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Abstract—In this paper, we address a problem of precise on-
line localization of a hexapod walking robot operating in rough
terrains. We consider an existing Simultaneous Localization and
Mapping approach with a low cost structured light (RGB-D)
sensor. We propose to combine this sensor and localization
method with the developed adaptive motion gait that allows the
robot to crawl various types of terrain, such as stairs, ramps,
or small wooden blocks. Such an environment requires a full 6-
DOF pose estimation to create a map of the robot surroundings
and allows us to asses impact of the individual terrain types
and influence of the SLAM method parametrization on the
localization accuracy. The reported evaluation results indicate
the relations between the terrain type, parametrization of the
method and the localization accuracy.

I. INTRODUCTION

Reliable localization is an essential prerequisite in many
practical mobile robotic applications, such as intelligent nav-
igation or exploration of unknown environment. For an au-
tonomous operation of a mobile robot without a reliable
external localization (like GPS or motion capture systems) it
is necessary for the robot to perceive the environment, build
its spatial representation, localize itself, and plan its motion
to achieve selected goals. Such a self-localization is referred
to as the Simultaneous Localization and Mapping (SLAM)
problem [1].

In this work, we address the problem of visual localization
of a hexapod walking robot operating in rough terrains using
the structured light sensor (RGB-D sensor) with the RGB-D
SLAM method based on [2]. Such a set-up represents a chal-
lenging problem where an accurate full 6-DOF pose estimation
is required under presence of unpredictable camera shaking
and motion blur induced by the robot locomotion.

We are emphasizing a practical verification of the method
in a rough terrain scenario with different obstacles (see
Fig. 1) to evaluate an impact of individual terrain types and
parametrizations of the SLAM method on the localization
accuracy. In the presented evaluation, we are concerned with
both the closed-loop and open-loop scenarios. However, while
the precision of the localization provided by SLAM methods
can be significantly improved when a robot re-visits already
visited locations in the closed-loop scenarios, we are more
interested in the accuracy of the open-loop localization, which
better fits to on-line pose estimation. The trajectories are

Fig. 1. Experimental set-up

compared using the established metrics of the relative pose
error (RPE) and the absolute trajectory error (ATE) proposed
in [3].

The paper is structured as follows. An overview of the
related work on the legged robot localization in rough environ-
ment using visual SLAM methods is presented in Section II.
Section III and Section IV provide a brief description of the
RGB-D SLAM method and the considered hexapod walking
robot controlled by an adaptive motion gait, respectively.
Section V details the experimental set-up followed by the
description of the established ground-truth, evaluation metrics
and the particular experimental results. Discussion and con-
cluding remarks are dedicated to Section VI.

II. RELATED WORK

The localization problem is one of the fundamental prob-
lems studied in mobile robotics, and therefore, a huge number
of approaches can be found in literature. However, most of
the works consider wheeled ground or aerial vehicles and
only relatively smaller number of methods address challenges
related to multi-legged crawling robots. Despite of that, several
approaches to address the localization of the hexapod legged
robot using the visual SLAM methods have been proposed.

In [4], the authors concern the SLAM problem in relation to
sudden and abrupt camera motions induced by the locomotion
of the hexapod robot. They propose a motion model based on
the control commands of the robot to improve the tracking978-1-5090-1897-0/16/$31.00 c©2016 IEEE



accuracy of the monocular SLAM system. An improved accu-
racy of the localization is reported, albeit relatively slow frame
rate has been utilized (only 2 Hz), but only qualitative results
are presented in the paper.

Stelzer and Hirschmüller summarized their work on the
legged robot locomotion in rough terrains in [5]. They devel-
oped a complete framework which uses stereo dense depth
mapping in fusion with inertial measurements and legged
odometry using an indirect information filter to localize the
robot and map the environment. They tested their algorithm in
a simple rough terrain set-up when the robot crawls a gentle
ramp to a testbed filled with a gravel. Only absolute error
metrics has been used to evaluate the localization accuracy
in [5].

