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ABSTRACT
We present an implementation of the Speeded Up Robust

Features (SURF) on a Field Programmable Gate Array
(FPGA). The SURF algorithm extracts salient points from
image and computes descriptors of their surroundings that
are invariant to scale, rotation and illumination changes.
The interest point detection and feature descriptor extraction
algorithm is often used as the first stage in autonomous robot
navigation, object recognition and tracking etc. However,
detection and extraction are computationally demanding and
therefore can’t be used in systems with limited computa-
tional power. We took advantage of algorithm’s natural paral-
lelism and implemented it’s most demanding parts in FPGA
logic. Several modifications of the original algorithm have
been made to increase it’s suitability for FPGA implemen-
tation. Experiments show, that the FPGA implementation is
comparable in terms of precision, speed and repeatability, but
outperforms the CPU and GPU implementation in terms of
power consumption. Our implementation is intended to be
used in embedded systems which are limited in computa-
tional power or as the first stage preprocessing block, which
allows the computational resources to focus on higher level
algorithms.

Index Terms— machine vision, visual navigation, SURF,
FPGA

I. INTRODUCTION
Most of today’s mobile robots utilize computer vision

methods to gain information about their surrounding envi-
ronment. Significant advantages of vision-based sensing are
affordable price of cameras, amount of provided data and
easy interpretation of these data by humans. The quantity
of provided data can be also regarded as a drawback,
because real-time processing of image data streams requires
computationally strong hardware. However, this drawback

diminishes due to Moore’s law and therefore machine vi-
sion methods have found applications in mobile robotics,
where real-time processing is necessary. Vision-based object
recognition [1], reactive navigation [2], three–dimensional
reconstruction [3], and efficient mapping and localization
methods [4] [5] are used in mobile robotics [6] today.

Many of these methods rely on feature extraction algo-
rithms [7] like Scale Invariant Feature Transformation [8],
Gradient Location and Orientation Histogram [9] or Local
Energy based Shape Histogram [10]. Although these algo-
rithms are based on different principles and therefore per-
form differently [9], their purpose is to provide descriptors
of significant image areas, which are immune to illumination
and camera position changes. Since detected feature de-
scriptors contain information independent of viewpoint and
illumination, they are especially suitable for image-matching
tasks. However, these algorithms are computationally de-
manding and therefore represent a significant bottleneck in
many computer vision systems, forcing researchers to focus
on improvement of their speed.

One of possible ways to increase speed of feature ex-
traction is to exploit the fact, that image processing can
easily be parallelized. Implementations of feature extraction
algorithms utilizing GPUs [11] [12] have achieved perfor-
mance over 30 FPS, which is considered as suitable for real-
time applications. Although these implementations are based
on an affordable computational hardware, small robotic
platforms usually can not afford to carry entire PC system.
As a consequence small robots have to use small intelligent
cameras, e.g. CMUCam1, with on-board image processing.
These intelligent cameras can rely on standard microcon-
trollers, digital signal processors or specialized integrated
circuits [13]. A popular choice for embedded machine vision

1http://www.cmucam.org
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Fig. 1. Example of detected features.

is usage of the Field Programmable Gate Arrays (FPGA),
because they effectively utilize parallel nature of the image
processing. Several authors [14] [15] [16] [17] reported
successful implementation of robotic vision algorithms on
a FPGA-based hardware. Among these, some conclude that
their SIFT algorithm implementation performs better than
on conventional CPUs [17] and some demonstrate their
implementation in a real robotic system [16].

One of the most efficient feature extracting algorithms
is the Speeded Up Robust Features (SURF) [18], which
outperforms SIFT implementations on general purpose CPUs
in both speed and robustness. Most significant improvement
in calculation speed is achieved by use of ”Integral Image”,
which allows fast calculation of box filter responses used
throughout the algorithm. The SURF algorithm has been
reported to achieve around 2 frames per second on a general
purpose CPU.

We present an implementation of this algorithm massively
accelerated by the FPGA logic. Considering the FPGA
architecture, we have decided that only some parts of the
original SURF algorithm are suitable for implementation
using FPGA logical blocks, while other parts are imple-
mented on CPU with floating-point arithmetics. Although
our implementation follows the original definition as closely
as possible, we had to apply optimizations which affect
precision of the detector and therefore repeatability and
distinguishability of the whole algorithm. Performed ex-
periments show that the repeatability and robustness of
the FPGA-SURF have not been severely affected and are
comparable to the original and GPU-SURF implementation.
However, the FPGA-SURF is faster than the original - it
processes approximately 10 images (1024x768 pixels) per
second1, consumes less than than 10 W and occupies less
space than GPU-based system. Higher speed of feature ex-
traction at lower size, weight and power consumption opens

1Considering around 100 descriptors per image.

