
Evolution of multiple gaits for modular robots
Vojtěch Vonásek

Dept. of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague

Technicka 2, 166 27, Prague 6, Czech Republic

Jan Faigl
Dept. of Computer Science, Faculty of Electrical Engineering,

Czech Technical University in Prague
Technicka 2, 166 27, Prague 6, Czech Republic

Abstract—Modular robots are composed of many elementary
mechatronic modules that can be connected to form a robot
body of various shapes. This feature allows such a robot to
adapt for a given task and particular environment. A motion
of the modular robot is based on control of individual angles
between the modules, and the robot locomotion can be realized
using Central Pattern Generators (CPG). A robot motion in
the environment with obstacles can be achieved using several
locomotion controllers that are switched by a strategy based
on motion planning techniques. Preparation of CPG-based gaits
leads to a high-dimensional optimization that requires to design
proper cost functions. Existing approaches optimize the gaits
separately according to human-designed cost functions. In this
paper, we investigate how to automatically derive a set of
gaits suitable for modular robots without specifying low-level
details about the gaits. We propose to optimize multiple gaits
simultaneously using a single cost function. This cost function is
based on the ability of motion planning to solve the task using the
gaits being optimized. The proposed system is verified on several
modular robots with unusual shapes including robots with failed
modules.

I. INTRODUCTION & MOTIVATION

Modular robots are composed of multiple building blocks
which are connected using a docking mechanism [18], [30].
Contrary to other multi-DOF systems like humanoids, legged
or snake-like robots, modular robots can be reconfigured to
various shapes (examples are depicted in Fig. 1). Moreover,
modular robots can recover from failures by ejecting or
replacing broken modules.

Central Pattern Generators (CPG) [8] are oscillators pro-
viding rhythmic control signals for the individual actuators.
To realize a gait, CPG parameters are optimized, e.g., using
Genetic algorithms (GA). The design of a gait requires to
decide what motion the gait has to perform, and to evaluate
the motion using a suitable cost function. The gaits with
corresponding cost functions are usually designed by human
operators, that create them based on knowledge of a task to be

Fig. 1. Examples of modular robots made of CoSMO [14] modules.

solved and motion abilities of the robot. The specialized design
of gaits is suitable in scenarios where human operators can
anticipate behaviors of the robots. This is not always possible
in modular robotics, especially for robots of unusual shapes
or for robots with failed modules.

CPGs are used mainly to generate basic rhythmic motions
like ‘crawl-forward’ or ‘swim’, that can be optimized e.g.,
based on speed of motion [10]. Movements in environment
with obstacles require various motion skills in order to avoid
the obstacles. This can be achieved either using a single all-
in-one controller [20], [5] or using multiple gaits that are
switched by a high-level strategy [23], [27], [3]. The former
approach is difficult for optimization, as the number of param-
eters is increased. Moreover, the evolved behavior (controller)
needs to be evaluated repeatedly in the environment under
various conditions, which is time consuming.

In the latter approach, a robot is equipped with several,
relatively simple, gaits. The gaits are combined using motion
planning in order to achieve a desired behavior. The motion
plans are computed online considering the actual situation and
replanned if the robot deviates from the planned trajectory.
The optimization of the simple gaits is faster in comparison
to optimization of single controllers realizing the whole task.

The crucial part of this approach still remains the design of
proper cost functions for the individual gaits. In this paper,
we investigate how to automatically derive a set of gaits
for modular robots. Instead of a separate optimization of the
gaits according to a set of predefined cost functions [29], we
propose to optimize all gaits simultaneously. The point is to
avoid specific knowledge of the gaits and cost functions and
rather evolve all together. The only cost function, that is used
to optimize the gaits, is based on the performance of motion
planning with the gaits being evolved.

II. RELATED WORK

Two basic concepts are used to achieve motion of modular
robots: self-reconfiguration and joint-control locomotion. In
the concept of self-reconfiguration, the motion is achieved by
repeated disconnection of the modules, moving them to a new
position and reconnecting them back to the robot [6], [22],
[16]. The joint-controlled locomotion, which is considered
in this paper, is achieved by controlling angles of joints
connecting the modules. This locomotion does not require
reconfiguration and it can therefore be applied even for robots
without self-reconfiguration capabilities.



Widely used approach to joint-control locomotion is based
on Central Pattern Generators (CPG) [8]. CPGs are inspired
by evidence from nature, that motion is generated by coupled
neuro-oscillators providing rhythmic signals. CPGs have been
used to generate locomotion of snake-like robots, to control
swimming robots, to generate biped locomotion and also to
control modular robots [10], [11], [2].

Behavior of CPGs is given by parameters like intrinsic
frequencies or weights of coupling between the joints. Prepa-
ration of a gait leads to a high-dimensional optimization
of these parameters, which is often solved using Genetic
Algorithms [10], [11], [1]. The design of a suitable cost
function is a crucial part of the GA-based optimization. The
cost functions for a rhythmic locomotion can be based on
speed of motion [10], [29], traveled distance [17] or consumed
energy [24].

The design of cost functions for complex behaviors is
however difficult [19], [4]. In the case of optimization using
GA or other evolutionary methods, the cost function plays an
important role and it is crucial for guiding of the evolutionary
process. A suitable cost function has to provide enough
selective pressure. This is not easy to achieve when optimizing
behavior/controllers of robots, especially in the early stage
of the evolutionary process. Individual solutions in the first
iterations of GA usually do not posses significant ability to
solve the problem and with an inappropriate cost function, the
evolutionary process can turn to a blind random search [19].

