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Abstract—This paper introduces an extension of the unsuper-
vised learning method to solve data collection planning problems
where particular sensor measurements can be spatially corre-
lated. The problem is motivated by monitoring tasks formulated
as the Prize-Collecting Traveling Salesman Problem with Neigh-
borhoods (PC-TSPN). A solution of the PC-TSPN consists of a
selection of important sensors, determination of the locations to
read data from these sensors, and finding the shortest path to visit
the locations. The solution cost is defined as a sum of the travel
cost and penalty characterizing additional cost associated to
sensors from which data are not retrieved. The penalty represents
importance of particular sensor measurements to the quality of
the model and existing solutions assume the penalties are constant
values. However, for spatially close sensor locations, data from
one sensor may contain also information about nearby locations
and thus, its penalty depends on locations selected for data
collection. The proposed generalization of the PC-TSPN solver
allows to consider spatial correlations of sensor measurements
and the proposed approach provides better solutions than the
previous algorithm with fixed penalties.

I. INTRODUCTION

Data collection planning is a problem arising from envi-
ronment monitoring where it is necessary to efficiently collect
data from pre-deployed sensor fields in large environments [1]
by a mobile data sink [2]. Having a set of sensor locations, the
problem of planning a cost efficient path can be formulated
as the combinatorial optimization the Traveling Salesman
Problem (TSP) [3], which stands to find a shortest closed path
visiting each locations exactly once and return to the origin
location. It is known the TSP is NP-hard, unless P=NP [4].

However, a robotic vehicle can be equipped with a wireless
communication device to retrieve data from sensors remotely
and thus, it may not be necessary to precisely visit the
sensor locations and data can be read within the specified
communication range ρ [5]. Therefore a disk with radius ρ
can be used to form a neighborhood of each sensor, and data
from the particular sensor can be retrieved by a robot that
visits the sensor neighborhood (disk). This extension leads to
a generalization of the TSP called the Traveling Salesman
Problem with Neighborhoods (TSPN). Since the TSP is a
special case of the TSPN where the neighborhood is a single
point, also the TSPN is NP-hard. The optimal approach based
on the Mixed Integer Non-linear Programming formulation

Fig. 1. Example of solution of the PC-TSPN with spatial correlations between
measurements at the sensor locations. Color disks are the sensor locations,
the color denotes importance of the data (high is red and low is blue). The
black straight line segments denote the data collection path. The path points at
which data are collected from the sensors are visualized as small orange disks
and the red circle denotes a communication radius with the red straight line
segment connected to the particular sensor. The light green segments represent
spatial correlations between the sensor measurements, i.e., collected data from
the particular sensor in the red circle also contain a partial information about
the data that can be read from the sensor connected by the green segment.

is too computationally demanding [6], and therefore, soft-
computing approaches based on genetic algorithm [5] and self-
organizing maps [7] have been proposed.

In addition to the data collection within the communica-
tion radius, another important practical aspect of the data
collection planning is related to the desired model of the
studied phenomena for which individual sensors may provide a
different contribution. The importance of the provided data by
an individual sensor can be modeled as an additional penalty to
the solution cost if data are not retrieved from the sensor. Then,
it may be suitable to ignore sensors providing less important
data and thus, decrease the overall solution cost. This aspect
can be addressed in the Prize-Collecting Traveling Salesman
Problem (PC-TSP) introduced in [8]. A solution of the PC-TSP
combines a selection of the most suitable locations together
with determination of the optimal solution of the TSP for the
selected locations such that the sum of the tour length and978-1-5090-1897-0/16/$31.00 c©2016 IEEE



sum of the penalties of not visited locations is minimal.
A combination of the TSPN and PC-TSP in the Prize-

Collecting Traveling Salesman Problem with Neighborhoods
(PC-TSPN) as a suitable formulation for data collection plan-
ning has been introduced in [9]. The proposed solution of
the PC-TSPN is based on heuristic determination of locations
to be visited and a consecutive solution of the ordinary TSP.
In [10], we propose a unifying planning approach based on
self-organizing map (SOM) [7] to address the whole class
of problem formulations for the data collection planning
as the PC-TSP, TSPN, and the PC-TSPN, which provides
significantly better solutions than the heuristic algorithms [9].
Despite of these results, all the existing approaches for the
PC-TSPN rely on fixed penalties (rewards) associated to not
visited sensor locations, regardless data from a spatially close
sensor are collected or not.

