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Abstract— The first-place issue in cooperative 

activities of multiple entities in a common working 
environment is coordination and planning of systems 
activities ensuring completion of a common goal. As 
manual management of the problem is hard, finding a 
proper solution of the both tasks definitely leads to an 
efficient target behavior of these entities. In particular, 
the efficiency measured in terms of e.g. mission time, 
precise fulfilling of the common goal stands for the core 
issues in applications of a rescue type of scenarios and 
alike. The there under presented approach introduces a 
novel approach suitable for computer-aided or fully 
automatic mission planning and control within 
heterogenous teams of multiple robots and humans. 
The achieved performance of the approach has been 
experimentally verified and some interesting results are 
shown.   

 

I. INTRODUCTION 

Inspection and exploration of an operating environment 
belong to the most interesting problems of robot path 
planning. There are mentioned many variations of this 
problem in the literature, differing in a kind of the 
environment (static x changing in time), environment map 
availability and representation, and a setup of the planning 
system (centralized x decentralized systems). When a map 
of the environment is not known, exploration is often 
solved together with mapping and localization tasks. 
Several algorithms based on frontier-based exploration 
were proposed. This work has been also extended to 
multi-robot teams [1]. 

Exploration of a known environment is defined as 
searching for an object in the environment. Two common 
environment representations are used: occupancy grid 
based maps and geometric maps. Computation geometry 
approaches are widely applicable for geometrical maps, 
while classical planning techniques based on A* or D* 
algorithms can be used for optimal planning on grid maps. 

The classical Watchman Route Problem (WRP) deals 
with finding minimal closed route such that every point of 
the environment can be seen from at least one point along 

the route. Considering multiple watchmen operating in the 
same workspace (Multiple Watchmen Routes Problem), 
there are two measures evaluating found solutions. In case 
of the MinSum criterion, the aim is to minimize the sum 
length of watchmen routes, while the length of the longest 
watchman route is to be minimized for MinMax criterion. 
Nilsson [2] proved that both problems are NP-hard even 
for a simple polygon. A different (and more complicated) 
situation arises in case that the object to be found is 
moving. This problem is in the literature referenced as the 
Pursuit-Evasion Problem.  

A complete exploration of a known environment can be 
done by visiting a set of points such that every point of the 
environment is visible from at least one such point. If the 
set of points is determined, planning can be defined as 
finding an optimal sequence in which to travel through all 
these points optimally. The WR problem is then divided 
into two problems that can be solved separately. This 
approach was described by Danner and Kavraki in [3].  
The problem how to find an appropriate (i.e. minimal) set 
of sensing locations is called the Art Gallery Problem. The 
problem was posed by Victor Klee in 1973 who asked a 
question: “What is the smallest number of guards needed 
to guard an art gallery?” However a number of sufficient 
guards is proved, necessary number of the guards are 
lower in most cases.  

A number of modifications and extensions of the 
classical Art Gallery Problem has appeared in literature. A 
survey can be found in [4]. The objective of the 
Zoo-Keeper’s Problem and Safari Route Problem is to 
walk within a defined polygon containing sites (polygons) 
to be visited. While one can go thru the sites in the Safari 
Route Problem (like visiting pavilions at an exhibition), 
entrance to the sites is not allowed in the Zoo-Keeper’s 
Problem (as a zoo-keeper feeding animals without going to 
their cages). These problems, which are NP-hard in 
general, were proposed by Chin and Ntafos in [5] have a 
tight relation to the problem of inspecting known 
environments such as office buildings. A cage can be 
replaced by a room in office building inspection in this 
case. 

The previously mentioned approaches suppose unlimited 
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visibility. This is not true in real applications because of 
bounded operational range of sensors. Moreover, the angle 
between the line of sight and the normal to the obstacle 
edge is also often limited. The limit of visibility is in the 
sense of sufficient detail objects. An approximate solution 
for randomized sensor placement with limited visibility 
was developed in [6].  

The problem of planning optimal tour over found sensing 
locations could be defined as the classical Traveling 
Salesman Problem (TSP) task known in the operation 
research. The problem is defined on a graph G(V,E), where 
V is set of vertices and E is set of connection over vertices 
with cost. A lot of heuristics finding solution close to the 
optimum have been proposed [7]. While the most 
successful approaches are based on the 2-opt heuristics, a 
recent research is focused to develop a meta-heuristics 
over these heuristics [8]. Theses approaches include but 
are not restricted Ant Colony Optimization, Genetic 
Algorithms, Simulated Annealing, etc. Moreover, several 
Neural Networks (NN) approaches have been applied to 
solve TSP. The three main approaches are Hopfield Nets, 
Elastic Nets, and Self Organized Feature Maps (SOM). 
The most promising approaches are based on SOM [9].  