This is the case of aggregate cost functions, that measure
only a success ratio of performing a given task [15], [7].
As the initial population of controllers usually does not have
any detectable competence to solve the task, the aggregate
cost function cannot differentiate between the solutions. The
behaviors are therefore evolved randomly and the possibility
to complete the task by chance is small.

A possible solution is to employ several incremental cost
functions [19]. First, a simple skill is optimized (e.g., a basic
locomotion). Once the skill is achieved, a cost function for
a more complex behavior (e.g., collision avoidance) is used.
This process repeats until the desired behavior is achieved.
The disadvantage of this approach is that the human operator
still has to design the individual cost functions for each level
of skills.

During the classic evolutionary-based optimization, various
solutions are explored and evaluated using a given cost func-
tion. Many of these solutions are discarded due to their low
performance in the desired task. However, some of these low-
performing solutions can be useful for other tasks [3]. In [3],
the potential solutions are ranked according to their quality and
novelty in order to create a set of heterogeneous controllers for
a walking robot. Each controller provides a gait in different
direction. This approach, that is realized by a single run of
optimization, results in a repertoire of various gaits that allows
the robot to visit many places in the environment.

Complex behaviors can also be achieved using motion
planning. Motion planning for many-DOF modular robots
leads to a search in a high-dimensional configuration space.

Sampling-based methods like Rapidly Exploring Random Tree
(RRT) [13] can be used to explore the configuration space. The
RRT method requires to generate suitable low-level control to
move the robot in order to explore its configuration space.
Recently, we have proposed a modification of RRT that em-
ploys CPG-based gaits for the exploration of the configuration
space [29]. The gaits are considered as atomic actions on
the motion planning level, which significantly speeds up the
planning process. The resulting plans are sequences of motion
primitives (gaits), and can be easily executed on robots. The
advantage of this approach is, that the gaits can be realized by
relatively simple locomotion generators. The global situation
in the environment, like the presence of obstacles, is consid-
ered on the motion planning level that ensures that the robot
avoid obstacles.

The crucial part of the motion planning with CPG-based
gaits is the design of gaits together with the design of corre-
sponding cost functions. In our previous works [29], [28], the
cost functions were predefined for each gait by a specialist. In
this paper, we investigate how to design the gaits automatically
without providing the cost functions for the individual gaits.
To achieve this goal, we propose to measure the quality
of motion plans created from the gaits being evolved. This
evaluation is similar to the aggregate cost functions [15], [7],
[19]. To overcome the issues of the aggregate cost functions,
we evaluate the quality of the created plans (their size, distance
to goal) rather than only a success ratio. Motion planning
can create feasible plans even with slow/inefficient gaits [26].
Consequently, these inefficient gaits can be evaluated by a
non-zero cost function, which is important to to differentiate
between the candidate solutions in the first iterations of GA-
based optimization.

III. SINGLE GAIT OPTIMIZATION

In this paper, we assume a chain-type modular robot [18]
with m modules, where each module is equipped with a
controllable joint. The number of actuators is therefore equal
to the number of modules m. The joint-control locomotion
requires to provide control signal ai(t), i = 1, . . . ,m for
each joint i. The signals ai(t) are generated using a CPG.
The behavior of CPGs is determined by parameters that are
collected in a parameter vector xp, where p denotes the gait.

For example, simple rhythmic motions can be realized
with sine signals ai(t) = Ai sin(ωit + ϕi) + Bi, where
amplitude Ai, offset Bi, frequency ωi and phase shift ϕi are
the parameters. Such a gait p is then described by parameters
xp = (Ai, Bi, ωi, ϕi), i = 1, . . . ,m of the length 4m. The
duration of the gait p is τp.

For the optimization of gaits, we employ Particle Swarm
Optimization (PSO) [12]. PSO is a population-based opti-
mization method, where each particle represents a candidate
solution x. The quality of the solution is evaluated using a
given cost function. Each particle has its position xi (rep-
resenting the solution) and velocity vi. Let x̄i denote the
best solution of a particle i in its history and let x̂ denote
the best solution among all particles. At the beginning, the



particles xi are randomly placed into the search space and
their velocities vi(0) are set randomly. In each iteration, new
velocity vi(k + 1) and position xi(i + 1) of the particle i is
computed (in each dimension j) as:

vi,j(k+1) = wvi,j(k)+ϕ1r1,j(x̄i,j−xi,j)+ϕ2r2,j(x̂j−xi,j)

xi,j(k+1) = xi,j(k) + vi,j(k + 1), (1)

where w,ϕ1, ϕ2 influence speed of the exploration of the
search space and r1,j , r2,j are random numbers from U(0, 1).
The optimization terminates after a predefined number of
iterations.

IV. EVOLUTION OF MULTIPLE GAITS

Single gait is usually not suitable for complex environments,
as robots need to move in various directions and avoid
obstacles. This requires to equip the robots with multiple gaits
that are switched by a motion planner. Instead of a separate
optimization of the gaits [29], [28], we propose to optimize
the gaits all at one time.

