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WiSM: Windowing Surrogate Model for Evaluation
of Curvature-Constrained Tours with Dubins vehicle

Jan Drchal, Jan Faigl, and Petr Váňa

Abstract—Dubins tours represent a solution of the Dubins
Traveling Salesman Problem (DTSP) that is a variant of the op-
timization routing problem to determine a curvature-constrained
shortest path to visit a set of locations such that the path
is feasible for Dubins vehicle, which moves only forward and
has a limited turning radius. The DTSP combines the NP-hard
combinatorial optimization to determine the optimal sequence of
visits to the locations, as in the regular TSP, with the continuous
optimization of the heading angles at the locations, where the
optimal heading values depend on the sequence of visits and
vice versa. We address the computationally challenging DTSP
by fast evaluation of the sequence of visits by the proposed
Windowing Surrogate Model (WiSM) which estimates the length
of the optimal Dubins path connecting a sequence of locations in
a Dubins tour. The estimation is sped up by a regression model
trained using close to optimum solutions of small Dubins tours
that are generalized for large-scale instances of the addressed
DTSP utilizing the sliding window technique and a cache for
already computed results. The reported results support that
the proposed WiSM enables a fast convergence of a relatively
simple evolutionary algorithm to high-quality solutions of the
DTSP. We show that with an increasing number of locations,
our algorithm scales significantly better than other state-of-the-
art DTSP solvers.

Index Terms—Dubins Vehicle; Dubins Traveling Salesman
Problem; Dubins Touring Problem; Surrogate Model

I. INTRODUCTION

IN this paper, we address the Dubins Traveling Salesman
Problem (DTSP) by the proposed regression surrogate

model for fast evaluation of possible solution candidates
given by a sequence of visits to the locations of interest by
speeding up the convergence of an evolutionary solver that
supports finding high-quality solutions. The addressed DTSP is
motivated by data collection and surveillance missions where
a vehicle is requested to visit a set of locations as quickly
as possible [1], [2]. The problem is a variant of the routing
problem [3], [4] to determine the optimal sequence of visits to
the given set of locations such that the length of the curvature-
constrained path connecting the locations in the sequence
is minimal [5]. The curvature-constrained path is requested
because of motion constraints of the vehicle that are modeled
by Dubins vehicle [6] which moves only forward with the
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limited turning radius ρ. A solution of the DTSP consists of
sequencing part to determine the optimal sequence of visits
to the locations and continuous optimization to determine the
optimal heading values. The DTSP is at least NP-hard [7]
because for ρ = 0, it becomes the Euclidean TSP (ETSP) [8].

In 1957, Dubins showed that for two given locations with
the prescribed leaving and arrival heading angles of the
vehicle, the optimal curvature-constrained path connecting
the locations is one of six possible maneuvers that can be
found by a closed-form solution [6]. The generalization to an
arbitrary number of locations is known as the Dubins Touring
Problem (DTP). The state-of-the-art DTP solvers are based
on a sampling of the possible heading angles [9]. In [10],
an informed sampling method, which we further denote the
Iteratively-Refined Informed Sampling (IRIS), enables finding
a solution of the DTP close to optimum, i.e., with the relative
optimality gap to the lower bound less than 1%, in tens
of seconds for problems with up to 100 locations, which
outperforms the uniform sampling [9].

The DTSP solvers reported in the literature can be roughly
classified into three groups according to [11], [12]. The first
group represents decoupled approaches, in which the sequence
of visits is determined independently from the headings, e.g.,
using a solution of the related ETSP. Then, headings are
determined in the second step using a heuristic Alternating Al-
gorithm (AA) [5], the Local Iterative Optimization (LIO) [12],
or by the IRIS proposed in [10]. The methods of the second
group involve a joint optimization of both the sequence and
the headings using Evolutionary Algorithm (EA) as it is
reported in [13], [14]. The last group includes approaches
based on transformation of the original problem into a purely
combinatorial routing problem. In [1] and [15], the heading
angles are sampled, and the discretized instance is transformed
to the Generalized TSP that is further transformed into the
Asymmetric TSP that can be solved by the heuristic LKH
solver [16], or Concorde solver [17] for the optimal solution
with respect to the selected sampling, or other approaches
like [18]. A similar sampling-based strategy is utilized to find
a tight lower bound of the DTSP in [19] with tens of locations.

The existing decoupled approaches such as [9], [10] use
only a single sequence found as a solution of the Euclidean
TSP without considering the minimum turning radius ρ of the
Dubins vehicle which limits the quality of the DTSP solutions
for cases where ρ cannot be ignored (i.e., dense location
distribution w.r.t. ρ). The joint optimization and transformation
methods may provide better solutions at the cost of low
scalability (dense sampling leads to large problem instances
of the transformed problems) and very high computational
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requirements because a large search-space needs to be covered
by the global optimizer such as the evolutionary algorithm.