The most related work to our problem has been recently
published by Dominik Belter et al. in [6] and [7]. In [7],
the authors present an RGB-D SLAM method with a custom
designed image processing pipeline deployed on a hexapod
walking robot. The authors report an on-line performance of
the algorithm with the RMSE ATE of 9.5 cm in a closed-loop
scenario on a flat terrain. Although the deployed algorithm
is very similar to our proposed solution, we focus on the
evaluation of the accuracy in the rough terrain of about double
the size in both the closed-loop and open-loop scenarios and
with different types of obstacles.

On the other hand, in [6], the authors focus on the accurate
mapping of unstructured terrains using Kinect–like range
sensors. The provided theoretical results are supported with
the practical experiments conducted with a quadrupedal legged
robot in a simple rough terrain scenario. In [6], the authors
focus on the accuracy of the map provided by the SLAM
method and not the trajectory estimate; however, they are
explicitly emphasizing the importance of a precise localization
in such a type of terrain.

In comparison to the aforementioned approaches, we present
a more thorough evaluation in a larger scenario with different
types of terrains the robot is crawling on. We are also
interested in determining the relations between the absolute
trajectory error, relative pose error, parametrization of the
SLAM method and the impact assessment of individual terrain
types on the localization accuracy.

III. RGB-D SLAM

The RGB-D SLAM method considered in the addressed
problem of localization of the hexapod crawling robot is based
on [2]. It benefits from using a scale information of 3D
depth sensing with the strengths of detection and tracking of
image salient points to create a dense 3D representation of the
environment. The system is visualized in Fig. 2 and it operates
as follows.

First, salient image points are extracted from the RGB
image. The OpenCV library [8] is utilized for the fea-
ture detection, description, and matching of various fea-
ture types. For feature extraction one of the SURF [9],
FAST [10]–BRIEF [11] or ORB [12] image features can be
used.

Fig. 2. Overview of the RGB-D SLAM system

Then, the 3D position of the features is obtained by ex-
tracting the depth measurement from the depth image at the
coordinates of the particular feature. Note, only the features
with a known depth information are further processed. The
depth information provided by the structured light sensor
might not be available at certain parts of the image, e.g., due
to the sunlight, maximum and minimum distance or presence
of the features on the edges and borders of obstacles.

After the extraction and 3D projection of the image features,
the pairwise feature correspondences between the current
frame and a subset of previously mapped frames are computed
using the feature matching. This subset consists of np directly
preceding frames, ng graph neighbouring frames, and nr
random frames from the whole trajectory which are used for
discovering large loop-closures.

An estimation of the rigid transformation is computed
between successfully established frame-to-frame correspon-
dences using the RANSAC algorithm [13]. Then, the frame is
added as a node to the pose graph (map) of the SLAM method.
The node contains the estimated 6-DOF pose of the frame
together with the set of the detected image features and the
estimated dense point cloud given by the depth measurement.
The edges of the pose graph represents the pairwise rigid
transformations between the individual frames.

The pairwise transformations between the RGB-D sensor
poses in the pose graph are optimized using the g2o graph
optimisation framework [14] to further optimize the trajec-
tory and provide a reliable localization The g2o framework
provides a globally consistent trajectory estimation which is
especially beneficial in loop-closures when the robot revisits
some previously visited area that is mapped in the constructed
pose graph representation of the operational environment.

Based on the trajectory estimate given by the pose graph, an
environmental map can be generated by projecting the sensor
depth measurements directly in a form of a point cloud or a
voxelized OctoMap [15]. The whole method evaluated in this
paper is implemented using the ROS [16] framework.

IV. HEXAPOD ROBOT

The RGB-D SLAM is considered with a hexapod walking
robot visualized in Fig. 3 based on a low-cost PhantomX



Mark II hexapod platform. The robot has six legs, each with
three joints motorized with the Dynamixel AX-12 intelligent
servos. Each servo drive has a P-type position controller and
provides the control unit with its current position and applied
torque through a serial interface. This feedback is further
utilized in an adaptive motion gait [17] which allows the robot
to traverse various terrains.