To optimize multiple gaits simultaneously, their parame-
ters are collected into a single optimization vector x′ =
(x1, . . . ,xk), where k is the number of gaits to be optimized
and xi, i = 1, . . . , k are the parameters of i-th CPG. This
connection of parameter vectors xi into a single vector is
suitable for PSO, because the particle’s best position x̄i and
the global best position x̂ are combined with xi separately in
each dimension. It is therefore possible to simply concatenate
the vectors xi.

The task of the multiple-gait optimization is to find a vector
x′ which contains gaits that can be successfully combined by
motion planning in order to solve the desired task. Here, the
ability of the gaits contained in x′ to solve the task is crucial.
Therefore, the cost function for the vector x′ is based on the
performance of motion planning.

A. Motion planning with CPG-based gaits

The task of motion planning is to find a trajectory from
a given start configuration qinit ∈ Cfree to a desired goal
configuration qgoal ∈ Cfree. A configuration of a modular
robot with m joints q = (x, y, z, α, β, γ, ai, . . . , am) describes
3D position and rotation of a pivot module, ai is an angle of
the joint i. All possible configurations form the configuration
space C and the free configurations, where the robot does not
touch any obstacle, form the space Cfree ⊆ C. The number
of modules determines the dimension of C, which is usually
more than 10.

Motion planning in high-dimensional configuration spaces
can be realized using sampling-based planners like Rapidly
Exploring Random Tree (RRT) [13]. The main idea of RRT is
to build a tree T of free configurations rooted at qinit. The tree
is incrementally extended in each iteration until it approaches
qgoal close enough.

The RRT-MP planner (RRT with Motion Primitives) is
a modification of RRT that allows us to control the robot
using CPG-based gaits [29]. In each iteration, a configuration
qrand is randomly generated in the configuration space and

Forward

RightLeft

init
init

q

near
q
rand

q

R

R

L

L

F

R

L

init

q
near

F
RL

a b
Fig. 2. Example of a configuration tree built by the RRT-MP planner for a
robot equipped with three gaits. In the expansion step, these gaits are used
to obtain new configurations reachable from qnear (dotted nodes) (a). These
configurations are pruned if they approach other nodes in the tree closer than
their parent node qnear (dashed ellipses). Only the configuration obtained
with the ‘F’ gait will be added to the tree (b).

Algorithm 1: RRT-MP with flood-fill behavior
Input: initial configuration qinit, set of k motion primitives

x1, . . . ,xk

Global params: number of planning iterations Kmax

Output: configuration tree T
T .initialize(); // create empty configuration tree1
T .add(qinit);2
for iteration = 1 : Kmax do3

qrand = generate random configuration in C;4
qnear = nearest configuration to qrand in tree T ;5
foreach xp ∈ (x1, . . . ,xk) do6

qnew = apply CPG(xp) to robot starting from qnear;7
q′ = nearest neighbor to qnew in tree T ;8
if %(qnew, q

′) > %(qnew, qnear) then // node pruning9
T .add(qnew);10
T .addEdge(qnear, qnew);11

return T ; // constructed configuration tree12

its nearest node qnear in the tree is found. The node qnear
is then expanded using all gaits, which results in a set R of
new configurations reachable from qnear. The expansion is
realized using physical simulation, where the robot is placed
at position qnear and controlled for a time τp by a gait p.
During the motion, collisions with obstacles are checked. From
the obtained set R of configurations reachable from qnear, the
nearest one to qrand is selected and added to the tree, but only
if it does not lead to any collision during the movement. The
algorithm terminates if the configuration tree approaches the
goal configuration to a predefined distance or after a predefined
number of iterations Kmax.

To employ RRT-MP for the evaluation of the cost function
for multiple gaits, we propose a modification of RRT–MP to
create denser configuration trees. The algorithm is listed in
Alg. 1. Instead of adding only a single node qnear in each
iteration, the tree is extended by multiple configurations from
the set R. To prevent an unnecessary filling of the tree using
many nodes, the newly obtained configurations are pruned. A
configuration qnew ∈ R is added to the tree only if its closest
distance to other node of the tree is higher than the distance
to its parent qnear (line 9 in Alg. 1), which is depicted in
Fig. 2b. This pruning technique ensures construction of dense
trees [9].



B. Cost function for multiple gaits

The cost function of the multiple gaits x′ is computed based
on the properties of a motion plan created from x′. The main
loop of the optimization process is listed in Alg. 2. We propose
two basic methods to evaluate the cost function for the multiple
gaits.

Coverage-based: In the scenario, where robots have to
move between various places, the gaits should provide move-
ments into various directions. The cost function for these gaits
can be computed as the area reached by the motion plan, i.e.,
the area covered by the configuration tree. The environment
is discretized to 2D or 3D cells (depending on the character
of the environment), and the nodes of the tree are assigned to
cells according to their 2D/3D positions. The cost function is
measured as the percentage of covered cells and it has to be
maximized. The gaits, that do not move robots at all, would
result in zero cost function. However, as soon as the gaits (or
one of them), move the robot, this cost function increases.

Distance-based: A different cost function is suitable in
scenarios, where a robot is supposed to move only between
particular places. In this case, the gaits should realize only
motions required to visit the particular goal configuration.
The distance-based cost function is computed as the distance
between the motion plan constructed from the gaits being
evolved and the desired goal configuration. In this case, the
cost function has to be minimized. Measuring the cost function
as the length of resulting path is also possible, but it is not
suitable in the early stage of the optimization, where gaits are
not sufficiently evolved. In such a case, motion planner cannot
find path to the goal configuration and the cost function would
have to be replaced by a different metric.