The herein presented approach is a novel DTSP solver
that combines features of both the decoupled approaches and
joint optimization. The main idea of the proposed method is
that a relatively simple EA optimizes the sequence of visits
separately from the continuous optimization part, and the
sequence quality (i.e., fitness) of each individual is assessed
by means of length of the corresponding DTP solution (which
also determines the heading angles). The information about
headings is not stored in the genome itself, but rather computed
during every evaluation of its fitness. It reduces the complexity
of the search-space and makes it strictly combinatorial as the
sequence of visits is a permutation; however, it also makes
the evaluation of each individual more expensive. Thus, the
critical part of our method is the need to evaluate possibly
many candidate sequences. Even though the solution of the
DTP by the IRIS [10] is significantly faster than the uniform
sampling [9]; it is still too computationally demanding.

Similarly to [20], where the authors speed up the expensive
evaluation of the objective function using a surrogate model,
we propose the Windowing Surrogate Model (WiSM) leverag-
ing on the high-quality solutions of the IRIS-based DTP solver.
The main contribution of the proposed WiSM is considered in
the windowing decomposition developed from a lower bound
which allows training of the model on small fixed-size DTP
instances, while the evaluation of the solution length can be
performed on DTP instances of arbitrary size. It makes WiSM
easily implementable by most types of regression models.

Based on the presented results, WiSM provides solutions
competitive to a very dense sampling of the heading values in
the DTP, but with significantly lower computational require-
ments. The paper is mainly focused on the surrogate model
based on the windowing decomposition and not on details and
tuning of the sequence optimization; however, we show that
the combination of WiSM with a simple EA (further denoted
as WiSM-EA) outperforms other DTSP solvers for a wide
range of instance sizes.

The paper is organized as follows. The addressed DTSP
is defined in the next section. A brief overview of the IRIS,
the high-quality DTP solver used in learning of the proposed
WiSM, is presented in Section III. The model is employed in
the Evolutionary Algorithm summarized in Section IV. The
surrogate model itself with the windowing decomposition is
proposed in Section V. Empirical evaluation of the WiSM-EA
and its comparison with existing approaches for the DTSP are
in Section VI. Concluding remarks are given in Section VII.

II. PROBLEM STATEMENT

The proposed solution of the DTSP is based on an evalu-
ation of the candidate sequences to visit the given set of n
target locations T = {t1, . . . , tn}, ti ∈ R2 using a solution
of the DTP where the path connecting the locations T has to
respect the motion constraints of Dubins vehicle [6] that is
moving only forward with a constant forward velocity v and
a minimum turning radius ρ. The state of the vehicle can be
expressed as q = (x, y, θ), where (x, y) ∈ R2 is the position

of the vehicle and θ ∈ S1 is its heading angle. Thus the state q
is from the Special Euclidean group, q ∈ SE(2). The motion
of the vehicle can be described as

q̇ =

ẋẏ
θ̇

 = v

cos θ
sin θ
u
ρ

 , |u| ≤ 1, (1)

where u is the bounded control input. For simplicity and
w.l.o.g., we further consider v = 1 and ρ = 1.

A solution of the DTSP can be expressed as a permutation
Σ = (σ1, . . . , σn) for 1 ≤ σi ≤ n that defines a sequence of
visits to the locations T and particular heading values Θ =
{θ1, . . . , θn} corresponding to each particular location.

The DTSP stands to find a sequence of visits Σ to T
with the respective heading values Θ such that the length
C(Σ,Θ) of the Dubins path connecting the locations T is
minimal. The problem can be considered as combinatorial
optimization over all possible sequences Σ and n-variable
continuous optimization of the heading values Θ.

Problem 1 (Dubins Traveling Salesman Problem - DTSP):

minimize Σ,Θ C(Σ,Θ) =

n∑
i=1

L(qσi , qσi+1) (2)

s. t.
qi = (ti, θi), qi ∈ SE(2), ti ∈ T ,
Σ = (σ1, . . . , σn), σi ∈ {1, . . . , n},
σi 6= σj for i 6= j,
Θ = {θ1, . . . , θn},

where L(qi, qj) denotes the analytically computed length of
the optimal Dubins maneuver [6] between qi and qj , and σi ,
σi−n for i > n is defined to simplify the notation in (2).

Finding a solution of the DTSP is an optimization problem
with a combinatorial part over Σ and continuous part over
Θ. If Σ is given, the problem becomes strictly continuous
optimization with n variables in Θ. The problem is then called
the Dubins Touring Problem (DTP), and the solution cost for
a particular sequence Σ is denoted C(Σ).