Fig. 2. Integral image principle illustration

possibilities for applications in small embedded devices.

I-A. Paper structure

Next chapter will overview the SURF algorithm and
outline its detection and description stages. The following
section is concerned with the implementation itself. After-
wards, we present experiments comparing results of FPGA-
SURF with the original SURF implementation and show,
how the FPGA-SURF can be used as a part of mobile mobile
robot navigation system.

II. ALGORITHM

This chapter contains brief description of SURF algorithm,
according to definition in [18]. Algorithm consists of four
main parts:

1) Integral image generation,
2) Fast-Hessian detector (interest point detection),
3) Descriptor orientation assignment (optional),
4) Descriptor generation.

IΣ(x, y) =
x∑

i=0

y∑
j=0

I(i, j) (1)

Integral image is used by all subsequent parts of algorithm
to significantly accelerate their speed. Integral image is
defined by eq. (1). When using integral image, it is necessary
to always read only four pixel values to calculate surface
integral of any size from original image. Fox example
integral over grayed area in image 2 is equal to Σ =
IΣ(A) + IΣ(D)− IΣ(C)− IΣ(B). This fact is widely used
when calculating Gaussian and Haar wavelet filter responses.

H(x, y) = det

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)
(2)

H(x̄) = Dxx(x̄)Dyy(x̄)− (0.9Dxy(x̄))2

x̄ = (x, y, s) (3)
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SURF uses determinants of Hessian matrices to locate
image’s significant points. Equation (2) shows original def-
inition of this determinant for general two dimensional
function. Fast-Hessian detector modifies this equation in
two significant ways: 1) Second order partial derivatives are
replaced by convolutions of image with approximated Gaus-
sian kernels second order derivatives. Approximation is done
by box filters with coefficients 1,−1, 2,−2 2. Coefficient
0.9 in eq. (3) is used to compensate this approximation.
2) Gaussian kernels are not parameterized only by position
in image, but also by their size. To achieve scale invariance,
algorithm searches for significant points on multiple image
scale levels. Since scaling whole image is computationally
expensive, SURF only scales Gaussian kernels (exactly box
filters which approximate them). Scaling is represented by
third parameter s in eq. 3, this parameter creates the three
dimensional space of determinant results, usually refered to
as ”scale space”. Scale differs (and is quantized) according
to octaves and intervals.

Table I. Scale quantization into octaves and intervals and
associated box filter sizes.

Octave 1 2
Interval 1 2 3 . . . 1 2 . . .

Box filter
edge size 9 15 21 . . . 15 27 . . .

s = size
9

× 1.2 1.2 2 2.8 . . . 2 3.6 . . .

As we can see in table I box filter size increase doubles be-
tween octaves, moreover image sampling step also doubles.
When determinants in all preselected scales and intervals
are calculated they are filtered by positive threshold value.
Afterwards a non-local maxima suppression is performed
among 26 closest neighbors in determinant scale space.
Determinant local maxima marks position of interest point.
However, this position has to be refined by interpolation to
sub-pixel precision.

H(x) = H+
∂H
∂x

T

x +
1
2
xT ∂

2H
∂x2

x (4)

x̂ = −∂
2H−1

∂x2

∂H
∂x

(5)

Equation (4) shows second order Taylor polynomial ap-
proximation of Hessian in scale space centered around
examined local maxima, where x = (x, y, s). Position
correction is obtained by seeking for zero value of this poly-
nomial’s derivative. Resulting formula for position correction
is eq. (5), where x̂ = (x̂, ŷ, ŝ). Local maxima is accepted as
interest point if none of absolute values of position correction
vector x̂ elements is bigger than 0.5.

2Since area with coefficient −2 in Dxx and Dyy filters splits area with
coefficient 1 it is possible to save some memory read cycles by not splitting
underlying 1 area and by calculating with coefficient −3 instead of −2.

Rotation invariance is achieved by assigning each interest
point a ”dominant direction”. If application doesn’t require
descriptors to be rotation invariant we can simply skip steps
described in this paragraph and assign orientation (0, 0).
A circle of radius 6s is set around interest point. Inside
a circle Haar wavelet responses in x and y direction are
calculated from 4s-sized filters with sampling step s. These
responses are weighted by Gaussian function with σ = 2.5s
centered around interest point. Afterwards they are summed
by a sliding sector window of π/3 with approximate step
π/18. Longest vector obtained as this window sum is chosen
to be descriptor dominant direction.