In this paper, the problem of spatially correlated mea-
surements is addressed by a generalization of the existing
SOM-based algorithm for the PC-TSPN [10]. Probably the
most similar problem with correlated measurements and data
collection path is the Correlated Orienteering Problem (COP)
introduced in [11], where the problem is to determine a tour
that maximizes the utility while its length is below the given
constraint. Contrary to [11], the herein proposed solution is
targeted to data collection from sensor networks considering a
non-zero communication radius and the problem is addressed
as a variant of the PC-TSPN to find the cost efficient solution
and not to maximize the sum of rewards under a given travel
budget as in the Orienteering Problem.

Although the proposed deployment of the existing SOM
for the PC-TSPN [10] to the problem with correlated sensor
measurements seems to be straightforward, to the best of our
knowledge, there is no approach in literature that addresses
the proposed problem. Therefore, the main contributions of
this paper are considered in the introduction of the model
of the spatial correlations to the PC-TSPN and the proposed
extension of the SOM method to this generalized problem.

The paper is organized as follows. The PC-TSPN is formally
introduced in the next section together with the model of
spatial correlation of the penalty values associated to the
individual sensors. The proposed approach to the generalized
PC-TSPN with spatially correlated penalties is presented in
Section III. Evaluation results are reported in Section IV and
concluding remarks with future work are in Section V.

II. PROBLEM STATEMENT

The studied data collection planning is formulated as the
Prize-Collecting Traveling Salesman Problem with Neighbor-
hoods (PC-TSPN) which combines practical aspects of the
robotic data collection considering ability to retrieve data from
sensor stations within a communication radius ρ together with
the aspect of importance to collect data from a particular
sensor. The problem is motivated by persistent environment
monitoring missions, where it is requested to periodically
retrieve data from the deployed sensor network to create a
model of some studied phenomenon.

It is assumed the phenomenon can be measured by up to
n sensor stations S = {s1, . . . , sn} located in the operational
environment W . For simplicity, we consider the sensors are
located in a plane, W ⊂ R2, and each sensor has associated
point si ∈ R2 denoting the coordinates of the sensor. It is
assumed the data collection vehicle is operating in R2 with a
constant average velocity and its travel cost c(p1, p2) between
two points p1 and p2 is defined for all pairs of points p1, p2 ∈
R2 and thus, the travel cost can be directly computed as the
Euclidean distance, i.e., c(p1, p2) = |(p1, p2)|.

For the PC-TSP [8], each sensor si ∈ S has associated
penalty ζ(si) ≥ 0 characterizing the additional cost if the
data are not retrieved from si. Regarding the TSPN part of
the joint formulation of the PC-TSPN, it is assumed the data
can be retrieved from the sensor if the vehicle is within the
communication range ρ from the sensor, i.e., the data from si
are collected at the point p ∈ R2 if |(p, si)| ≤ ρ.

The data collection planning is a problem to determine a
cost efficient path to retrieve data from the sensors. Thus, we
can define a subset of k sensors Sk selected from the whole
set of sensors Sk ⊆ S from which data are collected. The
data collection tour can be then defined as a permutation Σ =
(σ1, . . . , σk) such that 1 ≤ σi ≤ n and σi 6= σj for i 6= j.
However, data from the individual sensors si ∈ Sk can be
retrieved within the communication radius ρ, and therefore,
the data collection path is a sequence of k waypoints Pk =
(pσ1

, . . . , pσk
) for which |(pσi

, sσi
)| ≤ ρ.