Problem 2 (Dubins Touring Problem - DTP):

C(Σ) = min
Θ

C(Σ,Θ). (3)

Due to the combinatorial nature of the TSP, many candidate
sequences need to be evaluated. Thus, the evaluation of (3)
should be fast enough to provide competitive results to existing
DTSP approaches [11]. In Section V, we propose a surrogate
approximator of (3) trained using high-quality solutions of the
DTP found by the IRIS method [10] briefly described in the
following section.

III. BACKGROUND – DUBINS TOURING PROBLEM (DTP)

A solution of the DTP is needed to evaluate the cost (3),
and thus the final solution of the DTSP, but the solution
is also needed to train the proposed surrogate model for
fast evaluation of possible candidate sequences. Finding op-
timal heading angles for the DTP with dense locations is a
challenging problem because the length of the Dubins tour
connecting a sequence of locations is a piecewise continuous
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function [21]. Sampling-based approaches are thus utilized to
sample the domains of the continuous variables into finite sets
of discrete values of possible heading angles. A solution can
be then found as the shortest path in a graph representing the
discretized instance of the DTP as follows.

Let have k samples of the heading angle per each location
ti ∈ T which form k possible states per each ti. Then each
pair of the states corresponding to two consecutive locations
in the sequence can be connected by the optimal curvature-
constrained path determined as the optimal Dubins maneu-
ver [6]. Having the states and their connections, a search graph
can be created, and the shortest path for the given sequence of
n locations and defined sampling k can be found in O(nk3) by
a forward search based on dynamic programming [10]. Such
a path is a feasible solution to the DTP.

High-quality solutions, however, require dense sam-
pling [9], which can be computationally demanding. The IRIS
method [10] decreases the computational requirements by an
iterative refinement of the heading intervals based on the tight
lower bound solution from [9].

The DTSP solver presented in this paper requires a high
number of sequence evaluations, which makes even the IRIS
approach [10] too computationally demanding. Therefore, we
propose to employ a surrogate model for fast evaluation of
Dubins tour lengths to speed up the convergence towards
high-quality DTSP solutions using generated sequences by the
Evolutionary Algorithm described in the following section.

IV. EVOLUTIONARY ALGORITHM FOR THE DTSP

In this section, we present the Evolutionary Algorithm
(EA) for solving the DTSP. Contrary to existing evolutionary
approaches to the DTSP, such as [14] where sequences and
headings are encoded together, the proposed evolutionary
approach is utilized only for generating proper sequences Σ,
and the heading values are determined as a solution of the
corresponding DTP. The particular cost function C(Σ) can be
determined by IRIS for the DTP [10], but also by its surrogate
model estimation proposed in Section V. A generational EA
with a simple elitism, where an individual of the population is
represented by a permutation of n target locations (path repre-
sentation [22]) is used, and it is summarized in Algorithm 1.

The initial population is filled by random permutations
in the initializePopulation function representing se-
quences of visits to the given locations. The fitness of each
individual in the population is evaluated using the solu-
tion (or its estimation) of the corresponding DTP by the
evaluatePopulation function. The main loop (Line 3,
Algorithm 1) iterates over the generations until the overall
running time T CPU reaches the termination time T S.

The evolution is performed as follows. A new population
of N individuals is generated either by mutation with
the probability of pm, or crossover otherwise (Lines 4–
12, Algorithm 1). The mutation operator is the Simple
Inversion Mutation (SIM) [23], [22] which reverses a random
sub-sequence. The crossover method implements the well-
known Order crossover (OX) [24] which copies a random
sub-sequence of the first parent and then adds locations from

Algorithm 1: Evolutionary Algorithm for the DTSP
Input : T – a set of the given n target locations; N –

population size; t – tournament size; pm –
mutation probability; e – elite size; T S –
termination time;

Output: DTSP solution – (Σ, Θ, C(Σ))

1 P ← initializePopulation(N , n);
2 evaluatePopulation(P , T );
3 while T CPU < T S do
4 Pnew ← {};
5 for i← 1 to N do
6 a1 ←tournamentSelection(P , t);
7 if random() < pm then
8 c← mutation(a1);
9 else

10 a2 ←tournamentSelection(P , t);
11 c← crossover(a1, a2);

12 Pnew ← Pnew ∪ {c};
13 evaluatePopulation(Pnew, T );
14 b←best(P ∪ Pnew);
15 P ← {};
16 for i← 1 to e do P ← P ∪ {b} ;
17 B ←sort(Pnew);
18 for i← 1 to N − e do P ← P ∪ {B[i]} ;

19 Σ← b;
20 (Θ, C(Σ))← DTP(Σ);
21 return (Σ,Θ, C(Σ));

the other parent preserving their order but leaving out those
already used. We specifically use the OX1 variety as described
in [22], although we generate only a single offspring. Both
mutation and crossover employ tournament selection
with the tournament size t (tournamentSelection) to
select the parent(s).