The SURF descriptor is calculated from square interest
point’s neighborhood with edge size 20s. This neighborhood
is rotated to match interest point dominant direction. This
square area is further divided into 16 equal sub-squares
with edge size 5s. Inside each of these sub-square areas
25 Haar wavelet filter response pairs are calculated (filter
size 2s, sampling step s, one direction along interest point
dominant direction - dd, one perpendicular in positive sense
- dp). Responses are weighted by Gaussian function with
σ = 3.3s and summed within sub-square into four di-
mensional vector v = [

∑
dd,
∑
dp,
∑
|dd|,

∑
|dp|]. These

vectors are chained (one for each of 16 sub-squares) to form
64 dimensional SURF descriptor. Descriptor elements are
further scaled so resulting descriptor is a unit vector.

Output of algorithm for one image gives us set of interest
point locations in image’s scale space along with set of de-
scriptors describing areas around interest points. To increase
matching performance the sign of Laplacian (i.e. trace of the
Hessian matrix) is included into the algorithm output. Since
interest points are usually found on blob-type structures
this sign distinguishes light blobs on dark background from
opposite.

III. IMPLEMENTATION

This chapter is dedicated to description of hardware design
and software controlling functions. The algorithm to generate
the SURF descriptor is written according to specification of
original SURF with a few minor optimizations. As men-
tioned before, for the purpose of the FPGA implementation,
only the Fast-Hessian detector part of SURF has been chosen
for hardware-only implementation. Created hardware IP-
blocks provide integral image, determinants for all inspected
scale levels and also marks local maxima in calculated
determinant scale-space. Generation of the SURF descriptor
is handled entirely by software. Descriptor generation by
itself is still quite time demanding, that is why we have
chosen XC5VFX70 FPGA which incorporates PowerPC-440
CPU core with floating-point co-processor.

Hardware design of the Fast-Hessian detector introduces
two major limitations in comparison with other implemen-
tations: 1) Determinant calculation is done in an integer
arithmetics with limited precision. 2) Hardware block is de-
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signed for specific number of octaves and scale intervals with
limited image size. Current image size limit is 1024× 1024
pixels and IP-blocks are designed to calculate determinants
in 2 octaves and 4 intervals per octave.

III-A. FPGA SoC architecture

Fig. 3. FPGA SoC block schematic diagram

Fast-Hessian detector has been divided into two IP-blocks,
see blocks in Figure 3: SSA IIG – Integral Image Gener-
ator, SSA FHG – Fast-Hessian Generator. Both IP-blocks
have MPLB (Master Processor Local Bus) interfaces with
simple DMA controllers, which allow them to manage data
transfers from and to system memory without any CPU
interaction. PLB2 bus is designated for these transfers and
has accordingly increased capacity. PixelBus is dedicated
simple one-way bus which transfers integral image data into
Fast-Hessian generator for determinant calculation. Figure 3
also includes some design details, such as bus widths and
clock frequencies, which are vital in order to achieve stated
performance.

III-B. Integral image generator

Fig. 4. Integral image generator calculation core rough block
diagram

Integral image generator calculation core (fig. 4) is re-
sponsible for generation of integral image from incoming
8-bit grey scale image. It’s architecture is fairly simple. IP-
block SSA IIG (in fig. 3) consists from this calculation core

and simple DMA controller to transfer data to and from this
block.

III-C. Fast-Hessian generator

Fig. 5. Fast-Hessian calculation core block schematic dia-
gram

Fast-Hessian calculation core carries out main function-
ality of SSA FHG (in fig. 3) IP-block. This block gen-
erates approximated determinants of Hessian matrices and
searches for local maxima among them. An overview of
FPGA’s dedicated blocks, bus widths and frequencies usage
is summarized in Figure 5. Incoming integral image data
are stored in large FIFO inside MasterController block. An
access to integral image area of 52 × 52 pixels 3. is need
to calculate response of the largest Gaussian filter. Data in
this area are accessed many times and in very unsequential
manner, that’s why MasterController FIFO stores 56 integral
image lines and allows access to them through 4 independent
busses. This configuration delivers enough bandwidth for
integral image data used during determinant calculation. 18
TripleMAC (Multiply-Accumulate) units are connected to
these busses to capture integral image data and calculate
Gaussian filter responses from them. A block HessianCalc
calculates actual determinants from Gaussians. Determinants
are written into system memory using simple DMA con-
troller in SSA FHG (in fig. 3) IP-block.