Fig. 3. The hexapod robot with mounted RGB-D ASUS Xtion Pro live (used
in the presented localization approach) and stereo Bumblebee 2 cameras (not
utilized in the presented results)

The adaptive motion gait [17] is based on a regular tripod
gait, but utilizes a feedback from the servo drives to sense the
contact of the legs with the ground throughout the gait cycle.
One gait cycle consists of the phases of rising the three legs off
the ground, moving them forward, dropping the legs on the
ground, and finally moving and leveling the whole body to
cope with the position of the legs and the shape of the terrain.
During the drop phase, the position error readings from the
servo drives are utilized to detect the contact point of a leg
with the surface which allows to stop the movement of the
leg and avoid high torque values at the joints. No additional
sensors, like touch sensors, are utilized for the motion control.

The considered hexapod walking platform with the RGB-D
sensor represents an off-the-shelf solution. Our original moti-
vation is to address the localization and mapping problem in
rough terrain with such a minimalistic set-up and demonstrate
that such a relatively inexpensive robotic system is capable of
exploration mission to create a map of a priori unknown en-
vironment. The achieved results are reported in the following
section.

V. EXPERIMENTAL RESULTS

In general, SLAM system produces a trajectory estimate
together with the map of the environment. Although a good
trajectory estimate does not imply a reliable map of the
environment (e.g., of dynamic environments), we focus on the
evaluation of the localization precision only.

A. Experimental set-up

The experimental evaluation has been performed on a labo-
ratory test-track simulating rough terrain conditions, see Fig. 1.
The test track consists of a square path of approximately 9 m

length involving a plain ground, a set of stairs, a ramp and a
pile of irregularly height wooden blocks.

Such a scenario constitutes a set of different challenges
for the visual SLAM method. The pile of irregularly height
wooden blocks simulates an uneven terrain where the SLAM
method mainly needs to deal with the angular rotation of the
camera. During the ascend the robot motion is subjected to
slippage when the camera pose changes abruptly and randomly
and during the descent the robots RGB-D sensor is inclined
to the ground and only limited number of features in the
close distance is visible. The turns represent another significant
challenge for the SLAM system due to the motion blur.

The hexapod robot has been guided by a human operator
along the path using the adaptive motion gait [17]. Asus
Xtion Pro live RGB-D sensor rigidly mounted to the robot
was connected to a desktop computer which recorded the
dataset using the ROS framework [16]. Raw RGB stream and
the depth stream have been recorded and saved for further
evaluation with the RGB-D SLAM. Altogether three individual
closed loop trajectories have been performed, each of them
taking 10–12 minutes. Note, an average speed of the robot is
0.014 m.s-1. All of the presented results have been computed
using the dual-core Intel Core i3–M330 (2.13GHz).

B. Ground truth

A reliable ground truth for each of the three trajectories
has been established by the RGB-D SLAM and verified
by the independent 3D position estimation provided by the
WhyCon [18] external motion tracking system. The WhyCon
system provides a 3D position of the robot based on tracking a
circular pattern attached to the robot, therefore this estimation
has been utilized to verify the full 6-DOF pose localization
determined by off-line frame-by-frame data processing of
the created dataset with the RGB-D SLAM. The considered
RGB-D SLAM parametrization for the ground truth processing
was the SURF feature extractor detecting 600 features and
keeping 400 best matches with a very long comparison horizon
of np = 16, ng = 4 and nr = 4. Additional parameters like
RANSAC stopping criteria and optimisation precision were set
to the best values. Such a processing took more than 6 hours
per one trajectory resulting in the trajectory estimate which
was compared to the WhyCon reference.

First, the trajectories provided by the SLAM and the refer-
ence system were time synchronized and their starting points
collocated. Then the rigid transformation of the estimated
SLAM trajectory was found by minimization of the root mean
squared distance error between the individual trajectories.
Only the rotational component of the rigid transformation has
been optimized with the fixed orbit of the collocated starting
point.