The new population is then evaluated (Line 13, Algorithm 1)
and the best solution of the both current P and new Pnew
populations is selected as b. Finally, e least viable individuals
of Pnew are replaced by the copies of the best so far solution
b introducing the elitism (Lines 16–18, Algorithm 1).

The algorithm terminates when the stop condition is met.
The best sequence Σ is extracted from the population (Line 19,
Algorithm 1) and the corresponding headings Θ are deter-
mined (Line 20, Algorithm 1) calling the DTP solver [10]
to provide a feasible solution. On the other hand, sampling-
based approaches would be too computationally demand-
ing for evaluation of C(Σ) of all population individuals
in evaluatePopulation, and therefore, we propose a
surrogate model to get a considerable speedup.

V. PROPOSED WINDOWING SURROGATE MODEL (WISM)
FOR A FAST ESTIMATION OF THE DTP SOLUTION COST

The proposed Windowing Surrogate Model (WiSM) is de-
signed to approximate C(Σ) with a surrogate function to
significantly speed up the evaluation of the DTP instance costs.
The WiSM is evaluated based on overlapping windows in a
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convolutional manner, and the partial results are averaged to
get the final cost estimation.

In the studied DTSP, the number of locations n can vary
depending on the particular problem instance. Thus, we need
to address the limitation of the regression models (e.g., neural
networks, random forests, etc.) that are mostly limited to
fixed sized inputs. While this issue can be directly approached
by recurrent neural networks that allow processing inputs of
variable-length as sequences (e.g., LSTM [25] or GRU [26]),
a collection of training data would be non-trivial as we
would need to collect examples of DTP instances having a
varying number of locations with a little guarantee on how
the network would generalize on sequences of the unseen
lengths. To overcome the problem of the variable-size input,
we propose a decomposition of the cost function C(Σ) to
fixed-size subproblems based on the sliding window technique.

A. Sliding Windowing based Cost Estimation of the DTP

The proposed idea is to evaluate the cost of Dubins tour
for small sub-sequences of the target locations limited by the
window size w. The total tour cost can be then estimated as
an aggregate of the particular costs.

For a specific sequence Σ we can define the particular cost
C∗
w,i(Σ) of the subtour of Dubins optimal tour for the fixed

w-size window as

C∗
w,i(Σ) =

i+w−1∑
j=i

L(q∗σj
, q∗σj+1

), i ∈ {1, . . . , n}. (4)

C∗
2,n−1

C∗
2,n

C∗
2,1

C∗
2,2

C∗
2,3

C∗
2,4

C∗
2,5

C∗
2,6

C∗
2,7

q∗σ1 q∗σ2 q∗σ3 q∗σ4 q∗σ5 q∗σ6 q∗σ7

L L L L L L

Fig. 1. Sliding window principle with overlapping windows of the size w = 2.
Each window covers 2 trips, i.e., 3 locations.

We propose to utilize a sliding window that starts at each
target location i as it enables to address arbitrarily-length in-
stances for which the number of locations n is not necessarily
divisible by the utilized window size w. The whole Dubins tour
is divided into n sub-sequences of the windows (σi, . . . , σi+w)
for i ∈ {1, . . . , n} each connecting w+ 1 successive locations
as it is depicted in Fig. 1. Then the optimal cost C∗(Σ) for
the specific Σ and known optimal heading angles Θ∗ can be
computed from the window costs exactly as

C∗(Σ) =
1

w

n∑
i=1

C∗
w,i(Σ). (5)

The optimal heading angles Θ∗ are apparently not available,
and thus (5) provides only an intuition behind the proposed
approach for fast cost estimation of the Dubins tour.

The cost of the specific window is estimated independently
on the final solution and finding the cost of the window sub-
sequence is considered as the Open DTP [10], which can be
defined as the continuous optimization problem

C(Σ) = min
Θ

C(Σ,Θ). (6)

The Open DTP is further denoted as DTP to emphasize it does
not involve a closed tour and the heading angles at both end
locations are unconstrained. Note that the unlike in (2), the
length of the closing Dubins maneuver L(qσn

, qσ1
) is omitted

from the C(Σ,Θ) definition:

C(Σ,Θ) =

n−1∑
i=1

L(qσi
, qσi+1

). (7)

Comparing the particular DTP cost C∗
w,i(Σ) of the i-th win-

dow defined by a sub-sequence Σw,i , (σi, . . . , σi+w) and
the corresponding DTP cost C(Σw,i), it can be shown that

C(Σw,i) ≤ C∗
w,i(Σ). (8)

The proof by contradiction is based on the fact that C(Σw,i)
is a relaxed version of C∗

w,i(Σ). More specifically, unlike
for C∗

w,i(Σ), the boundary angles θ∗i and θ∗i+w of C(Σw,i)
are not constrained. Thus (qσ1 , qσ2) and (qσn−1 , qσn) can
take advantage of arbitrarily chosen heading angles at the
endpoints.