TSP defined for a team of multiple entities (robots) is 
called the Multiple Traveling Salesmen Problem (MTSP). 
This problem can be easily transformed to TSP, but 
unfortunately the solution is highly degenerated. Moreover, 
this transformation is usable only for MinSum criterion. 
From the other point of view, the MTSP can be also 
viewed as an instance of the Vehicle Routing Problem 
(VRP) in case when capacity is unlimited. VRP is 
described as follows: given a fleet of vehicles with 
uniform capacity and several costumer demands 
(represented as a collection of geographical scattered 
points), find the set of routes with overall minimum route 
cost which service all the demands.  

II. PROBLEM DEFINITION 

The aim of the Search and Rescue scenario is to provide 
support for cooperating of heterogeneous teams (consisting 
of human and robots) for search and rescue activities in 
case of emergencies or catastrophes. The rescue squad of 
human and robots is operating in a large space with highly 
complex structure (building split into many small offices, 
storages, hallways, etc.). Both kinds of entities are 
expected to operate and navigate in the environment, 
identify properties of this area or even to create a model of 
the environment, to allow first aid services and rescue 
persons in non-standard critical situations.  
Moreover, the diverse nature of the robot and human 
entities brings up multiple kinds of constrains for each of 
the type. These are mainly reflecting their operational 
capabilities and abilities with respect to the environment, 
like unsafe regions due to structural collapses, poisonous 
substances, high temperature and other reasons causing 
inaccessibility of particular spaces by a certain type of 
entity. The sketched additional constrains clearly form 
needs for smooth integration of possible constrains into the 
planning mechanism.  
Basically, the core geometric information about the 

environment shape and structure can be carried in a map 
structure, common to all types of the entities. Then, the 
specific constrains are stored in a separate data -layer and 
being adjusted to operational properties of each particular 
entity 

The problem of searching for objects in an area (or 
exploration of a workspace) by one entity can be defined 
as the Watchman Route Problem: given a known 
workspace and an entity with vision capabilities find a 
shortest closed path for the entity such that the path starts 
at the starting point s and ends at the goal point g and each 
point of the workspace is visible from some point on the 
path. While a typical rescue team consists of multiple 
members, the goal is not to find only path for one entity, 
but to plan a path for each entity separately, so that the 
found paths fulfill the MinMax criterion and each point of 
the workspace is visible from some point on at least one 
path.  

Theoretical results show that no polynomial algorithm 
exists for this problem. Due to this, algorithms that don’t 
generate an optimal (best) solution but find some feasible 
and good enough solution will be used. The algorithm 
described in the following chapters divides the Multiple 
Watchmen Route Problem into two problems that can be 
solved separately. This approach was used by Danner and 
Kavraki in [3] and is based on observation that sensing is a 
time consuming operation in real-world systems and that a 
detailed analysis and processing of data gathered from 
sensors is required. Therefore, it seams to be feasible to 
identify points in which the sensing will be performed. The 
two steps of the algorithm are following: 
• Find a set of “sensing” locations (guards). This 

problem is called the Art Gallery Problem and it will 
be discussed in chapter III. 

• Connect the found guards with m paths in an optimal 
way to form inspection paths. The problem can be 
formulated as the Multiple Traveling Salesmen 
Problem and it will be discussed in the chapter IV. 

III. ART GALLERY PROBLEM 

In order to get better than theoretically induced results 
and to deal with limited visibility of sensors used, several 
algorithms finding approximate solution of the problem 
were developed. We have implemented a randomised 
incremental algorithm described in [3] which is based on 
the approach introduced by González-Banos and Latombe 
[6]. The algorithm proceeds as a loop: 

1. Denote A an area to be guarded. 
2. A random point p lying on the border of the area A is 

chosen. 
3. A polygon Vp is found, which consists of points 

visible from the point p (this is equivalent to the 
polygon from which p is visible). All the visibility 
constrains as defined above are applied. 