The ground truth RMSE estimation error for trajectories T1,
T2, and T3 is 0.040 m, 0.043 m, and 0.036 m respectively
which is marginal and therefore the information about the
robot 6-DOF pose from the frame-by-frame RGB-D SLAM
processing is considered as the ground truth in the evaluation
presented in the rest of this paper.



C. Methodology

The trajectories are evaluated using the established metrics
of the relative pose error (RPE) and the absolute trajectory
error (ATE) proposed in [3].

For the purpose of the evaluation, we assume that the
estimated trajectory X = {X1,X2 · · · ,Xn} ∈ SE(3) and
the ground truth trajectory X̂ = {X̂1, X̂2 · · · , X̂n} ∈ SE(3)
consist of the same number n of the time synchronized poses.
The Xk and X̂k are the 6-DOF estimated pose and ground
truth pose at the time k, respectively, given by the equation

Xk =

Rk tk

0 1

 , (1)

where Rk and tk are the rotation matrix and 3D coordinates
of the pose Xk with respect to the origin.

The relative pose error (RPE) Ek represents the local
accuracy of the trajectory and it is given by the equation

Ek =
(
X̂−1
k X̂k+1

)−1(
X−1
k Xk+1

)
. (2)

By further decomposition of Ek according to (1) into the trans-
lational and rotational components we obtain the translational
RPEt as the Euclidean norm of the translational component
and the rotational RPEφ as the Euler angle bound with the
rotational component, respectively.

The absolute trajectory error (ATE) compares an absolute
distance between the synchronized trajectories and it is given
as

Ek =
(
X̂k)

−1
(
Xk

)
. (3)

However; prior the evaluation of the ATE it is necessary to
align the trajectories. The alignment is done by finding a rigid
transformation that minimizes the square root of the ATE
for the given trajectory. Only a rotational component of the
rigid transformation is optimized with a fixed orbit around a
collocated starting point.

D. Results

Results of the thorough evaluation of the RGB-D SLAM
are reported in this part. The main goal of the evaluation is to
determine the influence of the RGB-D SLAM parametrizations
and terrain types on the quality of the localization both in
closed-loop and open-loop scenarios. With respect to the
practical application scenarios of the mobile robotics we are
also concerning the processing speed as one of the parameters.

The considered set-up of the operational environment allows
us to measure the influence of individual terrain types on the
localization error. In order to evaluate the above mentioned
relations we firstly divided the trajectories into individual
segments according to the terrain type. The five recognized
terrain types are:

• Plain (the start and finish plane ground);
• Rot (individual turns along the path);
• Hill (the irregular hill of wooden blocks);
• Stairs (the ascending stairs);
• Ramp (the descending slope).

Fig. 4 shows the individual segments on top of the ground
truth trajectory T3. It also shows an example of the estimated
trajectory (open-loop SURF 2.5 Hz) and its ATEt (grey
interconnections).

Fig. 4. An estimated trajectory with ATEt and the ground-truth trajectory
divided into individual segments

Afterwards, we have processed the dataset with the RGB-D
SLAM in both open-loop and closed-loop fashion. The con-
sidered parametrizations used for the evaluation of the RPE
and ATE are SURF, FAST–BRIEF and ORB feature extractors
detecting maximum of 500 features per image and keeping
the 300 best matches. The comparison horizons were selected
as np = 3, ng = 3 and nr = 0 for open-loop scenarios
and nr = 3 for closed-loop scenarios, which is much less
computationally demanding than the parametrization used for
the construction of the ground truth. In the evaluation the
datasets have been processed frame-by-frame with a skip step
from the set of 6 different frame rates {10, 5, 3.3, 2.5, 2, 1.6}
in Hz, which gives altogether 36 different parametrizations. In
total, 87 trials on all of the three datasets have been performed.
The evaluation results are summarized in Table I. For better
readability of the results, Table I presents the quantitative
results for the trajectory T3 only.