−2 0 2
x

−1

0

1

y

σ1

σ2

σ3

σ4

σ5σ6

Fig. 2. A solution of the closed DTP (dashed line) with one of n open DTP
subtours Σ3,2 (thick solid line).

An example of the Closed DTP with n = 6 locations with
a corresponding instance of the Open DTP over four locations
σ2, σ3, σ4, and σ5 is depicted in Fig. 2. Note that the optimal
tours between σ2 and σ5 differ for the open and closed cases.
The open version is shorter which corresponds with (8).

The cost of the whole sequence Σ can be estimated as
C̃w(Σ) using n windows with the size w as

C̃w(Σ) =
1

w

n∑
i=1

C(Σw,i). (9)

Based on (8), the estimation C̃w(Σ) is a lower bound of the
optimal cost C∗(Σ) and we get

C̃w(Σ) ≤ C∗(Σ). (10)

In the following, we expect the lower bound (9) is tight enough
even for relatively small size w and the minimization w.r.t.
C̃w(Σ) can be employed as a proxy to the direct minimization
of C(Σ). Thus, we can evaluate DTP costs for instances of a
fixed size w + 1 and use (9) to get the cost estimate for an
instance of arbitrary size n.

The computational complexity of C̃w(Σ) approximation
employing the sampling methods such as IRIS [10] can be
bounded by O(nwk2), where k is the number of heading
values per each location. In practice, the window size w is
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expected to be constant and significantly lower than both
k and n (w � k and w � n). Thus, the computational
complexity can be bounded by O(nk2), which is a noticeable
improvement in comparison to O(nk3) for the evaluation of
C(Σ). While the performance improvement is appealing, it
turns out, that in practice, the sampling methods are still too
slow to allow for efficient evolutionary search. Nevertheless,
the decomposition, based on a repeated evaluation of fixed-
sized sub-tours, enables approximation of the relatively slow
sampling-based methods by a wide selection of regression
models.

The utilized sliding window approach is a commonly used
general technique to process variable length data; however, to
the best of the authors’ knowledge, it has not been used for
tour length estimates yet. In the particular case of the proposed
WiSM, the specific combination of the sliding window with
the selected aggregation scheme gave a clear interpretation
(10), which is only possible by incorporating domain-specific
knowledge of the addressed DTSP using results of the DTP.

B. Windowing Surrogate Model (WiSM) Approximation of the
Cost Estimation C̃w(Σ)

The key idea of the proposed WiSM-based approximation
of the DTP solution cost is based on a fast evaluation of the
partial costs of C(Σw,i) by a surrogate regression model. In
existing deployments of the surrogate models in evolutionary
algorithms, the model is a proxy to the real fitness that is
trained online while EA runs. The switching between the real
and surrogate fitness can be realized by more or less complex
model management [27], [28]. On the other hand, the real-
time response of the proposed DTSP solver can benefit from
pre-trained surrogate model [29], and therefore, the model is
learned offline using a large training dataset based on high-
quality solutions of the open-loop DTP.

The WiSM can be implemented using virtually any type of
regression model, but we consider the Multi-Layer Perceptron
(MLP) [30] in this paper. It is because the feed-forward neural
network supports fast evaluation of all partial costs C(Σw,i) in
a single batch. Thus, it can take advantage of highly optimized
matrix multiplication routines1.

Each input vector fed to the surrogate model is constructed
as (xσi , yσi , . . . , xσi+w , yσi+w) ∈ R2(w+1) while the output
constitutes single real value corresponding to C(Σw,i). Notice,
the number of locations is w + 1 because the cost of Dubins
tour is defined for two locations and more, see (4). Hence, the
MLP architecture has 2(w+1) inputs, several hidden layers of
non-linear units such as ReLU [31], and a single linear output
neuron which is common for regression tasks.

VI. RESULTS

The proposed Windowing Surrogate Model (WiSM) has
been evaluated in combination with the evolutionary algorithm
presented in Section IV and the combined method is further
denoted WiSM-EA. The solved DTSP instances are of various
sizes and different densities of the locations.

1We can evaluate the whole population of the evolutionary algorithm in a
single batch, which has been utilized for the herein reported empirical results.

The performance of the WiSM-EA is compared with the
existing DTSP approaches. Namely, the Alternating Algorithm
(AA) [5], the Local Iterative Optimization (LIO) [12], and the
Sampling-based Algorithm (SA) [32]. The SA transforms the
problem to the Generalized TSP that is further transformed
into Asymmetric TSP solved by the LKH solver [16].