Having these assumptions, the PC-TSPN can be formulated
as the optimization problem to determine the number of
sensors k, the subset of the sensors Sk with the corresponding
waypoints Pk, and their sequence Σ such that the solution
cost C(Pk) is minimal

C(Pk) =

k∑
i=2

(
|(pσi−1

, pσi
)|
)
+|(pσk

, pσ1
)|+

∑
s∈S\Sk

ζ(s). (1)

The first two terms of (1) represent the length of the shortest
path connecting the waypoints, i.e., a solution of the TSP, and
the last term is the sum of penalties associated to the sensors
from which data are not collected from Pk.

The main difficulty of the PC-TSPN is that the solution
cost depends on k sensors Sk ⊆ S from which data are read,
and the shortest path connecting the corresponding Pk, which
is represented as the permutation Σ; and all these variables
have to be considered simultaneously. Notice, if ρ = 0, the
problem becomes the PC-TSP, for zero penalties ζ(si) = 0
for all si ∈ S the problem is the TSPN, and finally for zero
penalties and ρ = 0 the problem is the ordinary TSP.

In [10], we propose a SOM-based algorithm for the PC-
TSPN in which we assume the sensor measurements provided
by the sensors are independent and thus, the associated penal-
ties ζ(s) are constant values regardless data from spatially
close sensors are retrieved or not. This may not be always
satisfied, and therefore, spatially correlated measurements can
significantly influence a penalty value of some sensor si if
data from the neighboring sensors also contain information



about the location at si. This can be addressed by considering
the penalty value is dependent on the selected subset of the
sensors Sk, which is further described in the next subsection.

A. Data Collection with Spatially Correlated Measurements

A model of the studied phenomenon is necessary to con-
sider spatial correlations between measurements taken at the
particular sensor locations. The phenomenon can be modeled
as a time-varying scalar field, Ψ(p, t), p ∈ R2 with W as
its support [11]. Thus, the problem is to create a model of
the field from data sampled at the locations S, i.e., to collect
values Ψ(s, t) at the location s for s ∈ S. Similarly to [11],
we can consider a graph G(V,E) of spatial relations among
the sensor nodes V , such that the graph G(V,E) has an edge
(vi, vj) if and only if Ψ(vj , t) is dependent on Ψ(vi, t), where
vi corresponds to the location of the sensor si ∈ S. Then, the
value of Ψ(vi, t) can be expressed as

Ψ(vi, t) = fi(Ψ(vi1 , t), . . . ,Ψ(vil , t)), (2)

where Ni = {vi1 , . . . , vil} are the neighboring sensors of vi
in the graph G(V,E).

For a subset of sensors Sk and the corresponding subset
Vk ⊆ V , we can compute a quality of the field model created
from the values Ψ(v, t) for v ∈ Vk as a utility function J :
{Sk} → R+ ∪ {0} that maps data from the sensors Sk to
reals [11]. Then, an individual contribution of some sensor s
from which data are not retrieved s /∈ Sk can be expressed as

JSk
(s) = J(Sk ∪ {s})− J(Sk). (3)

Since the PC-TSPN combines the travel cost with the penalty
ζ(s) associated to the sensor s from which data are not
collected, we need a function that will scale JSk

(s) to the
penalty ζ(s), e.g., ζ(s) = −λJSk

(s), where λ > 0.

B. Distance based Correlation of Sensor Measurements

The aforementioned relations (2) and (3) provide a general
way how to determine penalties based on the selected sensors
Sk. Such an evaluation of the penalties can be directly
utilized in the proposed SOM approach to update penalties
during the unsupervised learning according to the current
solution represented by the network. However, a particular
phenomenon model with the spatial correlation is necessary to
validate if such an on-line evaluation of the penalties would
provide desired improvement of the solution cost. Such a
model is domain specific, and therefore a simplified (while
still general enough) model based on mutual distances of
the sensor locations is proposed here to demonstrate the
proposed generalization of SOM for the PC-TSPN with spatial
correlations of sensor measurements.