In both cases, tested gaits are used by RRT-MP to create
motion plans. The maximum size of the motion plans (in the
term of tree nodes) is determined by the number of planning
iterations Kmax. By setting Kmax to a high number, RRT-MP
can construct suitable plans even with slow gaits, that move the
robots negligibly. The motion planner can therefore “amplify”

Algorithm 2: Optimization of multiple gaits
Input: k number of gaits to be evolved, p number of PSO

particles, g number of PSO generations, qinit ∈ Cfree

initial state of the robot
Output: Evolved gaits x1, . . . ,xk

x′
1, . . . ,x

′
p = create population of p particles,where1

each particle is x′
i = (x1, . . . ,xk) ;2

initialize particles x′
i randomly;3

foreach generation = 1:g do4
foreach particle i = 1:p do5

T = motionPlanning(qinit, x′1
i , . . . ,x

′k
i ); //Alg. 16

// evaluate cost function7
fi = coverage-based(T ) or distance-based(T );8

update best local position x̄i, i = 1, . . . , p;9
update global best position x̂;10
update position of particles according Eq. 1;11

return x̂; // best solution is stored in x̂12

the effect of the gaits. This is crucial in the first iterations of
an evolutionary-based optimization, where most of the tested
solutions tend to be slow a clumsy.

V. EXPERIMENTAL VERIFICATION

The proposed optimization of multiple gaits has been ver-
ified in simulation with CoSMO modular robots [14] using
Sim simulator [25]. Each module is composed of two cubes
connected by a 1-DOF joint. The size of each module is
1 mu (map unit). The experiments were performed with two
typical shapes of modular robots (denoted as “Lizard” and
“Quadropod”) and two artificial shapes (“L-shape”, “H-shape”
and “T-shape”); the robots are depicted in Fig. 3.

The locomotion is realized using Hopf-CPG [21]:

ẋ = α(µ− r2)x− ωy
ẏ = β(µ− r2)y + ωx (2)

ω =
ω1

e−by + 1
+

ω2

eby + 1
,

where r =
√
x2 + y2 and ω is the frequency of oscillations

in rad.s−1. The oscillator is controlled by parameters µ
(amplitude of oscillations), ω1 and ω2 (frequencies of swing
and stance phases, respectively) and constants α, β, b > 0 that
control the speed of the convergence to the limit cycle. The
Hopf oscillator is used for each joint i. A gait p is there-
fore parametrized by vector xp = (µi, αi, βi, ω1,i, ω2,i, bi),
i = 1, . . . ,m. The range of the variables suitable for the
CoSMO robots are: 0.3 ≤ µ ≤ 1.3, 0 ≤ α, β ≤ 50,
0 ≤ ω1, ω2 ≤ 4, 0 ≤ b ≤ 0.5. The output from the Hopf
oscillator is the variable x, which is the desired joint angle. The
joint is controlled to this desired position by a PD controller.
The duration of each gait is τp = 30 s. The gaits have
been optimized using PSO (Eq. 1) with 20 particles in 150
generations with the parameters w = 0.1, ϕ1 = ϕ2 = 2.

A. Optimization with coverage-based cost function

In the first experiment, the task is to optimize k = 3 gaits
using the coverage-based cost function. The motion plans are
constructed using RRT–MP (Alg. 1) in Kmax = 150 iterations.
The gaits are evolved in an environment without obstacles

Lizard, m = 14 Quadropod, m = 9 L-shape, m = 9

H-shape, m = 14 T-shape, m = 9

Fig. 3. Robot morphologies used in experiments. The arrows 1 and 2 denote
the modules that are fixed in the experiments with failed modules. In the
experiments C1 and E1, only the module denoted as 1 is fixed, while in the
experiments C2 and E2, both modules are fixed.



(denoted as Empty) and with a single obstacle in the middle
(denoted as Column) (Fig. 9). The size of both environments
is 48 × 27 mu. For each environment and each robot, the
optimization is run 20 times. The gaits are evolved for fully
functional as well as partially damaged robots. One of typical
failures of modules is the inability to control the hinge. In
the experiment with damaged robots, one or two modules are
stuck in a zero position and they cannot move. The damaged
modules are highlighted in Fig. 3.

The results (average over 20 trials) are shown in Tab. I,
where the first column denotes the environment (E–Empty,
C–Column) and the subscript denotes the number of damaged
modules (e.g., C1 denotes robots with one failed module in the
Column environment). The numbers in the first row of each
environment show the achieved percentage coverage (mean
and std. deviation).

All robots achieve higher coverage in the Empty environ-
ment than in the Column environment. The obstacle in the
Column environment blocks the growth of the configuration
tree, therefore the tree cannot cover the regions behind the
obstacle which results in a lower coverage. Lower coverage is
also achieved with broken robots (rows E1, E2, C1 and C2 in
Tab. I). The robots with broken modules move slower as the
failed modules decrease the number of controllable degrees of
freedom. Due to slower motions, the gaits can drive the robot
to smaller distance during the gait time τ and the constructed
configuration trees cover less area.

The numbers in parentheses show the initial coverage
achieved in the first iteration of PSO. The initial coverage
is non-zero which indicates that the PSO optimization can
be driven by the cost function even in the early stage of the
optimization.