Table I lists the aggregated RPE for the whole trajectory
estimates; however, in order to evaluate the influence of a
particular terrain type on the localization accuracy, we evalu-
ated the RPE for each trajectory segment. Note, we have done
the evaluation of the influence of the terrain types using the
open-loop processing of the dataset. The RPE for individual
terrain types is visualized in the plots in Fig. 5a, Fig. 5b, and
Fig. 5c. Each plot depicts the RPE for the individual trajectory
segments considered with a particular parametrization, where
each bar represents a distribution of the RPE for a particular
terrain type (color and x-axis labels) and processing speed.

The aggregated results of the RPE evaluation for the indi-
vidual terrain types for all the performed open-loop tests on all
of the three dataset trajectories are listed in Table II together
with their standard deviations σRPEt and σRPEφ .
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Fig. 5. (a), (b), (c) RPE for individual segments of the trajectory estimated using the particular extractor from left to right for 10, 5, 3.3, 2.5, 2, and 1.6 fps.
(d) Illustration of the RPE distribution in time for the open-loop SURF 5 Hz parametrization

TABLE I
TRAJECTORY ESTIMATION RESULTS

Extractor SURF FAST–BRIEF ORB

fps 10 5 3.3 2.5 2 1.6 10 5 3.3 2.5 2 1.6 10 5 3.3 2.5 2 1.6

Open loop
RPEt [cm] 0.40 0.56 0.56 0.56 0.95 0.95 0.76 1.00 1.09 1.33 1.40 1.66 0.79 1.06 1.27 1.48 1.45 1.74
RPEφ [rad·10−2] 0.22 0.31 0.26 0.23 0.50 0.50 0.41 0.53 0.62 0.71 0.73 0.83 0.36 0.52 0.67. 0.74 0.77 0.89
ATEt [cm] 23.00 27.20 8.54 20.66 21.57 14.66 80.20 20.81 14.21 12.81 21.38 39.29 44.13 65.17 27.05 20.11 17.78 24.13
ATEφ [rad] 0.19 0.22 0.18 0.22 0.19 0.20 0.41 0.30 0.17 0.18 0.25 0.25 0.18 0.44 0.26 0.17 0.18 0.16
End distance [cm] 35.24 36.27 19.05 30.50 33.48 22.08 117.21 31.92 29.53 27.15 32.89 48.71 137.53 56.49 75.17 41.03 36.02 70.39

Closed loop
RPEt [cm] 0.59 0.54 1.20 1.00 1.16 1.46 0.70 1.00 1.11 1.42 1.38 1.26 0.78 1.11 1.32 1.47 1.50 1.80
RPEφ [rad·10−2] 0.30 0.28 0.69 0.61 0.64 0.81 0.28 0.55 0.63 0.83 0.71 0.62 0.40 0.59 0.73 0.79 0.79 0.92
ATEt [cm] 2.74 1.01 7.98 12.23 7.48 10.02 20.90 18.54 14.77 23.07 13.50 12.21 24.15 37.12 27.49 41.88 18.77 31.60
ATEφ [rad] 0.19 0.06 0.17 0.19 0.15 0.12 0.22 0.34 0.22 0.19 0.23 0.09 0.22 0.37 0.07 0.15 0.32 0.27
End distance [cm] 0.33 0.57 2.13 20.75 0.99 1.99 33.76 3.30 2.09 4.60 2.36 1.68 6.72 3.84 3.19 4.08 4.25 2.85

TABLE II
AGGREGATED RPE FOR INDIVIDUAL TERRAIN TYPES

Terrain Plain Rot Hill Stairs Ramp

RPEt [cm] 1.03 0.85 0.89 0.93 0.70
σRPEt [cm] 1.00 1.24 0.98 0.91 0.75
RPEφ [rad·10−2] 0.35 0.54 0.52 0.47 0.30
σRPEφ [rad·10−2] 0.28 1.26 0.56 0.56 0.26

The results indicate a higher RPE is exhibited for the stairs
terrain and during the fast turns. However, the differences are
only marginal thus the evaluation did not provide unambiguous

results in terms of determining the influence of the terrain type
on the RPE. This is likely related to the used adaptive motion
gait which was originally designed with stress on a smooth
motion in various terrains.