The main idea of the spatial correlation between measure-
ments from different locations is that data from one or several
sensors (locations) provide also information that is included in
other sensors, i.e., a value of the scalar field at the particular
locations (2). Thus, we can expect the correlation between
two measurements at the locations si and sj is increasing
with the decreasing mutual distance |(si, sj)|. On the other

hand, from a certain distance, measurements at si and sj
may not be correlated at all. This can be characterized by
decreasing penalty ζ(si) if data are collected only from sj
and both locations si and sj are closed enough. For some
very close location sj to si, the penalty of not visiting sj
would be zero ζ(si) = 0. In addition, we cannot expect
that two mutually very close locations sj and sk would
provide significantly more information about the location si
in comparison to measurements from a single location sj or
sk. These ideas about the influence of the correlation between
the sensor locations is a source of motivation to propose the
penalty evaluation based on geometrical coverage of circle
representing the penalty associated to a sensor by other circles
that represent the influencing locations as follows.
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Fig. 2. A visualization of the geometrical relations in the proposed geomet-
rical based computational model of spatial correlations between the sensor
locations. Data from the sensors sj and s′j are collected, sj , s′j ∈ Sk , and
they are also the neighboring sensors of the sensor si, i.e., sj , s′j ∈ Ni, from
which data are not directly retrieved si /∈ Sk . The red part of the circle ξ(si)
represents a particular portion of data at si that are collected by retrieved data
from sj and s′j . The length of the red part of the circle is L(ξ(si), Ni) in
(4) for the particular selected sensors Sk .

Let Sk be sensors from which data are retrieved by the data
collection path, Ni be the neighboring sensors of the sensor si
in the graph G(V,E) according to (2), ζ(si) be the penalty of
si without correlations, ξi be the penalty radius of the circle
centered at si, and χj be a radius of the circle centered at
sj ∈ Ni. The circles ξi(si) and χj(sj) are called the penalty
circle (radius) and the correlation circle (radius), respectively,
in the rest of this paper. The circumference of the circle ξi(si)
represents the associated penalty ζ(si) to the sensors si, i.e.,
computed from (3) for Sk = ∅. If data from the neighboring
sensors sj ∈ Ni are collected, i.e., sj ∈ Sk, the penalty
ζ(si) is proportionally decreased according to the part of the
circumference of ξi(si) that is covered by the particular sensor
sj ∈ Ni \ Sk considering the circle χ(sj). The geometrical
relations are depicted in Fig. 2 and for a particular Sk the
penalty ζSk

(si) is formally computed as:

ζSk
(si) =

(
1− L(ξ(si), Ni)

circ(ξ(si))

)
ζ(si), (4)

where circ(ξ(si)) denotes a circumference of the circle ξ(si)
with the radius ξ centered at si and L(ξ(si), Ni) is the sum
of parts of the circle ξ(si) covered by the circles χ(sj) for
sj ∈ Sk ∩ Ni, i.e., the length of

⋃
sj∈Sk∩Ni

(ξ(si) ∩ χ(sj)).



Notice, if none of the neighboring sensors of si is collected
(i.e., Sk ∩ Ni = ∅) the penalty ζSk

(si) associated to si is
ζSk

(si) = ζ(si).
Each sensor may have an individual value of ζ, ξ and

also the influencing radius χ can be distinguished for each
pair of sensors, which provide an additional flexibility to
model a domain specific spatial correlations. However, any
other complicated function describing the spatial correlations
between sensor locations can be considered, e.g., according to
the general function (2).

The key idea of the proposed SOM-based approach is that
whenever a new sensor s ∈ S is considered for data collection
and s becomes part of Sk, the penalty of each sensor from
which data are not collected is recomputed using (4) and
thus, it may happen that a penalty can be decreased to the
value for which a travel cost to retrieve data from the sensor
would be significantly higher and it does not make sense
to travel towards such a sensor. Therefore, we can expect a
lower solution cost if spatial correlations between the sensor
measurements are considered during the solution of the PC-
TSPN. The proposed extension of the SOM algorithm for
spatial correlations is described in the next section.