As a baseline, we take the decoupled approach from [10]
where the DTSP solution takes the location sequence Σ from
the solution of the corresponding Euclidean TSP (obtained by
the Concorde solver [17]). The headings Θ are consequently
determined by the IRIS method. Besides, we also initially
considered the Memetic algorithm [14]; however, the achieved
results are not competitive with the selected approaches re-
garding the solution quality and computational requirements.
Therefore it is not included in the reported results.

In addition to the baseline, we also computed a lower
bound [19] that provides an estimate of the gap to the optimal
solution. Such a tight enough lower bound is computationally
very demanding and intractable for instances with hundreds of
locations. Therefore, the prohibitively demanding lower bound
cannot be used as a full reference, and it is thus reported
only for small instances with n = 25. The value of the
determined lower bound is shown as LB in Fig. 5a for the
heading resolution within {4, 8, 16, 32, 64}, where it can be
observed, the LB convergences to the solution provided by
the proposed method.

The DTSP methods were compared using instances, ran-
domly generated similarly to [10]. The benchmark set con-
sists of 10 instances per each possible pair (n, d), where
n ∈ {25, 100, 500} denotes the number of target locations and
d ∈ {0.1, 1, 10} is the density of the locations. The targets T
of each instance were uniformly sampled from a square region
with a side b =

√
n/d, i.e., ti ∈

[
− 1

2b,
1
2b
]
×
[
− 1

2b,
1
2b
]
.

Due to unknown optimal solutions of the DTSP instances,
the results are evaluated using the normalized cost defined as

Cr =
C(Σ,Θ)

C(Σbase,Θbase)
, (11)

where C(Σbase,Θbase) is the cost provided by the baseline.
The headings Θ for the baseline and also for the WiSM-EA

(Line 20, Algorithm 1) were determined using IRIS [10] with
the maximum number of samples set to kmax = 1024.

The parameters used by the evolutionary algorithm were:
the population size N = 100, tournament size t = 3, mutation
probability pm = 0.8, and elitist size e = 20.

The WiSM-EA was implemented in Julia language [33], run
with -O3 and --check-bounds=no options and the com-
putational requirements were further significantly decreased by
caching model approximations C(Σw,i) using Σw,i as a key.
The IRIS method (called from Line 20, Algorithm 1) and also
all the other algorithms (AA, LIO, SA) were implemented
in C++ and compiled by the gcc compiler with -O3 and
-march=native flags, which also holds for the LKH. In
all the cases, the algorithms were run on a single core of the
Intel Xeon Gold 6130 @ 2.10 GHz processor.
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A. Learning Setup of the Proposed WiSM

The choice of an appropriate window size w of the WiSM
deals is a trade-off between the model complexity, accuracy,
and computational time needed to evaluate the model. In-
creased window size leads to the increased number of the
model inputs and parameters that also increases demands on
the size of the training dataset. Besides, a prediction for a
complex model is computationally demanding, which might
be critical for the evolutionary search because it can limit the
total number of evaluations achievable under the particular
computational time limit T S (Line 20, Algorithm 3).

Empirical evaluation has been performed for 2 ≤ w ≤ 10
in the same way as described in this section, but data are not
shown for brevity. Based on that, we found out that w = 3
provides overall best results, and therefore, this window size is
considered for the rest of the presented results. The achieved
average computational time per a single window for w = 3 is
0.2µs and 3.3µs with and without the caching, respectively.

The empirically selected neural network architecture was
the MLP as described in Section V-B having three hidden
layers of 256 ReLU units each. The training dataset consisted
of 64 × 106 samples of 2(w + 1) = 8 coordinates and the
corresponding target cost value was computed using a solution
of the open DTP found by the IRIS method with kmax = 1024.
The individual coordinates of the learning datasets were inde-
pendently drawn from the normal distribution N (0, 1) which
introduced a small fraction of longer distances between the
target locations improving generalization overall considered
densities d of the benchmark instances2. The distribution was
also selected empirically, where the process was bootstrapped
by observing the distributions of locations in sub tours of
the random DTSP instances. We found WiSM-EA to be
reasonably robust w.r.t. to the training distributions; neverthe-
less, future research should focus on training data generation
methods.

The model training was done as follows. We split the dataset
to training part (80%) and the validation part (20%). The loss
function to train the surrogate model was the Mean Squared
Error (MSE), which is a common choice for the regression.
No regularization method such as L1, L2, or drop out [34] was
used as overfitting was not a problem due to the size of the
training data. We employed Adam [35] using recommended
parameter values (the learning rate 0.001, β1 = 0.9 and
β2 = 0.999). The training was terminated using early stopping
when there was no improvement in the validation loss for
ten successive epochs. The single WiSM employed for all
(n, d) pairs in the following experiments needed 134 epochs
to converge, achieving MSE of 1.94× 10−2 on the validation
set3.