To achieve higher performance optimization determinants
are calculated not one by one but in ”determinant blocks”.
Determinant block consists of all determinants calculated
for 2 × 2 pixels image area. Since octave 2 has doubled
sampling step and first 2 intervals in octave 2 have same
filter sizes as intervals 2 and 4 from octave 1 we have to
calculate only 18 determinants in each block (instead of 20).
Integral image data are sent out through four output busses
in pre-optimized order. This order is stored in ”Control
and addressing sequence memory”. This memory also holds

3According to original SURF specification octave 2, interval 4 uses
Gaussian filters with mask size 51×51 pixels. To calculate response of this
filter using integral image we need to access one more row and column.
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Fig. 6. MasterController rough block diagram

control signals for TripleMAC units which are sent out along
with integral image data. Control and addressing sequence
must be optimized in order to achieve stated performance.
To carry out this optimization a specialized script, which
generates this sequence, has been written. This sequence runs
for every 2× 2 pixels image block and delivers all integral
image data needed for calculation of one determinant block.

One TripleMAC block handles calculation of three Gaus-
sian filter responses. Incoming data are scaled by one of
1,−1, 3,−3 coefficients based on input control signals and
added to one of three filter responses. After each run of
MasterController’s sequence a signal indicating end of this
sequence is being generated. This signal causes TripleMAC
blocks to load results into output buffers and to reset accu-
mulators. On the output side all blocks are connected to one
three-state bus which is used to read results from them. To
save FPGA’s resources TripleMAC performs three cycles of
addition/subtraction instead of multiplication by coefficients
3,−3. This fact has to be reflected in control and addressing
sequence since TripleMACs don’t report MasterController
their busy state.

Fig. 7. HessianCalc rough block diagram

Block HessianCalc performs actual Hessian matrix deter-
minant calculation. Gaussian filter responses, necessary for

this calculation, are read from TripleMAC over three-state
bus after MasterController signalizes end of determinant
block sequence. Filter responses reading and determinant
block calculation are controlled by control sequence stored
inside HessianCalc.

Fig. 8. LocMaxFinder rough block diagram

Block LocMaxFinder stores at least 3 determinant blocks
and compares each determinant with its neighbors to search
for local maxima. This block doesn’t have sufficient mem-
ory resources to store all data needed to examine whole
neighborhood of each determinant. Thus it performs non-
maxima suppression only throughout neighbors from two
determinant blocks. Each determinant marked by this block
as local maxima has to be examined again by software.
Determinants marked by this block are stored into FIFO
in IP-block SSA FHG, which is readable through SPLB
interface and generates interrupts based on its occupancy.

Units MasterController, HessianCalc and LocMaxFinder
are controlled by embedded sequences. In case of Master-
Controller this sequence is quite large and needs to be stored
in block RAM, other two use FPGA logic, since sequences
are short. Generation of control sequences for HessianCalc
and LocMaxFinder is fairly simple – these only need to
process incoming determinants in preset order. However,
MasterController’s sequence has severe impact on system’s
performance and is not trivial to generate. To generate this
sequence only very basic algorithm has been written and
thus introduces approximately 11% increase in determinant
block processing time compared to optimal state4.

III-D. Control software
This part of software manages mainly data transfers to

and from IP-blocks and is represented by ”libSSA2” library.
Processing is divided into tasks. Library provides functions
to create and process these tasks. Each task represents one
image and has designated memory space to store image data,
integral image data and determinants. SURF descriptors are
being passed to superordinate application through callback.
Task processing has four phases:

1) integral image generation,
2) determinant generation,
3) local maxima localization,

4Optimal state is regarded as state when MasterController integral image
reading busses do not have to carry idle cycles to wait for busy TripleMAC
units
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4) SURF descriptor generation.
To optimize processing speed, all these phases may over-
lap as well as processed task may overlap. First two are
carried out by hardware, library only sets data source and
destination addresses in IP-block DMA controllers and waits
for interrupts. Third phase is only intermediate state when
image is done processing in hardware but there are still
some local maxima determinants unread from SSA FHG
FIFO. Fourth phase is actually performing all that is left
for ”software” part of our SURF implementation, i.e. interest
point position interpolation and SURF descriptor generation.
Since all hardware is wrapped up into two Xilinx Platform
Studio IP-blocks, its very simple to put more calculation
accelerators on one chip and library supports this option.