4. k random samples pk are placed into the polygon Vp. 
5. For each point pk a visibility polygon (polygon from 

which pk is visible) is determined.  
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6. The guard (point) that can see the most still 

unguarded area (i.e. the point for which 
kpVA −  is 

smallest) is chosen as a next guard.  
7. Set

kpVAA −= . 
8. If A is not empty (there exist a point which is not 

guarded) then go to step 2). 

IV. MULTIPLE TRAVELING SALESMEN PROBLEM 

Neural networks, and competition-based structures 
especially, are widely used for solving optimization 
problems. Our approach extends Somhom’s algorithm 
described in [9]. The idea of the algorithm is to represent a 
path of each particular robot by a chain of neurons, where 
neighboring neurons are connected. At each iteration, a 
nearest neuron to a randomly selected guard is determined 
and together with its’ neighbors moved closer to the guard. 
The algorithm can be described as follows: 

If we denote n as the number of guards (cities) and m as 
the number of salesmen, then m chains can be created so 
that each consists of M=2n/m neurons. Initially, the 
on-chain neurons are positioned on a small ring close to a 
starting point (depot) for each salesman. 

The next steps then choose random permutations of the 
guards and existing neuron chains, i.e.

ipC is the i-th city 

in a permutation, for which the nearest neuron to the
ipC is 

determined. To select the nearest neuron, the 
guard-to-neuron distance is defined as their Euclidean 
distance weighted by: weight(r)=((length(r)-AVG)/AVG)4. 
This suppresses those neurons, which overshoot the AVG 
and prefers those, which are bellow the AVG, where the 
AVG stands for the average length of chains in the task. 

Whenever determining the minimum distance neuron, 
the winner and its’ nearest neighbors on the chain are 
attracted to the guard. The value of the winner movement 

towards the guard is proportional to its’ distance to the 
guard and additionally weighted by exponential function 
of the distance and the iteration number. This ensures rapid 
changes in the network topology for larger 
neuron-to-guard distances and more precise and slow 
convergence at final phases of the iteration process. 
 The process of the permutation choice, nearest neuron 
selection and shifting towards proper guard is executed 
unless a termination criterion is achieved. This can be 
defined as a maximum distance between a guard and a 
nearest neuron to this guard being satisfied if the distance 
is smaller than a certain threshold. 

The above-described algorithm gives results comparable 
to other soft-computing techniques: genetic algorithms and 
ant colonies optimization but works much faster than these 
approaches. Unfortunately, the algorithm works only in the 
case that distances between a neuron and a guard can be 
determined effectively. It is true for environments without 
obstacles, where the distance is clearly an Euclidean 
distance.  

The situation is more difficult for environments with 
obstacles (represented by a polygon with holes), because 
the distance between two points has to be determined with 
respect to these obstacles. The simplest approach is based 
on visibility graphs: 

1. Let C is a city and {Vi} for i=1..Nv is a set of vertices 
of obstacles.  

2. Construct a visibility graph of  {C}∩{Vi}. 
3. Use Dijkstra algorithm to compute a shortest path and 

its length from C to each vertex Vi. Denote the i-th 
path Pi and its length d(CVi). 

 
Using this structure, queries “what is the distance of a 

point p to C” (so-called one-point queries) can be 
answered in O(nlogn) time: 

1. Determine vertices that are visible from point p and 
denote them { }p

i
p VV = , where i=1..Np. 

Furthermore, |vi,p| stands for the Euclidean distance 
of vi and p. 

2. Find a vertex pVv∈  so that the length of from C 
to v plus the length from v to p is minimal over 

pV : 

  ||),(minarg pvvCdv iiVv p
i

+=
∈

. (1) 

3. The desired minimal path from C to p is then the 
union of the path from C to v and the line vp while 
the distance is d(C,v)+|vp|. The distance of two 
points with respect to obstacles is called Euclidean 
geodesic. 

O(nlogn) time of this naive algorithm is to high what 
causes that the neural net optimisation runs several 
minutes even for a scene with 250 vertices. Therefore 
more sophisticated structure has to be used that provides 
answering one-point queries more effectively.  

The structure we use is the Shortest Path Map (SPM).  
SPM(C,map) with respect to point (city) C and polygon 
with holes map is a partition of a free space defined by 

 
 

Fig. 1. Guards with an unlimited visibility range generated by the 
randomized incremental approach.  