The coverage is influenced by the number of planning iter-
ations that are used to construct the configuration tree. Higher
number of planning iterations Kmax brings advantage in the
beginning of the evolution. In the first generations, the gaits are
rather clumsy and they do not move the robot significantly, but
even with such gaits, the planner can construct motion plans
with nonzero coverage. However, too high number of planning
iterations may be disadvantageous later, as the planner is
always able to build a configuration tree that covers the area. A
high number of planning iterations will result in slower gaits.

The resulting gaits are described by a parameter vector x′,
which can be translated to control signals using the employed
CPG. In our case, the control signals are determined by the
Hopf oscillator (Eq. 2). To visualize the gaits for many-DOF
modular robots, we rather show how each gait moves the
robot’s pivot module, than show all control signals. Examples
of the resulting gaits for Lizard robot are depicted in Fig. 4
and gaits for T-shape robot are depicted in Fig. 5. Two out
of three evolved gaits are usually longer than the last one.
The longer gaits are responsible for fast movements of the
robot. In the motion planning, these fast gaits ensure that
the configuration tree can rapidly explore the configuration
space and consequently, cover the environment. An example
of motion plan for Lizard is depicted in Fig. 6.

TABLE I
VALUES OF THE COVERAGE-BASED COST FUNCTION: MEAN/STD.

DEVIATION. THE NUMBERS IN PARENTHESES SHOW THE COVERAGE IN
THE INITIAL GENERATION OF PSO.

Map Lizard T-shape L-shape H-shape Quadropod

E 32.2 / 1.3 42.5 / 6.0 52.1 / 5.2 27.6 / 3.0 28.8 / 2.9
(5.8 / 0.5 ) (7.0 / 2.0 ) (12.4 / 3.0 ) (4.8 / 0.6 ) (6.0 / 1.0 )

E1
24.6 / 4.0 40.0 / 3.5 49.6 / 5.0 20.0 / 2.3 22.5 / 1.8

(4.6 / 1.0 ) (6.5 / 1.3 ) (10.5 / 2.2 ) (3.7 / 0.6 ) (5.1 / 0.9 )

E2
21.7 / 2.8 34.1 / 3.5 48.3 / 4.2 20.3 / 3.2 23.4 / 3.2

(4.0 / 0.5 ) (7.1 / 1.4 ) (9.6 / 1.7 ) (3.9 / 0.6 ) (5.3 / 1.0 )

C 25.7 / 3.1 37.2 / 4.2 47.6 / 4.3 16.4 / 0.0 26.0 / 2.2
(4.8 / 0.9 ) (6.1 / 1.3 ) (9.6 / 2.1 ) (4.3 / 0.0 ) (5.4 / 0.9 )

C1
20.4 / 3.9 34.9 / 3.4 45.0 / 4.8 15.3 / 2.1 20.3 / 1.9

(3.9 / 0.7 ) (5.9 / 1.1 ) (8.8 / 1.8 ) (3.1 / 0.6 ) (4.6 / 0.6 )

C2
18.3 / 1.6 31.6 / 4.5 44.6 / 4.8 16.5 / 2.8 21.0 / 2.1

(3.5 / 0.7 ) (5.9 / 1.0 ) (9.1 / 1.4 ) (3.0 / 0.5 ) (4.9 / 0.8 )

E

E1

C

C1

Fig. 4. Traces of the coverage-based gaits (top view) for the Lizard robot
in the maps Empty and Column. The arrow denotes the initial position, the
end points of the gaits are labeled 1, 2 and 3.

Each gait also realizes rotation of the robot, which is
depicted in Fig. 7 for the Lizard robot. In this figure, the
boxplots show the traveled distance and rotation of the gaits.
In both graphs, the gaits are sorted in a descending order
according to the traveled distance. In the Empty environment,
the first (longest) gait of Lizard does not significantly rotate
the robot (rotation is less than 3 degrees), while the remaining
gaits cause higher rotation. In other cases, especially with
broken modules, all gaits rotate the robot, which is caused
by the failed modules.

B. Optimization with distance-based cost function

The distance-based cost function evaluates the ability of the
planner to reach a given goal configuration. In this experiment,
k = 3 gaits have to be evolved in order to reach the goal
configuration qgoal placed 15 mu away from the initial position
of the robot. The optimization is run 20 times for each robot
and each environment. The cost function is evaluated as the
distance between the constructed configuration tree and the
goal configuration qgoal. The plans are created by RRT–MP
with Kmax = 100 iterations.



E

E1

C

C1

Fig. 5. Traces of gaits optimized using the coverage-based cost function
(top view) for the T-shape robot in the maps Empty and Column. The arrow
denotes the initial position, the end points of the gaits are labeled 1, 2 and 3.

Fig. 6. Example of a motion plan for the Lizard robot in the Column
environment. The plan is created from three coverage-based gaits.

The results are summarized in Tab. II, where the first line in
each section is the distance to the goal configuration in the end
of evolution (mean/std. deviation), and the second line shows
the initial value of the cost function, i.e., this distance achieved
in the first generation of PSO. During the optimization, the
gaits allow the robot to approach the goal configuration to the
distance less than 2 mu. The evolved gaits therefore enable the
robot to traverse the distance 15 mu to the goal configuration.