IV. RESULTS

Although we have tried to follow the original description
as closely as possible, some changes had to be made to
optimize algorithm for implementation in the FPGA logic.
In current state of development this of course applies only
to detection stage. There has been a great concern for
the possible degradation of the algorithm due to loss of
precision in the detection phase. To evaluate impact on
algorithm efficiency, we have performed tests comparing the
repeatability of SURF, GPU-SURF and FPGA-SURF. These
tests used a dataset of 1500 images captured by a mobile
robot moving in a park environment.

IV-A. Measuring distinguishability
By distinguishability, we understand a chance of algorithm

to establish a valid correspondence. This is done by estab-
lishing correspondencies solely by their descriptor Euclidean
distance and checking these against geometric constraints of
multiple view geometry [19].

For every feature fa in an image A, we compute descrip-
tor’s Euclidean distance to each of feature descriptors in
an image B. Two features from image B, which are most
similar to fa (i.e. they have minimal descriptor distance) are
selected and therefore form two pairs with fa. If the most
similar feature pair has its descriptor distance lower than
75% of the second most matching pair descriptor distance,
we proclaim it a correspondence candidate. After we find all
correspondence candidates for every feature in the image A,
we perform a check based on the epipolar geometry [19].

The fundamental matrix is established by the eight-point
algorithm [19] and RANSAC [20]. For every feature in
image A, we find an epipolar line in image B and compute
the distance of the corresponding feature from that epipole.
If this distance is greater than 3 pixels, the correspondence
candidate is discarded, otherwise it is considered valid. The
ratio of valid correspondencies to the number of corre-
spondence candidates is a measure of the SURF algorithm
distinguishability. The higher ratio means better algorithm
performance.

When evaluating algorithm performance, we compute this
ratio for every two consecutive images of a particular dataset.
The average ratio is then taken as algorithm’s distinguisha-
bility measure.

Every algorithm has been tested with four versions of the
method establishing the correspondence candidates. Because
the camera viewpoint doesn’t change a lot between two
consecutive images in the datasets, we can limit the search
for a correspondence to a certain distance (200 pixels).
Moreover, we might or might not match the features with
same or different Laplacian sign when establishing the
correspondences.

Table II. Comparison of SURF, GPU-SURF and FPGA-
SURF distinguishability.

Limited Laplac. Platform
search used CPU GPU FPGA

Y Y 0.62 — 0.53
Y N 0.61 0.54 0.53
N Y 0.43 — 0.27
N N 0.43 0.27 0.26

The table II compares the distinguishability for our,
1500 image dataset. Similar results were obtained on a part
of the dataset2 used by the authors of the original SURF
algorithm.

IV-B. Simple FPGA-SURF based navigation system
Finally, to demonstrate the usability of the proposed

implementation, we deployed a navigation system with an
image preprocessing module based on FPGA-SURF. The
system composes of a P3AT robot with an Unibrain Fire-
i601c camera with 1024x768 pixel resolution, TCM2 com-
pass and HP 8710p laptop. This navigation system is first
guided through the environment by means of teleoperation.
During this drive, the robot searches for SURF features
in pictures from the onboard camera. As the robot moves,
it tracks the features, estimates their distance and creates
a three dimensional map of them. Using this map, the
system can estimate its position using currently sensed and
mapped features. Therefore, the robot is able to operate in
the environment. After the teleoperated drive is finished,
the system can localize and navigate the robot through the
mapped environment simply by matching currently captured
and previously mapped. We have mapped part of the Czech
technical university campus and let the robot traverse the
learned path. The system has proven to be able to faultlessly
navigate the learned path, which was approximately 500
meters long.

V. CONCLUSION
We have presented an implementation of the SURF al-

gorithm massively accelerated by the FPGA logic. Despite

2http://www.robots.ox.ac.uk/˜vgg/research/affine/
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several simplifications imposed by the limitations of FPGA
hardware, our implementation offers similar distinguisha-
bility and robustness as the GPU-SURF implementation.
The FPGA-SURF implementation achieves about 10 FPS
at HD (1024x768 pixels) resolution, which is a necessity
for real-time operation. The total power consumption of this
device is less than 10 W, making it suitable for smaller
robotic platforms. In the future, we will extend the algorithm
by feature matching as a first step towards an embedded
device realising visual localization and mapping. Moreover,
we would like to port the algorithm to a Xilinx Spartan-6
family of FPGA chips, reducing the costs of the final system.
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