III. SELF-ORGANIZING MAP FOR THE PC-TSPN WITH
SPATIAL CORRELATION OF SENSORS MEASUREMENTS

The Self-Organizing Map (SOM) for the PC-TSPN [10]
is a two layered growing neural network which maps the
input space R2 into one-dimensional output space representing
the data collection path. The input layer serves as the input
of the network to describe coordinates of the given sensor
locations S. The neuron weights represent coordinates in R2

which adapt to S during the unsupervised learning. The output
layer consists of m output units (ν1, . . . , νm) organized into
an array that prescribes a sequence of the neuron weights that
can be connected by straight line segments to form a ring of
nodes (neuron weights) that represent a path in R2. A closed
path is required in the TSP and the output layer is a circular
array where the last node is connected with the first node.

The training of SOM for the TSP is an unsupervised learn-
ing procedure that is performed in series of learning epochs.
During each learning epoch, all sensors S are presented to
the network in a random order (to avoid local extreme). For
each presented si ∈ S a winner neuron ν∗ is selected using
Euclidean distance of the neuron weights to si and the winner
ν∗ together with its neighboring neurons are then adapted
towards si. The main principle of the unsupervised learning
is that the neighboring neurons are adapted with decreasing
power according to the neighboring function:

f(G, d) =

{
µe

−d2

G2 for d < 0.2m
0 otherwise

, (5)

where µ is the learning rate, m is the number of neurons, and
d is the distance of the neighboring neuron from the winner
neuron in the number of neurons (in the output layer). Besides,
the power of the adaptation controlled by the learning gain G

is decreased after each learning epoch i according to the gain
decreasing rate α, e.g., G(i+ 1) = (1− α)G(i).

In a standard SOM for the TSP, the number of output units
m is fixed (e.g., usually selected as 2n ≤ m ≤ 3n) [12] during
the whole learning because the final route has to visit all the
locations presented to the network. However, in the PC-TSPN,
the final path may not necessarily visit all the sensors regarding
the solution cost (1), and therefore, it is a more suitable
to adjust the number of neurons according to the currently
selected sensors Sk from which data will be retrieved. That
is why SOM for the PC-TSPN is considered as a growing
structure and new neurons are added to the network during
the winner selection and unnecessary neurons are removed in
the ring regeneration procedure after each learning epoch [10].

connected neurons

sp
s

(a) Closest point ps of the ring to s

s

p

p’

connected neurons

communication range ρ

ρ

s s

− alternate location

(b) Alternate location p′s

Fig. 3. Determination of the location ps of the possible winner neuron for
the presented sensor stations s together with determination of the alternate
location p′s from which data from s can be retrieved using the communication
range ρ. The sensor locations are shown as green disks and neurons are the
blue disks connected by straight line segments forming the ring of neurons.
The closest point ps of the ring to the sensor s is visualized as the yellow
disk. The alternate location p′s towards which the network is adapted (if the
winner neuron for s is determined) is shown as the red disk. The dotted circle
with the radius ρ centered at s represents an area from which data can be
reliably retrieved from s.

Because the network adaptation towards the currently pre-
sented sensor s is conditioned according to the distance of the
winner to the target location and the current penalty ζSk

(s) for
not visiting s, a location ps of an eventual winner neuron is
determined prior establishing the winner for s. The point ps is
found as the closest point of the current ring of neurons to s.
Besides, an intersection of the straight line segment (ps, s)
and the circle with the radius ρ centered at s is utilized to
determine a point p′s at which data from s can be retrieved.
Notice, if ps is already within the communication radius ρ the
point ps is used as the target location p′s. The determination
of ps and p′s is visualized in Fig. 3.

The proposed unsupervised learning of SOM for the PC-
TSPN with spatial correlations can be summarized as follows:

1) Initialization: For n sensor locations S = {s1, . . . , sn}
create an initial ring of m = n neurons N =
{ν1, . . . , νm} around the first sensor location s1, e.g., as
a small circle. Set the learning gain G to G ← 10 and
the current learning epoch i← 1. Initialize the learning
rate µ = 0.6 and the gain decreasing rate α = 5×10−4.
Set the selected sensors Sk ← ∅.

2) Randomizing: Create a random permutation of the sen-
sors Π(S)← permute(S).