Notice, a low value of the RPE does not imply a low value
of the ATE, e.g., the 5 Hz SURF trajectory represents an
estimation with the low RPE but due to few outliers in pose
estimation the overall ATE is high (as it is shown in Fig. 5d).

This issue is partially addressed by enabling the loop-
closure detection (nr > 0), when the robot recognizes pre-
viously mapped areas. In such a case, the whole trajectory
estimate is optimized based on the newly established frame to
frame correspondences, which affects mostly the individual



outliers. The loop-closing performed best with the SURF
feature extractor, while very poorly with the ORB extractor
due to the poor discriminability of the ORB features in the
given environment. In all cases, there is a huge improvement
in the end distance which stands for the Euclidean distance
between the last poses of the ground truth and the estimated
trajectory.

Regarding the processing speed and its influence on the
localization accuracy we processed the dataset frame-by-frame
with a different skip-step. Fig. 6 shows the aggregated RMSE
RPE for all the segments according to the frame rate for the
individual open-loop parametrizations of the RGB-D SLAM
method.

fps

10 5 3.3 2.5 2 1.6

R
M

S
E

 R
P

E
t [

c
m

]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RMSE RPE
t
 for different frame rates

SURF

FAST-BRIEF

ORB

fps

10 5 3.3 2.5 2 1.6

R
M

S
E

 R
P

E
φ
 [
ra

d
·
1
0

-2
]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
RMSE RPE

φ
 for different frame rates

SURF

FAST-BRIEF

ORB

Fig. 6. RMSE RPE comparison

The results indicate that the RPE is directly influenced by
the frame rate except for the RPEφ and SURF feature extractor.
By focused examination of the dataset we revealed that for the
3.3 and 2.5 fps the dropped frames coincide with the sudden
abrupt change in the camera pose, and therefore, the SURF
parametrization exhibits an overfitting of the trajectory data
(see also Fig. 5a). Nevertheless, this comparison gives us a
direct relation between the RPE, RGB-D SLAM parametriza-
tion, and the frame rate.

On the given evaluation hardware, we are capable of an on-
line processing of the trajectories with the frame rate lower
than 3.3 Hz for the SURF extractor and lower than 5 Hz for
the FAST–BRIEF and ORB extractors. Note, the evaluation
hardware is only dual-core and does not provide a GPU
acceleration capabilities, thus the presented results support the
algorithm is deployable for on-line estimation of the robot pose
in an autonomous navigation mission in rough terrains.

VI. CONCLUSION

In this paper, we address the problem of a precise lo-
calization of a hexapod walking robot operating in a rough
terrain. The proposed combination of the existing RGB-D
SLAM approach with the adaptive motion gait and considered
set-up of the operational environment allowed us to study
the relations between the RGB-D SLAM parametrization,
localization error, and terrain types in a closed-loop as well as
open-loop scenarios. The focused examination of the influence
of individual terrain types on the localization accuracy did
not bring unambiguous results which is likely related to the
used adaptive motion gait originally designed with stress on
a smooth motion in various terrains. The results show that a
low relative pose error does not imply a low absolute trajectory

error and vice versa, but they indicate a high absolute error
is usually implied by a limited number of outliers in the
pose graph. In such a situation, it might be beneficial to fuse
the localization estimate with the inertial measurements or
odometry data as proposed in [5] or [4], or to model the
spatial uncertainty of the point features as in the most recent
work [19] which is a subject of our future work. Besides, the
loop closing can significantly improve the overall performance
of the localization, and therefore, we also aim to consider
active sensing in our future work.
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