B. WiSM-EA Performance Evaluation

The evaluation results of the proposed WiSM-EA and
its comparison with the other DTSP solvers is depicted in

2It would take roughly 21 days to generate the full dataset for w = 3 on
a single core, and thus 64 cores were used to speed up the process.

3The target values were standardized as usual when training neural net-
works.

Figures 3, 4 and 5. Each data point represents the mean value
of the real required computational time and the mean value
of the corresponding normalized cost Cr computed over 100
runs of the particular algorithm, i.e., ten runs per each of
the ten random instances for each problem setup (n, d). The
boxes in the presented plots delimit lower and upper quartiles.
Note that, in general, Cr increases with the decreasing density
of d as the problem becomes more similar to its underlying
Euclidean TSP.

The WiSM and SA methods were run using multiple settings
in order to study the tradeoff between the solution quality and
computational requirements. In particular, for the WiSM-EA,
we used eight values of the time limit T S (evaluated by the
stopCondition(T S) method) ranging from 1 second to
600 seconds, denoting the algorithm configuration as WiSM-
EAT S . The total required computational time T CPU > T S, as in
its final stage WiSM-EA calls IRIS to compute the headings Θ
for the sequence Σ found by the evolutionary search (Line 20,
Algorithm 1). The SA was run for four sample sizes k ∈
{4, 8, 16, 32} which are referred to as SAk.

The benefit of the surrogate model is supported by a
comparison with two more methods denoted the WIRIS-EA
and IRIS-EA. The WIRIS-EA is the WISM-EA (including the
caching) with a sole exception of using IRIS instead of its
neural network surrogate model to compute the partial costs
C(Σw,i). The IRIS-EA simply combines the evolutionary
algorithm presented in Section IV with IRIS approximation
of the closed DTP of the complete sequence Σ, i.e., C∗(Σ).

Due to computational requirements of IRIS, its sampling
precision was reduced to kmax = 16 for both WIRIS-EA
and IRIS-EA. However, in many cases, we were unable to
get results competitive to other methods for lower values
of the T S. Nevertheless, the value of kmax was selected
empirically based on the overall best tradeoff between the DTP
length approximation precision and the number of evaluations
achievable in T S. Notice that the final IRIS call (Line 20,
Algorithm 1) was still executed using kmax = 1024 to show
impact of the found sequences by the EA.

Both the methods significantly underperform the WiSM-EA
with the windowing WIRIS-EA being a better alternative. The
reason is evident from aggregated results over all densities for
n = 100, where the WiSM-EA achieves a significantly higher
rate of 75.4 × 103 evaluations of the DTP solution cost per
second in comparison to much slower WIRIS-EA and IRIS-
EA with 221 and 7.84 evaluations per second, respectively.
Examples of the found solutions are shown in Fig. 6 and a
detailed report of the evaluation follows.

The achieved results for the DTSP instances with the density
d = 1 and n = 100 locations are shown in Fig. 3, where
the Pareto front is formed by three methods only: the AA,
baseline, and the proposed WiSM-EA. Taking only the shortest
T S = 1 s limit into consideration, all three methods give results
in units of seconds. In particular, the AA in T CPU = 1.2 s, the
baseline in T CPU = 1.3 s, and the WiSM-EA in T CPU = 2.6 s.
The WiSM-EA achieves a significantly better Cr = 0.61 than
the AA with Cr = 1.3 and the baseline with Cr = 1.0.
Besides, the normalized cost further improves to Cr = 0.51
in approximately ten minutes (WiSM-EA600). The only rival
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values for the WiSM-EA indicate different time limit and for SA the particular
number of the samples. Note the logarithmic scale of the time axis.

in the solution cost is the SA method with the best value
Cr = 0.73 achieved by the SA8 in T CPU = 20 s. The solution
cost provided by the SA should theoretically decrease with the
increasing number of samples; however, the observed behavior
is different, and the opposite trend can be noticed for the
SA16 and SA32. This behavior can be explained by too large
instances of the underlying Generalized TSP and heuristic
solution of the transformed TSP instance. Similar behavior
was observed for all tested instances having n ≥ 100.

Evaluation results for the DTSP instances with n = 100
locations and high and low densities are depicted in Fig. 4.
For the high density instances with d = 10, the results are
similar to d = 1 (compare Fig. 3 and Fig. 4a). The AA reaches
the mean Cr = 1.08, while the proposed WiSM-EA achieves
significantly better results ranging from Cr = 0.5 (WiSM-
EA1) to Cr = 0.4 (WiSM-EA600). LIO does not perform well,
while the SA provides competitive results for the time limit
around 10 s.