B Learning epoch:
3) Let the number of neurons in the current ring N be

m and N represents the solution as the data collection
path Pm. Determine the sensors Sk that are within the
communication radius ρ from the ring N , i.e., Sk =
{si|si ∈ S, ν ∈ N for which |(ν, si)| ≤ ρ}. Update
penalties ζi for all si ∈ S \ Sk using (4).

4) For each s ∈ Π(S):
a) Determine weights of the expected winner ps and

location p′s to read data from s using the closest
point ps of the current ring to s (see Fig. 3a) and
the intersection point p′s of the segment (ps, s) with
the ρ-radius circle centered at s, see Fig. 3b.

b) Adapt: If i = 1 or |(ps, p′s)| ≤ ζ(s) Then

• Determine the winner neuron ν∗ for ps (select
it from the current ring or create a new one);

• Associate p′s with ν∗ as the target location to
read data from s and add s to the set of the
selected sensors: Sk ← Sk ∪ {s};

• Update penalties ζ(si) of the sensors si ∈ S\Sk
that can be influenced by s according to (4).

• Adapt ν∗ and its neighbors within the distance
d (in the number of neurons) to the determined
p′s according to the neighbouring function (5).

5) Ring regeneration: Create a new ring using only the
winners for the current epoch i. Add a new neuron
between each consecutive winners ν and ν′ with the
weights set as the midpoint of the segment (ν, ν′).

6) Update the learning gain and the epoch counter: G ←
G(1− iα), i← i+ 1.

7) Termination condition: If the distance of each winner
to its associated target location is less than 10−3 Or
i > 100, stop the adaptation. Otherwise go to Step 2.

8) Final tour construction: Traverse the ring for the se-
quence of winners and construct the data collection path
Pk using the target locations associated to the winners.

Computational complexity of the proposed iterative proce-
dure depends on the number of sensors n and the number of
neurons m. Since in each learning epoch up to n new neurons
can be added to the network, m is always m ≤ 2n. Then, up to
2·0.2m neurons can be adapted and thus, the complexity of the
single epoch with constant penalties can be bounded by O(n2).
However, for correlated sensor measurements, penalties of
all not collected sensors are updated after selection of each
winner. In the worst case, each sensor can influence all other
sensors and it may be necessary to determine (2) and (3) which
can be bounded by O(n2) and the complexity of the single
epoch can be bounded by O(n3). However, real computational
requirements can be lower due to correlations only between
spatially close sensors.

IV. RESULTS

The proposed extension of the SOM approach for the PC-
TSPN to spatial correlations between sensor measurements
have been empirically evaluated in series of problems mo-
tivated by under water data collection missions in the OOI
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Fig. 4. The solution cost found by the SOM-based algorithm for the PC-
TSPN [10] and its generalization for spatial correlations with χ in OOI
scenario with n = 128 sensors. For both approaches the final solution cost
is computed with the spatial correlations. Results are average values from 20
trials and standard deviations shown as error bars are negligibly small.

scenario with 128 sensors, which has been also considered
in [10]. Although the proposed SOM algorithm and data
correlation model allow to consider any phenomenon specific
update function of the penalties, the geometric-based model
of the correlations (Section II-B) is considered to demonstrate
ability to deal with spatial correlations. The geometric model
allows to specify individual communication radius ρ, penalty
radius ξ, and coverage radius χ for each particular sensor,
e.g., to respect local environment conditions; however, a single
value of each radius is considered for simplicity.

In particular, the communication radius is considered in the
range 0 ≤ ρ ≤ 50 km, the penalty radius ξ is set to 10 km, and
the correlation radius χ is selected from the range 0 ≤ χ ≤
50 km, which provide a broad spectrum of the problems where
correlations between the sensor measurements are less (for
zero or small values of χ) and more important (for χ� 0).

SOM is a randomized algorithm, and therefore, each prob-
lem instance for particular values of ρ and χ has been solved
20 times and the performance indicators of the solution cost
according to (1) and real computational time are computed as
the average values accompanied by the standard deviations.
Similarly to [10], the solution cost is considered as the ratio
to the reference value computed as the optimal solution of
the related TSP visiting all sensors and ρ = 0 found by the
Concorde [13]. The ratio allows to evaluate benefits of the
PC-TSPN formulation in comparison to the ordinary TSP.