Examples of resulting gaits are depicted in Fig. 8. In
comparison to the gaits achieved using the coverage-based
cost function (Fig. 4 and Fig. 5), the gaits optimized by the
distance-based cost function are more straight and they point
at the direction of the goal configuration. In the case of Lizard
robot, one of the gaits is usually straight and long, while other
two gaits are significantly shorter, which indicates that they
move the robot negligibly. The long gait is however sufficient
to reach to goal configuration. Similar results are achieved
with the T-shape robot.

C. Utilization of gaits in other scenarios

The advantage of the motion planning with the gaits is that
the gaits can be reused in other scenarios, which is verified
in this experiment. The task is to find a trajectory between
a center of the environment and a goal configuration placed
in the distance 30 mu. The trajectory is planned using RRT–
MP in Kmax = 100 iterations. We aim to investigate the
difference between the gaits optimized using the coverage-
based and distance-based cost functions. As is described in the
previous section, the distance-based gaits are oriented towards
the goal used in the optimization. Therefore, three scenarios

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

G
a
it
 d

is
ta

n
c
e
 [
m

u
]

Gait index

E
E1
E2
C

C1
C2

 0

 5

 10

 15

 20

 25

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

G
a
it
 r

o
ta

ti
o
n
 [
d
e
g
re

e
s
]

Gait index

E
E1
E2
C

C1
C2

Fig. 7. The boxplots of the traveled distance (left) and rotation (right) of the
evolved primitives for the Lizard robot. The primitives are sorted according
their traveled distance. The boxplots are created from 20 measurements.

TABLE II
VALUES OF DISTANCE-BASED COST FUNCTIONS.

Quadropod T-shape H-shape Lizard L-shape

E 1.31 / 0.32 1.14 / 0.38 1.45 / 0.29 1.33 / 0.34 0.97 / 0.39
(5.91/1.63) (7.81/2.35) (8.15/2.36) (6.46/1.46) (3.51/1.28)

C 0.93 / 0.37 0.52 / 0.30 0.85 / 0.42 1.28 / 0.25 0.59 / 0.31
(2.86/0.65) (2.29/0.67) (4.17/0.90) (3.34/0.58) (2.46/0.55)

are considered: 1) planning in the Empty environment in the
same direction as was used for the optimization (Fig. 9a), 2)
planning in the Column environment in the same direction as
was used for the optimization, and 3) planning in the Column
environment in the opposite direction, than was used for the
optimization (Fig. 9b).

For each robot, 20 different triplets of distance-based gaits
(oriented according to Fig. 9a) and 20 different triplets of
coverage-based gaits are prepared. For each triplet, 20 motion
plans are constructed, which results in 400 generated motion
plans for each robot and scenario.

The average distance of motion plans to the goal config-
uration in these three scenarios are shown in Tab. III. All
robots perform similarly. In the Empty environment (scenario
1), the goal is approached closer using gaits evolved with the
distance-based cost function regardless the type of robot. This
is expected behavior, as the distance-based gaits are oriented

L
iz

ar
d

E

C

T-
sh

ap
e

E

C

Fig. 8. Traces of gaits evolved using distance-based cost function. The arrow
denotes the initial position, the end points of the gaits are labeled 1, 2 and 3.



(a) Empty (b) Column
Fig. 9. Direction of gaits achieved using the distance-based cost function (a).
The arrows also show the direction of goal configuration in three scenarios
(Section V-C).

in the same direction.
In the second scenario, better results are achieved using

the coverage-based gaits. The coverage-based gaits provide
motion to various directions, which is useful not only to
achieved high coverage, but it is advantageous in the case
of environments with obstacles. Contrary, the distance-based
gaits rather provide one ‘go-straight-ahead’ primitive, which
is not useful to avoid obstacles. The coverage-based primitives
provide better performance also in the third scenario. In this
case, the distance-based gaits are not useful, as they provide
motion in the opposite direction and motion planning cannot
combine them to find a plan.

Tab. IV shows the coverage of the constructed configuration
trees. In all three scenarios and for all robots, a higher coverage
is achieved with the coverage-based gaits. The influence of
the coverage-based and distance-based cost functions to the
motion plans is visualized in Fig. 10. The picture show the
area that can be reached by a planner with Kmax = 100
iterations. The highest coverage is achieved with healthy
robots with coverage-based gaits optimized in Empty and
Column environments. The lowest coverage is achieved with
the distance-based gaits.

TABLE III
THE DISTANCE TO THE GOAL CONFIGURATION (IN MAP UNITS) FOR GAITS
EVOLVED USING DISTANCE-BASED COST FUNCTION (COLUMNS Dist.) AND

USING THE COVERAGE-BASED COST FUNCTION (COLUMNS Cov.). THE
TABLE SHOWS AVERAGE/STD. DEVIATION.

Scenario 1 2 3
Cost f. Dist. Cov. Dist. Cov. Dist. Cov.