For the low-density instances with d = 0.1, the DTSP
becomes closer to the corresponding Euclidean TSP because
locations are relatively far from each other and the minimum
turning radius constraint does not significantly affect the length
of the final Dubins tour. It is also indicated by the results for
the baseline with the sequence determined by the ETSP solver.
The proposed WiSM-EA outperforms all other solvers, but the
baseline is outperformed only for the time limits T S ≥ 30 s.
Based on that, we employed a solution of the correspond-
ing Euclidean TSP provided by the Concorde solver [17]
in the initialization of the whole initial generation in the
initializePopulation method (Line 1, Algorithm 1)
of the proposed EA instead of a random permutation to
improve the performance. The modified algorithm is denoted
iWiSM-EA in Fig. 4b. Although the iWiSM-EA provides
outstanding performance in low-density instances, it performs
similarly to the WiSM-EA for d = 1 and d = 10. For large
instances, we observed slightly higher final costs, which can be
explained by the zero diversity of the initial population making
the optimization prone to local minima (data not shown for
readability). We conclude that the initialization of the iWiSM-

EA approach is beneficial for low-density instances only.
Computational performance for instances with small (n =

25) and high (n = 500) number of locations is shown in Fig. 5.
For small instances, the Pareto front is formed by the AA,
SA, and WiSM-EA solvers. Note that WIRIS-EA achieves the
best result for T S = 30 s while its performance deteriorates
for longer time limits which can be explained by the reduced
precision using kmax = 16. Solutions found by the WiSM-EA1
have the mean cost Cr = 0.59 that is significantly lower than
for the AA with Cr = 1.32, the SA4 with Cr = 0.8, but also
the SA8 with Cr = 0.7 with the mean computational time
T CPU = 1.3 s. The AA is the fastest approach with the mean
T CPU = 0.06 s and the SA4 needs T CPU = 0.4 s. For large
instances with n = 500, the proposed WiSM-EA dominates
the other methods. The WiSM-EA10 provides the mean Cr =
0.89 in T CPU = 21 s and reaches Cr = 0.64 in approximately
ten minutes.

C. Discussion and Possible Future Work

Based on the reported results, the proposed approximator
WiSM is a vital approach that enables the solution of the DTSP
instances by a relatively simple evolutionary algorithm. The
developed WiSM-EA scales significantly better than the other
evaluated methods in both the problem size n and density
d. For large instances, it dominates the other methods in
the computational requirements and the quality of the found
solutions. From a practical point of view, the WiSM-EA gives
the best results in units of seconds for small and medium-
sized instances, while for the large instances with hundreds of
locations, it needs only low tens of seconds. To improve the
rate of convergence for low-density instances of the DTSP, we
suggest using the ETSP initialization of the WiSM-EA.

Regarding the other methods, the AA is the fastest algo-
rithm, but it always provides Cr > 1 and thus worse solutions
than the baseline. The SA provides competitive results to the
proposed WiSM-EA in medium and high-density instances,
but it does not scale with the problem size and the number of
the utilized samples, mostly because of the limitations of the
underlying solver to the transformed Generalized TSP.

Although it is not the aim of this paper, our initial experi-
ments indicated (data not shown), that WiSM is robust w.r.t.
different neural network architectures. Nevertheless, future
research should focus on finding possibly more effective
regressors. The similar applies to approaches generating rep-
resentative training data for WiSMs learning. We expect that
the convergence might be further improved with techniques
such as trainable genetic operators in [36].

Regarding the future deployments of the proposed surrogate
approximator of the Dubins tour costs, we believe it can also
be utilized in other Dubins routing problems such as the
Dubins Orienteering Problem [37] where many sequences have
to be evaluated. Moreover, the model can be generalized for
touring problems with neighborhood areas instead of single
locations, where the recently introduced Generalized Dubins
Interval Problem [38] can be utilized for the model learning
using high-quality solutions, and then for solving the Dubins
TSP with Neighborhoods [2]. Finally, the herein presented
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results motivate for future work on the approximation of
costs of curvature-constrained tours for more complex vehicle
models than Dubins vehicle, e.g., Bézier curves [39].

VII. CONCLUSION

We present a novel approach to solve the Dubins Traveling
Salesman Problem (DTSP) by a relatively simple Evolutionary
Algorithm that is based on the proposed surrogate approx-
imator of the Dubins tour cost called WiSM. Even though
collecting enough training data might take considerable time,
once the dataset is built and the WiSM is trained, it can
provide Dubins tour cost estimates in a very fast rate, which
can be exploited by robust global search methods such as
Evolutionary Algorithms. The developed WiSM-EA has been
evaluated on DTSP instances of varying size and also the
density of the locations to be visited. Based on the reported
results, the WiSM-EA outperforms the existing state-of-the-art
approaches in the quality of the found solutions and also com-
putational requirements. The results demonstrate the proposed

method scales with the problem size and density, and thus,
it is a suitable heuristic for finding high-quality solutions of
curvature-constrained routing problems with Dubins vehicle.
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