232



map into maximal regions (called cells) that correspond to 
sets of points with the same root (first vertex on the 
shortest path from a point to C, i.e. v in the naïve 
algorithm) or a set of roots with respect to C. 

 We use a subquadratic algorithm for computing the 
SPM presented in [10]. This approach is based on 
continuous Dijsktra paradigm, which simulates the effect 
of a “wavefront” propagating out from a city. The 
wavefront at a distance d is the set of all points of free 
space that have an Euclidean geodesic distance equal to d. 
The structure of the wave-front changes while d is growing 
only at some specific distances – events due to the 
following three possibilities: 

• a part of the wavelet disappears, 
• the wavelet collides with an obstacle vertex, or 
• a part of the wavelet collides with other part. 
 
The events correspond to changes in the SMP. The basic 

idea of the algorithm is therefore to detect these events and 
to process them. 

The SMP is a subdivision of a plane, where boundaries 
between two cells can be either a portion of straight line or 
a hyperbolic arc. If each hyperbolic arc is approximated by 
a polyline (with a defined precision) a cell can be 
represented by a polygon. Having a SMP for each city, we 
can compute the overlay of these subdivisions using 
standard plane sweep algorithm [11] sequentially: 

1. Let SMPi is a shortest path map with respect to the 
city Ci, i=1..N and S stands for a resulting 
subdivision. 

2.   S = C1. 
3. For i= 2..N do S = S ∩ Ci, where ∩ stands for the 

overlay. 
After applying the previous algorithm, we get a 

subdivision with the following properties: 
• Each cell is represented by a polygon 
• For each city and cell there exists one root that is 

same for all points of the cell. In other words, all 
points of the cell have the same path topology to a 
city. 

These properties guarantee that the subdivision allows to 
find the length of the shortest path between an arbitrary 

point of the plane (neuron) and a city in time O(log k) (by 
point location), where k is the number of points of the 
subdivision. Moreover, a shortest path can be produced in 
time O(log k + b),  where b is the number of bends 
(vertices) in the path. 

Additional improvement of computation time of finding 
a cell in which a neuron lies during a self-organization 
process of a neural net is based on fact, that a neuron is not 
placed randomly in the place but moves on the shortest 
path to some city only. A cell, where a neuron lies ca be 
then effectively determined by the following process: 

1. Let Cella is a cell where the neuron p is placed and its 
position is adapted so that it is tightened to the city C. 
Denote obstacle vertices lying on the shortest path 
from p to C as v1, v2,..., vd. 

2. Compute the distance at which the neuron will travel 
during the adaptation step similarly to step 3b) in the 
original algorithm: 

  L = ),( kbfμ *d(C,p),  (2) 
 where d(C,p) is the length of the shortest path 

between C and p (i.e. their geodetic distance) and μ 
and f have the same meaning as in the original 
algorithm. 

3. Determine the point q that lies on the shortest path 
between C and p and its geodetic distance is equal to 
L. Denote the portion of the path on which q lies 
vxvx+1. 

4. Determine the cell in which the point vx lies and 
denote it Cellx. This information can be obtained 
during SMP-building process and stored for each 
obstacle vertex. 

5. Detect whether q lies in Cellx. If yes then stop - Cellx 
is the desired cell. Otherwise determine intersection 
Cellx∪ vxq. Denote the intersection point vx.  The 
new point vx lies on the boundary of two cells - Cellx 

 
Fig. 2. The Shortest Path Map structure generated for the 

black point. Points from the highlighted area have the same 
shortest path to the point.  

 
 

Fig. 3. Paths generated for two entities. The green entity is not 
allowed to go thru the grayed areas. 
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and one of its neighbors. Denote this neighbor Cellx 
and go back to step 5.  

 
The time complexity of steps 4 and 5 is O(m), where m is 

the number of cell vertices. Moreover, step 5 is repeated as 
many times as many cells are visited on the path between p 
and q – denote this number r. The complexity of step 2 is 

constant while the complexity of step 3 is r. Therefore the 
overall complexity of the algorithm is O(mr). On the 
assumption that the distance between p and q is small 
(which is a frequent case in the self-organizing process) r 
is constant and therefore the complexity of the algorithm is 
O(m). 

