbitrary subse-

quence, the intervals that can be removed are determined as fol-

lows.

The heading interval Θ𝑖 at the location 𝑝𝑖 can be removed if

a shorter connection goes through a different heading for each

combination of the initial and final heading angles. So, Θ𝑖 can be a

part of the optimal solution only if the following equation holds

∃Θ𝑖−𝑤 ∈ 𝐻𝑖−𝑤 , ∃Θ𝑖+𝑤 ∈ 𝐻𝑖+𝑤 :

L𝐿 (Θ𝑖−𝑤 ,Θ𝑖 ) + L𝐿 (Θ𝑖−𝑤 ,Θ𝑖 ) ≤ L𝑈 (Θ𝑖−𝑤 ,Θ𝑖+𝑤) . (9)

With a slightly simplified notation, the heading interval Θ𝑖 would

not be part of the optimal solution if the lower bound value of the

optimal solution using Θ𝑖 is above the upper bound using another

heading of the location being examined.

3.4 Computational Complexity
The computational complexity of the proposed BnB solution to

the DTP is defined by the distance functions and determination

of the upper and lower bounds. The time to compute all the dis-

tances can be bounded by O(𝑛𝑘2
max
), where 𝑘max is the maximum

number of heading intervals per a single location. All the upper

bounds need to be computed for the specific window size 𝑤 that

can be bounded by O(𝑛𝑤𝑘2
max
). Since𝑤 is fixed and we consider

only three windows in this paper, we can bound the computation

of all upper bounds by O(𝑛𝑘2
max
). The most demanding part is a

determination of the lower bounds for the intervals bounding. We

need to examine each combination of the initial, examined, and

final heading angle as depicted in Fig. 3. Hence, the time complexity

of BoundIntervals(H) can be bounded by O(𝑛𝑘3
max
) which is

also the complexity bound of Algorithm 1 for a fixed 𝜔max.
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4 EMPIRICAL RESULTS
The feasibility of the proposed bounding has been empirically evalu-

ated using randomly generated instances of the DTP using location

density 𝑑 similarly to [5]. In particular, 20 random instances with

𝑛 = 10 locations are generated within the square box of the size

𝑠 =
√
𝑛/𝑑 using uniform distribution and density 𝑑 = 0.3. The

evaluation is performed for turning radii 𝜌 ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
The sequence of locations is determined as a solution of the TSP

using the Euclidean distance and the Lin-Kernighan-Helsgaun al-

gorithm [7]. The proposed algorithm is implemented in the Julia

programming language [2], version 1.6 with the available C++ im-

plementation of the DIP [14]. All the presented results have been

computed using the Intel processor i5-1035G1 running at up to

3.6GHz. Each instance is solved once because the BnB algorithm

is deterministic; however, the empirical results are reported as the

median values of 20 random instances with the visualized 60 % non-

parametric confidence interval. The maximal angular resolution

𝜔max = 256 is used for all the presented results.
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Figure 4: Percentage of the maintained intervalsH with the
increasing angular resolution 𝜔 .

The percentage of maintained intervals during the BnB-based

solution of the DTP with respect to the actual angular resolution

is depicted in Fig. 4 and corresponding real computational require-

ments are shown in Fig. 5. The results support the initial hypothesis

on the significant reduction of the intervals that allows finding op-

timal solutions of the test instances of the DTP.

5 CONCLUSION
The proposed bounding unpromising heading intervals enables

the BnB solution to the DTP by focusing the search towards the

optimal solution. The bounding is based on the newly introduced

maximization variant of the DIP (Max-DIP), for which its optimal

solution is shown for instances satisfying the D4 assumption and

with one side fixed heading angle. In the future, we aim to solve the

introduced Max-DIP for the general case without the D4 assump-

tion on the mutual distance of the goal locations that would allow

solving any DTP instance optimality using the presented BnB.
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Figure 5: Real required computational time for solving the
DTP instanceswith𝑛 = 10 locations depending on the angular
resolutions.
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