L-shape 4.3/3.4 5.6/4.6 6.4/2.9 2.3/1.2 22.1/3.8 17.6/6.6
Quadro. 5.1/4.4 6.6/4.4 6.7/2.8 4.4/2.6 26.5/2.0 22.7/4.8
T-shape 7.7/4.4 10.0/4.7 6.4/2.3 3.2/1.5 23.2/4.7 24.6/5.4
H-shape 6.2/5.3 10.4/4.5 10.1/1.3 4.6/3.2 28.1/1.4 26.1/3.6
Lizard 4.1/4.2 8.3/3.8 8.7/2.5 5.8/2.9 27.3/1.5 24.2/3.4

D. Environment with stair

In the last experiment, the task is to find k = 2 gaits for
traversing 5 stairs. Each stair is 0.6 mu high in order to allow
the robot to enter them. The gaits are optimized using the
distance-based cost function based on motion plans generated
in Kmax = 150 iterations. The goal is placed behind the stairs,
so the cost function is minimized if the robot moves over the
stairs. In this case, the gaits are found only for the Lizard and
Quadropod robots. An example of a resulting trajectory over
the stairs for the Lizard robot is depicted in Fig. 11a. The

TABLE IV
THE COVERAGE (IN PERCENTAGE) OF THE MOTION PLANS WITH GAITS

EVOLVED USING THE DISTANCE-BASED COST FUNCTION (COLUMNS Dist.)
AND USING THE COVERAGE-BASED COST FUNCTION (COLUMNS Cov.).

THE TABLE SHOWS AVERAGE/STD. DEVIATION.

Scenario 1 2 3
Cost f. Dist. Cov. Dist. Cov. Dist. Cov.

L-shape 7.7/3.0 31.6/12.2 6.9/2.7 21.1/7.4 6.4/2.9 18.3/5.4
Quadro. 5.4/1.7 16.1/6.3 4.9/1.5 12.8/5.5 3.4/1.0 10.1/3.8
T-shape 8.2/4.3 17.9/7.7 6.6/2.5 12.8/4.3 6.6/3.0 11.5/3.3
H-shape 4.5/1.7 12.8/4.2 3.4/1.2 8.5/3.4 2.6/1.0 7.7/2.5
Lizard 5.3/1.8 16.0/6.2 4.5/1.5 10.6/4.5 2.8/0.9 10.2/3.3

C
ov

er
ag

e-
ba

se
d

L
iz

ar
d

E E2 C C2

C
ov

er
ag

e-
ba

se
d

T-
sh

ap
e

E E2 C C2

D
is

ta
nc

e-
ba

se
d

E, Lizard C, Lizard E, T-shape C, T-shape
Fig. 10. Coverage achieved with gaits evolved according to the coverage
cost function.

gaits for other robots are not optimized successfully because
of too low number of planning iterations. During the allowed
Kmax = 150 iterations, other robots are not able to fully
overcome the highest stair, which is shown in Fig. 11b. Due
to this insufficient number of planning iterations, the gaits
provide only motion on the plane and they are able to enter
the first stair.

E. Discussion

The experiments have shown that the proposed system can
derive multiple gaits using the coverage-based or distance-
based cost functions. It is worth to mention that the gaits
are evolved from scratch, i.e., the parameters xi of individual

(a) Lizard (b) L-shape

Fig. 11. Example of motion plans in the environments with stairs.



gaits i are initialized randomly. Although no cost function is
provided for the individual gaits, the resulting gaits provide
reasonable movements. The experiments have been performed
also with robots of unusual shapes (L- and T-shape robots).
These robots cannot perform certain movements typical for
robots with four legs, like the ‘move-forward’, as they always
tend to rotate due to their shape. Suitable gaits have been
evolved even for these robots, which is indicated by the
achieved values of coverage-based as well as distance-based
cost functions.

The comparison between the coverage-based and distance-
based cost functions shows that the gaits resulted from
coverage-based cost function are more universal and they pro-
vide motions into various directions. This allows the robots to
move in large areas of the environment. In contrary, distance-
based gaits are more straight and point in the direction of the
given goal configuration. We refer to http://mrs.felk.cvut.cz/
ssci2016 for more details and videos from the experiments.

VI. CONCLUSION

We presented a system for evolution of multiple gaits for
modular robot. The proposed system employs Central Pattern
Generators to realize the locomotion. Contrary to existing
approaches, where all gaits have to be designed by a human
expert, the proposed approach can derive all the gaits at once.
In our approach, the quality of gaits is evaluated using a single
cost function, that is based on the ability of motion planning
to combine them in order to solve a desired task. Therefore, it
is not required to anticipate motion abilities of the robots and
their usefulness for a given task.

The system was verified on a set of modular robots in-
cluding robots with partial damage. In both cases, suitable
gaits were evolved only based on the qualities of the motion
plans. The resulting gaits can be later reused in other scenarios,
which is enabled by the motion planning.

VII. ACKNOWLEDGMENT

The presented work was supported by the Czech Science
Foundation (GAČR) under research projects No. 15-09600Y
and No. 16-24206S. Access to computing and storage facilities
of the National Grid Infrastructure MetaCentrum provided
under the programme (CESNET LM2015042) is greatly ap-
preciated.

REFERENCES

[1] S. L. Cardenas-Maciel, O. Castillo, and L. T. Aguilar. Generation
of walking periodic motions for a biped robot via genetic algorithms.
Applied Soft Computing, 11(8):5306–5314, December 2011.

[2] J. Conradt and P. Varshavskaya. Distributed central pattern generator
control for a serpentine robot. In International Conference on Artificial
Neural Networks, 2003.

[3] A. Cully and J.-B. Mouret. Evolving a behavioral repertoire for a
walking robot. Evolutionary Computation, 24(1):59–88, March 2016.