The second aspect to be taken into account is 
computation of the equation in step 3a) of the original 
algorithm. In order to evaluate this equation, lengths of 
rings have to be determined, which leads to enumeration of 
distances between neurons. Unfortunately, determination 
of neuron-neuron distances is very time consuming, 
because no structure like SMP for neuron-city distances 
can be used. Therefore, instead of computing lengths of 
rings directly, we compute the length of a path travelled by 
each salesman in the following procedure: 

1. For each city Ci determine a nearest neuron ni.. 
2. For each ring r do  
a) Go neuron by neuron as they are connected and for 

each neuron, which is nearest to some city, 
remember this city. By this process we get an 
ordered list of cities

nrrr CCC ,...,,
21

.  
b) Compute the length of the ring as a sum of geodesic 

distances between connected cities in the list: 

 ),()(
1

1
1∑

−

=
+

=
n

i
rr ii

CCdrlength . (3) 

In order to compare quality of the right described 
approach we performed several tests (20 or 100) in three 
different environments and for 2,3, and 4 salesmen. Each 
test was performed for the original method based on 

neuron-to-neuron distance and for the method described in 
this chapter. After performing the tests we evaluated 
quality of each found solution using MinMax criterion and 
computed minimal, maximal, and average number over all 
test with the same configuration. The results (see Table 1) 
show that both approaches give at least comparable results. 
In majority of tests the city–to-city distance is better which 
qualifies us to use this method.  

Finally, found paths of particular entities are optimized 
by 2-opt heuristics, which is commonly used in TSP-like 
tasks. The heuristics generates so-called 2-optimal tour, i.e. 

tour in which there is no possibility to shorten the tour by 
exchanging two arcs. 
 

V. CONCLUSION 

The contribution brings up the question of optimal 
activity planning and scheduling in cooperating teams of 
entities. The central novelty of the approach presented 
there above stands in investigation of a robust planning 
technology for heterogeneous teams consisting of robots 
and human actors, sharing a joint task in a common 
environment. Combining diverse types of entities takes the 
advantage of having complementary properties (or 
abilities) provided by the entities itself, what seems to be 
efficient for the task solution. On the other hand, 
substantially different entities have also diverse constrains 
in their capabilities, which have to be taken into account 
by the discussed approach. Moreover, the suggested 

TABLE I 
Comparison of approaches for determination of the 
length of a ring.  Method “neuron” computes the 
lengths as used in original algorithm, while “city” 

determines the length using distances between cities. 
 

Path Length 

MapMapMapMap 
Nbr
. of 
sale
sme

n 

Method 
Nbr. 

of 
tests 

min max avg 

city 100 8997.17 10887.93 9645.0 2 
neuron 100 8997.17 14826.36 9696.1 

city 100 6958.39 9270.25 7722.4 3 
neuron 100 7059.09 10304.31 8037.1 

city 100 6471.52 8552.99 6959.9 

1 

4 
neuron 100 6549.30 9528.09 7702.4 

city 20 1463.93 1625.87 1522.8 2 
neuron 20 1469.19 1878.08 1594.6 

city 20 1115.66 1448.10 1226.6 2 
3 

neuron 20 1113.08 1462.76 1255.5 
city 100 1767.39 2431.58 2002.9 2 

neuron 100 1767.38 2235.61 1948.1 
city 100 1346.20 2050.81 1606.8 3 

neuron 100 1338.70 1966.26 1576.2 
city 100 1218.11 2041.07 1434.7 

3 

4 
neuron 100 1201.70 2051.82 1472.8 

 
Fig. 4. Paths generated for four entities having a small 

visibility range.  
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method incorporates the planning constrains in a flexible 
way, that can be extended to other features as well as 
modified in time. The option of time-varying conditions 
supports the on-line re-planning, which allows modifying 
current plans to variations in the task setup or environment 
status. 

The investigated method has been implemented and 
experimentally verified in a search and rescue scenario (a 
complete space inspection problem) as a part of the 
PeLoTe system (PeLoTe is a hybrid telematic system for 
cooperative rescue operations in cases of emergences or 
catastrophes [12][13][14][15][16]). 

Although the core of the proposed approach relies on 
solution of the MTSP problem, which is an NP-complete 
task, the proposed approach offers close-to-optimum 
solution achievable in real-time for typical indoor 
environments with computational power of a standard PC. 

The remaining simplification of the presented approach 
seems to stand in splitting the problem solution into two 
independent steps: the Art Gallery and MTSP problems 
solution. The expected future developments of the method 
are aimed at natural integration of these two parts of the 
problem. This direction seems to be promising with 
respect to further improvement of the method 
performance.   
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