The final solution cost is computed according to the spatial
correlations using (4) for both approaches: (i) SOM for the
PC-TSPN introduced in [10] and; (ii) the herein proposed
generalization with the spatial correlations. In the case of
not spatially correlated measurements, the both approaches
provide identical results. However, the proposed approach
provides better results for increasing correlation radius χ.
A noticeable improvement can be seen for χ = 35 km in
Fig. 4, especially for small communication radii. It can be
observed that considering spatial correlations and non-zero
communication radius have a great impact to the solution cost.
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Fig. 5. Average computational time to find a solution of the PC-TSPN by the
SOM algorithm without and with consideration of spatial correlations between
the sensor measurements

(a) SOM [10], C=2761.0 (b) Proposed, C=2477.5

Fig. 6. Best found solutions for the OOI scenario with ρ = 20 km, the
penalty radius ξ = 10 km and correlation radius χ = 35 km

The SOM algorithm has been implemented in C++ and
all the results have been computed using the same compu-
tational environment with a single core of 3.4 GHz CPU, and
therefore, the influence of dealing with spatial correlations to
the computational requirements can be observed in Fig. 5.
For χ = 14 km, the computational burden is only slightly
increased because of relatively small correlation radius χ,
which also holds for higher χ and small radii ρ ≤ 15 km.

A. Discussion

The presented results support feasibility of the proposed ap-
proach to address spatial correlations between sensor measure-
ments at different locations. The generalized algorithm pro-
vides solutions with a lower cost than the previous approach
without considering the correlations. Moreover, the results
indicate the computational burden is only slightly increased.
On the other hand, the utilized model of the spatial correlation
is based on geometrical relations between the sensor locations
and it is relatively computationally inexpensive and a more
complex evaluation of (2) can be more demanding.

V. CONCLUSION

In this paper, a generalization of the PC-TSPN for data
collection planning with spatial correlations between sensor
measurements has been proposed together with the exten-
sion of the SOM-based algorithm to address the generalized

problem. The proposed algorithm provides similar results
as the previous approach in problem instances where the
effect of spatial correlations is low, i.e., for χ = 0, but it
provides noticeably better solutions if data from one sensor
also contains information about other locations.

The evaluation results are based on an intuitive function
to update penalties based on the visited nearby sensors. The
proposed algorithm is independent on the particular form of
the function to update the penalties, and one of our future re-
search directions is to consider a realistic setup with particular
domain specific scalar field.

Here it is worth mentioning that for the PC-TSPN formu-
lation of the data collection planning, it is assumed that a
set of sensor locations of some pre-deployed sensor field is
given. Then, a solution of the PC-TSPN may not include all the
sensors on the data collection path and thus, some of the sensor
stations are not necessary. Therefore, the proposed approach
can be utilized to determine the particular locations where the
sensor stations should be deployed, e.g., considering a very
dense sensor field. Investigation of such a utilization of the
proposed approach is a subject of our future work.
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[7] J. Faigl and L. Přeučil, “Self-Organizing Map for the Multi-Goal
Path Planning with Polygonal Goals,” in International Conference on
Artificial Neural Networks (ICANN). Heidelberg: Springer, 2011, pp.
85–92.

[8] E. Balas, “The Prize Collecting Traveling Salesman Problem,” Networks,
vol. 19, pp. 621–636, 1989.

[9] G. Hollinger, U. Mitra, and G. Sukhatme, “Autonomous data collection
from underwater sensor networks using acoustic communication,” in
IROS, 2011, pp. 3564–3570.

[10] J. Faigl and G. Hollinger, “Unifying multi-goal path planning for
autonomous data collection,” in IROS, 2014, pp. 2937–2942.

[11] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and
its application to informative path planning for persistent monitoring
tasks,” in IROS, 2014, pp. 342–349.

[12] S. Somhom, A. Modares, and T. Enkawa, “A self-organising model for
the travelling salesman problem,” Journal of the Operational Research
Society, vol. 48, no. 9, pp. 919–928, 1997.

[13] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Concorde
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