[4] S. Doncieux and J.-B. Mouret. Beyond black-box optimization: a
review of selective pressures for evolutionary robotics. Evolutionary
Intelligence, 7(2):71–93, 2014.

[5] D. Filliat, J. Kodjabachian, and J. a. Meyer. Incremental evolution of
neural controllers for navigation in a 6-legged robot. In Proc. of the
Fourth International Symposium on Artificial Life and Robotics. Oita,
pages 753–760. Univ. Press, 1999.

[6] R. Fitch and Z. Butler. Million module march: Scalable locomotion
for large self-reconfiguring robots. International Journal of Robotic
Research, 27(3–4):331–343, 2008.

[7] G. S Hornby, S. Takamura, O. Hanagata, M. Fujita, and J. Pollack.
Evolution of controllers from a high-level simulator to a high dof
robot. In International Conference on Evolvable Systems, pages 80–
89. Springer, 2000.

[8] A. J. Ijspeert. Central pattern generators for locomotion control in
animals and robots: A review. Neural Networks, 21(4):642–653, 2008.

[9] M. Kalisiak and M. van de Panne. RRT-blossom: RRT with a local
flood-fill behavior. In IEEE ICRA, pages 1237 –1242, 2006.

[10] A. Kamimura, H. Kurokawa, E. Toshida, K. Tomita, S. Murata, and
S. Kokaji. Automatic locomotion pattern generation for modular robots.
In IEEE ICRA, 2003.

[11] A. Kamimura, H. Kurokawa, E. Yoshida, K. Tomita, S. Kokaji, and
S. Murata. Distributed adaptive locomotion by a modular robotic system,
M-TRAN II. In IEEE IROS, pages 2370–2377, 2004.

[12] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE
International conference on Neural Networks, pages 1942–1948, 1995.

[13] S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning, 1998. TR 98-11.

[14] J. Liedke, Rene M., L. Winkler, and H. Woern. The collective self-
reconfigurable modular organism (CoSMO). In IEEE/ASME Inter.
Conference on Advanced Intelligent Mechatronics, pages 1–6, 2013.

[15] H. Lipson and J. B. Pollack. Automatic design and manufacture of
robotic lifeforms. Nature, 406(6799):974–978, 2000.

[16] W. Liu and A. FT. Winfield. Distributed autonomous morphogenesis in
a self-assembling robotic system. In Morphogenetic Engineering, pages
89–113. Springer, 2012.

[17] I. Macinnes and E. Di Paolo. Crawling out of the simulation: Evolving
real robot morphologies using cheap reusable modules. In Intl. Conf.
on the Simulation and Synthesis of Life, pages 94–99, 2004.

[18] P. Moubarak and P. Ben-Tzvi. Modular and reconfigurable mobile
robotics. Robotics and Autonomous Systems, 60(12):1648–1663, 2012.

[19] A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness functions in
evolutionary robotics: A survey and analysis. Robotics and Autonomous
Systems, 57(4):345–370, 2009.

[20] F. Pasemann, U. Steinmetz, M. Hülse, and B. Lara. Evolving brain
structures for robot control. In International Work-Conference on
Artificial Neural Networks, pages 410–417. Springer, 2001.

[21] L. Righetti and A. J. Ijspeert. Pattern generators with sensory feedback
for the control of quadruped locomotion. In IEEE ICRA, pages 819–824,
2008.

[22] D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with
compressible unit modules. Autonomous Robots, 10(1):107–124, 2001.

[23] W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and
J. Venkatesh. Multimode locomotion via SuperBot robots. In IEEE
ICRA, pages 2552–2557, 2006.

[24] B. W. Verdaasdonk, H. F. J. M. Koopman, and F. C. T. van der
Helm. Energy efficient walking with central pattern generators: from
passive dynamic walking to biologically inspired control. Biological
Cybernetics, 101(1):49–61, 2009.

[25] V. Vonásek, D. Fišer, K. Košnar, and L. Přeučil. A light-weight robot
simulator for modular robotics. In International Workshop on Modelling
and Simulation for Autonomous Systems, pages 206–216. Springer, 2014.

[26] V. Vonásek, K. Košnar, and L. Přeučil. Motion Planning of Self-
reconfigurable Modular Robots Using Rapidly Exploring Random Trees.
In TAROS Conference, pages 279–290. Springer, 2012.

[27] V. Vonásek, D. Oertel, S. Neumann, and H. Worn. Failure recovery
for modular robot movements without reassembling modules. In 10th
International Workshop on Robot Motion and Control (RoMoCo), pages
136–141, July 2015.

[28] V. Vonásek, O. Penc, K. Košnar, and L. Přeučil. Optimization of Motion
Primitives for High-Level Motion Planning of Modular Robots. In
Mobile Service Robotics: CLAWAR 2014: 17th International Conference
on Climbing and Walking Robots and the Support Technologies for
Mobile Machines, pages 109–116, Singapore, 2014. World Scientific.

[29] V. Vonásek, M. Saska, L. Winkler, and L. Přeučil. High-level motion
planning for cpg-driven modular robots. Robotics and Autonomous
Systems, 68(0):116 – 128, 2015.

[30] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G.S. Chirikjian. Modular self-reconfigurable robot
systems (Grand Challenges of Robotics). IEEE Robotics Automation
Magazine, 14(1):43–52, 2007.

http://mrs.felk.cvut.cz/ssci2016
http://mrs.felk.cvut.cz/ssci2016

